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Abstract—Data movements between different levels of the
memory hierarchy (I/O-transitions, or simply I/Os) are a critical
performance bottleneck in modern computing. Therefore it is a
problem of high practical relevance to find algorithms that use
a minimal number of I/Os. We present a cache-oblivious sparse
matrix-sparse matrix multiplication algorithm that uses a worst-
case number of I/Os that matches a previously established lower
bound for this problem (O

(
N2

B·M

)
read-I/Os and O

(
N2

B

)
write-

I/Os, where N is the size of the problem instance, M is the size
of the fast memory and B is the size of the cache lines). When
the output does not need to be stored, also the number of write-
I/Os can be reduced to O

(
N2

B·M

)
. This improves the worst-case

I/O-complexity of the previously best known algorithm for this
problem (which is cache-aware) by a logarithmic multiplicative
factor. Compared to other cache-oblivious algorithms our algo-
rithm improves the worst-case number of I/Os by a multiplicative
factor of Θ(M ·N). We show how the algorithm can be applied
to produce the first I/O-efficient solution for the sparse 2- vs
3-diameter problem on sparse directed graphs.

I. INTRODUCTION

Data movements between slow and fast memories (referred
to as I/O-transitions or simply I/Os) often dominate the time
and energy consumption of computations [33]. Nowadays
they are widely considered a principal bottleneck in high
performance computing [52]. Simultaneously, algorithms that
minimize I/Os have always been of theoretical interest [5],
[30], [38], [40]. Therefore, developing such algorithms is a
problem of high practical and theoretical value.

When developing an algorithm in the I/O setting, there is
a fast internal memory of a size parametrized by M and a
slow external memory of unlimited size (e.g., a cache and a
DRAM, or a DRAM and a disk). One can move data between
these two memories in blocks of size B. The number of I/Os
performed by a given algorithm (its I/O-complexity) is then
a function of M , B, and N , where N is the input size.
Some existing algorithms use the knowledge of M and B
to achieve better results. However, in a particularly important
class of algorithms called cache-oblivious [26] algorithms, the
algorithm cannot know the values B and M . Specifically, the
I/O-complexity of such an algorithm is still expressed using
N , M , and B, but its pseudocode must not explicitly use the
knowledge of M or B. Efficient cache-oblivious algorithms
are of particular value because they do not have to be tuned
for different architectures, but instead work well “out of the
box”, for different architectures.

Matrix-matrix multiplication is one of the most fundamental
problems in computing. While many use cases focus on
dense matrices (e.g., eigenvalue factorization [19], triangular
solvers [21], machine learning [10], [11]), a plethora of
applications use sparse matrix-sparse matrix multiplication
(SpGEMM). Some examples include problems in engineer-
ing [29], general computational science [46], [54], graph
processing [7], [13], [22], [32], [42], [51], and others. As
matrices of interest can be prohibitively large, developing I/O-
efficient SpGEMM algorithms is of great importance.

There is a long line of work dedicated to I/O-efficient
SpGEMM algorithms and to the corresponding I/O lower
bounds. Those include that of Amossen and Pagh [4], Pagh
and Stöckel [43], Dusefante and Jakob [25], or Greiner [27].
However, none of them is I/O-optimal for general sparse
matrices, and most are not cache-oblivious.

Addressing the above challenge, we deliver the first
SpGEMM algorithm that is I/O-optimal, cache-oblivious, and
works for arbitrary sparse matrices. The key idea is to appro-
priately reformulate a product of two sparse matrices of size N
such that it is expressed as four products of matrices of size
N/2, and two vector additions. We show that this decomposing
of SpGEMM, combined with recursing this decomposition on
each of the four partial products, yields an algorithm that is not
only I/O-optimal (with respect to the worst case) and cache-
oblivious, but also simple and deterministic.

When analyzing our algorithm, we explicitly distinguish be-
tween the complexity of I/O-reads and I/O-writes. We motivate
this approach with prevalent differences in the demand for
conducting reads and writes in algorithms. Other motivations
are the different costs of reads and writes in the majority of
architectures. With this we extend a current line of research
on algorithms for “asymmetric read and write costs” [17].

Specifically, our work makes the following contributions:
• We develop a cache-oblivious I/O-optimal algorithm for

SpGEMM with storing.
• We show how to extend our algorithm for SpGEMM to

the setting without storing.
• We extensively compare our algorithm to state of the art,

illustrating its superiority over best available baselines
(both in cache-oblivious and in cache-aware settings) in
terms of I/O complexity. Our design is also deterministic
and substantially simpler than previous methods.



• We apply our algorithm to obtain the first I/O-efficient
algorithm for the 2- vs 3-diameter graph problem.

II. FUNDAMENTAL CONCEPTS

We first describe basic concepts and notation.

A. The I/O-model
In this section we recall the I/O-model of Aggarwal and

Vitter [1] as well as the definitions of the technical terms that
we use in this paper. In the I/O-model we have an internal
memory of size M and an external memory of unlimited
size. We can move blocks of B < M contiguous data items
between the internal and the external memory. Each of those
data movements between the slow and the fast memory counts
as one I/O. The I/O-complexity of an algorithm is defined
as the maximal number of I/Os that the algorithm performs
for an instance of size N using a fast-memory of size M
and blocks of size B. I/O-complexities are typically given in
O-notation and therefore two algorithms that use a number
of I/Os that differs at most by a constant multiplicative factor
are said to have the same I/O-complexity. The I/O-complexity
of a computational problem is the minimal I/O-complexity
among all algorithms that solve this problem.

The related literature does not typically distinguish between
the direction of I/Os. In some cases it even simplifies the
complexity of writing by not requiring the output to be stored
in the end (although in real hardware settings, write-I/Os can
be the more expensive ones). For many algorithms this may
be justified as these two quantities are equal up to constant
multiplicative factors or the number of writes is smaller (one
can easily check this for sorting and for all algorithms that
have the property that most of the values that we write will
be read again). But when these quantities are different, it does
make sense to distinguish them and minimize the maximum
of them (especially when the number of writes is the larger
one). As we show later, for sparse matrix products we need
asymptotically different numbers of data movements in the two
directions and thus we distinguish between read-I/Os (data
movements from slow to fast memory) and write-I/Os (data
movements from fast to slow memory). Corresponding to these
different sorts of I/Os, we use the terms read-I/O-complexity
and write-I/O-complexity.

Frigo, Leiserson, Prokop and Ramachandran [26] introduced
the concept of cache-oblivious algorithms. An algorithm is
called cache-oblivious if it does not need to know the hard-
ware parameters M and B of the I/O-model. That is, those
parameters still exist in the model and play a role in the
analysis of the algorithm, but we can write the pseudo-code
without specifying them. Interestingly, if a cache-oblivious
algorithm performs a given computation I/O-optimally, it does
this for all possible values of M and B, because we do not
specify those values and hence they could be arbitrary. In
particular, they are also optimal for the different values M and
B of the different levels of the memory hierarchy of the given
hardware (L1, L2, L3, DRAM, flash etc) and hence optimize
the communication on all levels of the memory hierarchy at
the same time.

B. Sparse Matrix-Sparse Matrix Multiplication

We assume that the sparse n × k matrix U and the sparse
k ×m matrix V are given by a list of their non-zero entries
(“COO format”)

SU = {(i, j, Ui,j)|Ui,j 6= 0} (1)

and
SV = {(i, j, Vi,j)|Vi,j 6= 0}. (2)

We denote the number of non-zero entries NU := |SU |,
NV := |SV |, and define the problem size by the total number
of non-zero entries N := |NU | + |NV |. We also assume that
in the beginning the elements of SU and SV are stored in a
contiguous block of the external memory. We do not need to
assume that the entries SU or SV are given in any particular
order (for example as a Peano curve or in row- or column-
major order) since we can bring them into the necessary order
with an additional amount of I/Os that does not increase the
overall I/O-complexity of this algorithm. For the same reason
our algorithm can also be extended to most other sparse matrix
storage formats (LiL, CSR, CRS, etc).

We want to compute the entry list

SC = {(i, j, Ci,j)|Ci,j 6= 0} (3)

for the matrix C := UV and have this list stored in a
contiguous block of the external memory in the end.

We also consider the case where C does not need to be
stored, but we only need to “see” all its non-zero entries in
internal memory. Here we demand that we see each non-zero
entry of the product matrix exactly once (so that by solving
this problem we can for example answer how many non-zero
entries there are in the product matrix, or how often a particular
value occurs). This is a slightly different problem from an
algorithmic point of view and we call it SpGEMM without
storing. About half of the previous work on SpGEMM in the
I/O-model considers this version of the problem.

III. PREVIOUS WORK

Hong and Kung [31] showed that multiplication of dense
n × n matrices needs at least Ω

(
n3
√
M

)
I/Os in a model that

is called the red-blue pebble game. The red-blue pebble game
differs from the later developed I/O-model of Aggarwal and
Vitter in two aspects: 1.) It does not take the size of the cache-
line into account (this can be compared to the case B = 1 of
the I/O-model). 2.) It is always “played” on a particular cDAG
(computation directed acyclic graph), which means that the
algorithm that is used to do the computation needs to be fixed
and the red-blue pebble game can only be used to answer
what is the I/O-optimal way to run this particular algorithm,
but it does not answer what is the I/O-optimal algorithm for
the given problem. Recent works optimized the I/Os in this
setting beyond the O-notation [35]–[37].

Bader and Zenger [8] presented a cache-oblivious algorithm
for dense matrix multiplication in the I/O-model of Aggarwal



Reference Worst-case
read-I/Os

Worst-case
write-I/Os Overall I/Os Cache-

oblivious?
Determi-
nistic?

Storing
output?

[27]
“sorting-based” O

(
N3

B
log(N

B
)
)

not considered O
(

N3

B
log(N

B
)
)

� - Not considered

[27]
“tile-based” O

(
N3

B
√
M

)
O

(
N2

B

)
H O

(
N3

B
√
M

)
� - Not considered

Dusefante
and Jakob [25] Õ

(
N3

B

)
not considered Õ

(
N3

B

)
- � Not considered

Amossen
and Pagh [4] O

(
N2

B·M1/8

)
not considered O

(
N2

B·M1/8

)
� - �

Pagh and
Stöckel [43] O

(
N2

B·M min
(

max
(

1, logM/B

(
N
M

))
, B

))
not considered Õ( N2

B·M ) � � �

This work
“with storing” O

(
N2

B·M

)
H O

(
N2

B

)
H O

(
N2

B

)
H - - -

This work
“without storing” O

(
N2

B·M

)
H O

(
N2

B·M

)
O

(
N2

B·M

)
H - - �

TABLE I: Comparison of external memory algorithms for SpGEMM: “H” indicates optimality for the respective problem (with or without storing).
We assume sparsity (n ∈ Θ(N)) to simplify the expressions and comparisons, although some of the methods also work for more general cases.
For output sensitive algorithms we have used Z = N2 since we are interested in the worst-case behavior. The algorithms of Greiner [27] are very
efficient for multiplication of regular matrices, but one could use them to perform multiplication of general sparse matrices (as explained later): The
corresponding I/O-complexities that are listed in this table, are obtained by setting k1 = k2 = N in (4) and (5).

and Vitter. Their algorithm uses O
(

n3

B
√
M

)
I/Os and is I/O-

optimal among algorithms that follow a “standard matrix
multiplication cDAG”, because it uses 1

B times the number of
I/Os needed by Hong and Kungs lower bound (and with B′

I/Os in the setting B = 1 we can model one I/O in the setting
B = B′). Demaine et al [23] consider the I/O-complexity of
dense matrix multiplication with other methods than standard
matrix multiplication.

A. Sparse Matrices
Also SpGEMM has been widely studied from the perspec-

tive of I/O-complexity.
Amossen and Pagh [4] present a cache-aware algorithm for

sparse matrix multiplication that uses O( N
√
Z

B·M1/8 ) I/Os, where
Z is the number of non-zero entries of the product matrix.
This is for worst-case instances O( N2

B·M1/8 ).
Dusefante and Jakob [25] present a cache-oblivious al-

gorithm for sparse matrix multiplication that uses Õ
(
ZN
B

)
I/O-transitions, which is efficient when Z is small, but for
worst-case instances this is Õ(N3

B ). To the best of our knowl-
edge, this was so far the only cache-oblivious algorithm for
SpGEMM.

Greiner [27] considers in his PhD thesis the special case of
multiplying sparse matrices that are row- or column-regular
(that is, matrices that have a constant number of non-zero
entries per row or column). He shows that a k1-column regular
n×n matrix U can be multiplied with a k2-row regular n×n
matrix V using

O

(
k1 · k2 · n

B
log(k1 · n/B)

)
(4)

cache-aware I/Os. Notice that this low I/O-complexity is only
possible because the product of a k1-column regular matrix
with a k2-row regular matrix has at most k1 · k2 · n non-zero
entries. This algorithm could also be used to perform multi-
plications of general non-regular sparse matrices by treating
them as regular matrices (that is, viewing some of the zeros as

non-zeros until there are the same number of non-zero entries
in each row or column). However, this would lead in worst-
case instances to k1, k2 ∈ Θ(n) and an I/O-complexity that is
cubic in n.

The same PhD thesis presents a cache-aware “tile-based
algorithm” that solves this special problem with O(n2/B)
write-I/Os and

O

(
n2

B

√
k1 · k2
M

)
(5)

read-I/Os. Both algorithms of this PhD thesis are cache-aware.
Pagh and Stöckel [43] show that the I/O-complexity of

multiplication without storing can be lower bounded by

Ω

(
N

B
min

(√
Z

M
,
N

M

))
, (6)

where Z is the number of non-zero entries of U ·V . They also
present a randomized algorithm that solves this problem with

O

(
min(max(1, log M

B
(
N

M
)), B) · N

B
min

(√
Z

M
,
N

M

))
(7)

I/Os and hence is optimal up to a multiplicative factor of

min(max(1, log M
B

(
N

M
)), B). (8)

These I/O-complexities are achieved with an algorithm that
does not store the result, but the algorithm can be adapted to
store the result. Notice however that the product of two sparse
matrices can have up to N2 non-zero entries and therefore
requires in the worst case Ω(N2

B ) write-I/Os to be stored.
Consequently, by storing the result, the lower bound on the
worst-case numnber of write-I/Os increases to Ω(N2

B ). Table I
gives an overview of SpGEMM algorithms in the I/O-model.

Finally, there is more distantly related work that can be
mentioned. Greiner and Jacob [28] analyze the I/O-complexity
of sparse matrix dense matrix multiplication. Bender et al [12]



present cache-aware and cache-oblivious algorithms for sparse
matrix dense vector multiplication. Ballard et al [9] study
sparse matrix multiplication in a parallel setting. The doctoral
thesis of Scott [48] proves I/O-lower bounds for general
recursive matrix multiplication. However, those bounds do not
directly apply to the problem of our paper, because they are
derived in a different model (in particular, not considering the
size of the cache lines).

Overall, there is extensive work on matrix multiplication
from the perspective of performance. This is not surprising
given the high importance of this computational problem
in essentially all areas of modern science and engineering.
However, for sparse matrix multiplication, the best known
algorithm requires in the worst case a number of read-I/Os that
exceeds the best worst-case I/O-complexity of this problem by
a logarithmic multiplicative factor. Among the cache-oblivious
algorithms this multiplicative factor is even of the order of
Θ(M · N). Furthermore, in the previous work the write-I/O-
complexity was usually not considered separately from the
read-I/O-complexity.

Some of the existing algorithms work only on restricted
classes of sparse matrices (for example matrices with a
bounded or even constant number of entries in each column).

Many of the existing algorithms have a runtime that strongly
depends on other parameters than the input size. These algo-
rithms perform well when the given instance of the problem
lies in a suitable parameter range, but can perform very poorly
on the worst-case instances of a given size. Particularly disad-
vantageous is that these parameters are often initially unknown
for a given problem instance and not trivial to determine. For
example the so called output-sensitive algorithms, depend on
the number of non-zero entries of the output.

The previous work often did not require the output to
be written back into external memory (SpGEMM without
storing). This can be motivated by the fact that for many
applications of matrix multiplications we just want to verify
if the product matrix has a certain property (for example if
the square of adjacency matrices has some entry that is larger
than 10, which is equivalent to asking if there is a pair of
vertices that has more than 10 neighbors in common), but
we do not look at the product matrix again. Yet for those
cases where we want to store the output, it is non-trivial to do
the writing efficiently. In particular, since the output can be
much larger than the input (up to size N2 for input size N )
it is important that we write the output values immediately
into the right place whenever possible, to avoid expensive
relocations at the end (we do not require the output entries to
be sorted, but they need to be stored in a contiguous block of
memory). Compressing a scattered output into a contiguous
block could require Ω(N2/B) read- and write-I/Os, which
is Θ(M) times larger than the optimal worst-case read-I/O-
complexity of sparse matrix multiplication.

B. Our Results

We present a cache-oblivious algorithm for SpGEMM with
storing. Our algorithm has optimal I/O-complexity. It has a

worst-case read-I/O-complexity of O
(

N2

B·M

)
, which signifi-

cantly improves the worst-case read-I/O-complexity Õ
(

N3

B

)
of the cache-oblivious algorithm of Dusefante and Jakob.
It even improves the worst-case read-I/O-complexity of the
cache-aware algorithm of Pagh and Stöckel [43] by a log-
arithmic multiplicative factor and makes it I/O-optimal. Fur-
thermore, it uses O

(
N2

B

)
write-I/Os, which is also optimal for

this problem. Our algorithm is deterministic and substantially
simpler than the algorithm of Pagh and Stöckel, which is
randomized and cache-aware. We also show how our approach
can be adapted to perform SpGEMM without storing, using
O
(

N2

B·M

)
I/O-writes and the same number of I/O-reads. Our

algorithms perform optimally on five of the six different cases
that correspond to the two problems (SpGEMM with and
without storing) and three types of I/Os (read-I/Os, write-I/Os
and overall I/Os).

By being optimized with respect to worst-case-performance
on general instances rather than being optimized for some
subclass of instances corresponding to a special range of
parameters or special non-zero structures (as most of the
previous algorithms), our algorithm can be applied to obtain
I/O-efficient solutions for other theoretical problems such as
combinatorial and (sparse) graph problems, which are noto-
riously difficult in the I/O-setting. As an example, we show
how to solve the 2- vs 3-diameter problem (defined later) on
sparse, directed graphs with O

(
|V |2
B·M

)
cache-oblivious I/Os.

IV. THE ALGORITHM

We begin by sorting the elements of SU in row-major order:
(i, j, Ui,j) ∈ SU is placed before (g, h, Ug,h) ∈ SU if and only
if i < g or (i = g)∧(j < h). Likewise, we sort the elements of
SV in column-major order: (i, j, Vi,j) ∈ SV is placed before
(g, h, Vg,h) ∈ SV if and only if j < h or (j = h) ∧ (i < g).
Then we split the entry list of U in the middle (giving one
more entry to one of the halves if |SU | is odd) and define the
matrix U∧ to be the matrix (of the same dimensions as U ) that
has the non-zero entries of the first half of SU and define U∨ to
be the matrix (also of the same dimensions as U ) that has the
non-zero entries of the second half of SU . Since SU is in row-
major order, there exists some row index splitU ∈ {1, . . . , n}
such that U∧ is equal to U in the rows i < splitU and zero
in the rows i > splitU and the matrix U∨ is equal to U in
the rows i > splitU and zero in the rows i < splitU . On
the splitU -th row, both matrices U∧ and U∨ may have non-
zero entries. Furthermore, the matrices U∧ and U∨ have half
the number of elements of U and we have U = U∧ + U∨.
Likewise, we define the matrices V ∧ and V ∨ as the matrices
that correspond to the first and second half of SV and have
the same dimension as V . Since SV is in column-major order,
there exists now a column index splitV ∈ {1, . . . ,m} such
that V ∧ is equal to V in the columns j < splitV and zero in
the columns j > splitV and the matrix V ∨ is equal to V in
the rows j > splitV and zero in the rows j < splitV . Also,
the matrices V ∧ and V ∨ have half the number of elements of
V and we have V = V ∧ + V ∨. It follows that



Fig. 2: The layout of internal entries and edge-entries in memory

Fig. 1: The reduction that gives rise to our recursive algorithm. The four
corners of the matrix on the right (the product C := U · V ) coincide with
the matrices C∧∧, C∧∨, C∨∧ and C∨∨, while – in the splitU -th row
and the splitV -th column – C equals the sum of those four matrices.

C = (U∧+U∨)(V ∧+V ∨) = U∧V ∧+U∨V ∧+U∧V ∨+U∨V ∨

(9)
and, for each entry with (i 6= splitU ) and (j 6= splitV ),
at most one of the four matrices C∧∧ := U∧V ∧, C∨∧ :=
U∨V ∧, C∧∨ := U∧V ∨ or C∨∨ := U∨V ∨ will be non-zero.
Thus, those entries are given as the output of one of those four
smaller matrix products (in the upper left corner, C coincides
with C∧∧; in the lower left, it coincides with C∨∧, and so on)
and the value of C on the remaining entries (those that are
either in the splitU -th row or the splitV -th column) is given
by the sum of the values of the matrices C∧∧, C∨∧, C∧∨ and
C∨∨ in those entries. Hence, it suffices to sum the splitU -th
rows and the splitV -th columns of those four matrices.

ALGORITHM 1: Input: Sparse n × k matrix U and
sparse k×m matrix V given by lists of non-zero entries
SU and SV . Output: Matrix C = UV given by its list
of non-zero entries SC .

Order the entries in SU row-wise;
Order the entries in SV column-wise;
Compute C∧∧ := U∧V ∧ using this algorithm;
Compute C∧∨ := U∧V ∨ using this algorithm;
Compute C∨∧ := U∨V ∧ using this algorithm;
Compute C∨∨ := U∨V ∨ using this algorithm;
Set C = C∧∧ + C∧∨ + C∨∧ + C∨∨;

In other words, the multiplication of two sparse matrices
can be reduced to four multiplications of sparse matrices
with half the number of non-zero entries and two sparse

vector additions. This gives rise to our recursive Algorithm 1.
Figure 1 shows the reduction that underlies the recursive step.

The pseudocode of Algorithm 1 does not specify how we
perform the I/Os because we do not have direct control over
this in cache-oblivious algorithms (after all we do not know
where the blocks start and end because we do not know their
size). Frigo et al. [26] showed that we can assume WLOG that
values are evicted from fast memory according to an optimal
eviction policy. But even with an optimal eviction policy, in
order to achieve I/O-efficiency we need to store the values in a
way that ensures spatial and temporal locality. In the following
section we show how to achieve this.

A. Storing Values

In order to explain how we store the matrices of the
recursive subcomputations, we need some formal definitions.

Definition 1. A non-zero entry of a sparse matrix is an edge-
entry if
• its row-index is minimal or maximal among the row-indices

of all non-zero entries, or
• its column index is minimal or maximal among the column-

indices of all non-zero entries.

Definition 2. We define the internal entries to be all non-zero
entries that are not edge-entries.

Definition 3. A sparse matrix is stored in internal-edge form
if all its non-zero entries are stored as visualized by Figure 2.
That is, they are stored in a contiguous block of memory, such
that each non-zero entry is stored exactly once and
• the internal entries are stored in the first segment,
• the edge-entries with minimal column-index are stored in the

next segment and are sorted with respect to their row index,
• the edge-entries with minimal row-index are stored in the

next segment and are sorted with respect to their column
index,

• the edge-entries with maximal column-index are stored in
the next segment and are sorted with respect to their row
index,

• the edge-entries with maximal row-index are stored in the
final segment and are sorted with respect to their column
index.

For example, the edge-entries of the matrix C∧∧ are all the
non-zero entries that are either:
• In the first column (assuming C∧∧ has non-zero entries in

the first column).
• In the first row (assuming C∧∧ has non-zero entries in the

first row).
• In the first splitV -th column (assuming C∧∧ has non-zero

entries in the splitV -th column).
• Or in the first splitU -th row (assuming C∧∧ has non-zero

entries in the splitU -th row).
To keep track of the I/O-costs of the transformations that

we present in this section, we need the following lemma to
estimate how many edge-entries are in the four matrices.



Fig. 3: The process of transforming submatrices into larger matrices.
1. The four submatrices stored in a contiguous block 2. Extracting the
edge-entries 3. “Restocking” 4. Computing and appending the entries
of the splitU -th row and splitV -th column to C 5. Concatenating and
appending the edge-entries of C.

Lemma 1. Each of the matrices C∧∧, C∨∧, C∧∨, and C∨∨

has at most 4 ·N edge-entries.

Proof. We will show this for C∧∧, the proofs for the other
matrices follow the identical line of arguments.

C∧∧ := U∧V ∧ has only non-zero entries in those rows
in which U∧ has non-zero entries and in those columns in
which V ∧ has non-zero entries. However, the matrices U∧ and
V ∧ have together at most dN/2e + 1 ≤ N non-zero entries
(by construction) and therefore they have at most N different
rows and columns with non-zero entries. Consequently, there
at most N different rows and columns in which C∧∧ has non-
zero entries. In particular, in each of the 4 rows and columns
that have edge-entries, there are at most N non-zero entries.

Now we are in a position to describe how we store
recursively computed submatrices and transform them into
larger matrices. This process is visualized in Figure 3 and we
describe it now in more detail. We store the matrices C∧∧,
C∨∧, C∧∨, and C∨∨ of Algorithm 1 in internal-edge form
in a contiguous block of memory, one matrix right after the
other. Thus, this block starts with the internal entries of C∧∧,
followed by the edge entries of C∧∧, followed by the internal
entries of C∨∧, and continuing in this fashion, ending on the
edge-entries of C∨∨. In the remainder of this section, we will
show that using only a few I/Os can transform this layout of
entries to become an internal-edge form of the matrix C that
we want to compute.

We start extracting the edge-entries from between the inter-
nal entries and move them to a separate block of memory, so
that between the four blocks of internal entries there are three
gaps. We eliminate these gaps by “restocking” the blocks of
internal entries to form a new contiguous block that contains
all internal entries of the four matrices. Since we do not care

about the order in which the internal entries are stored, we do
not need to shift the blocks of internal entries (which would
be expensive) but can simply pick entries from the end of the
block and fill the gaps. From Lemma 1 we know that each
of the gaps has at most size 4N and therefore the steps of
extracting the edge-entries and restocking the internal entries
can be done with O(N/B) I/Os.

Now, this new contiguous block of internal entries of the
four matrices already consists of internal entries of C. To
compute the remaining internal entries of C (this are the
internal entries in the splitU -th row or splitV -th column) we
need to add the corresponding rows and columns of these
four matrices. Since the non-zero entries of these rows and
columns are edge-entries of the four matrices, they are already
index-sorted and we can efficiently access and add them. In
particular, this step and the step of appending these newly
computed internal entries to the other internal entries, can also
be done with O(N/B) I/Os.

Thus, we have created a contiguous block that contains
internal entries of C and it only remains to compute the edge-
entries of C.

Notice that the first edge-entries of the matrix C (those
with minimal column-index) are given by the first edge-entries
of C∧∧, followed by the first edge-entries of C∨∧ (if these
two matrices have their first edge-entries in different columns,
then some of those entries are not edge-entries of C and we
append them to the contiguous block of internal entries of
C; if both C∧∧ and C∨∧ have a non-zero edge-entry in the
splitU -th column, we add both values). Likewise, the other
edge-entries of C can be obtained by adequately concatenating
the remaining edge-entries of C∧∧, C∨∧, C∧∨, and C∨∨.
Since there are in total O(N) edge-entries, all these steps of
concatenating and appending can be done with O(N/B) I/Os.
In the following lemma, we summarize the properties of the
transformation that we just described.

Lemma 2. If the matrices C∧∧, C∨∧, C∧∨, and C∨∨ are
stored in internal-edge form on a contiguous block of memory,
we can obtain C in internal-edge form with O(N/B) I/Os.

1) Storing Values for SpGEMM without Storing: Notice
that the internal entries of C∧∧, C∨∧, C∧∨, and C∨∨ are
entries of the matrix C and no further computations need to be
done with them. Therefore, as soon as we see them during one
of the computations of the four submatrices, we can already
discard them. Thus, the difference to SpGEMM with storing
is that we do not need to store the internal entries. Yet, we
do need to store the edge-entries to compute the submatrices
recursively. It is easy to see that the transformations that we
do at each recursive step to compute the edge-entries, can also
be done with O(N/B) I/Os.

B. The I/O-complexity of SpGEMM with Storing

In this section, we will prove the following theorem using
the techniques of Pagh and Stöckel [43].

Theorem 1. For all N ∈ N:



1) There exist matrices U and V with O(N) non-zero en-
tries, such that to compute and store the matrix C = U ·V ,
we need Ω

(
N2

B·M

)
read-I/Os.

2) There exist matrices U and V with O(N) non-zero en-
tries, such that to compute and store the matrix C = U ·V ,
we need Ω

(
N2

B

)
write-I/Os.

3) For any matrices U and V with O(N) non-zero en-
tries, Algorithm 1 uses O

(
N2

B·M

)
read-I/Os and O

(
N2

B

)
write-I/Os and matches therefore the lower bounds estab-
lished in 1) and 2).

We first prove (1) and (2) and leave (3) for the following
section.
Note: There are many practically relevant instances that can
be solved with I/O-complexity below the lower bounds of 1)
and 2). Indeed, as we mentioned in section III there exist
algorithms that do exploit these possibilities (of achieving I/O-
complexities below these bounds) by using a more fine-grained
analysis of their I/O-complexity. Hence, these algorithms can
be of great practical value. On the other hand, we present the
first algorithm for which statement 3) of this theorem has been
proven, making it the first truly I/O-optimal solution.

Proof of (1) and (2) of the theorem. For any N ∈ N, let U
and V be N × N -matrices with N non-zero entries: the
non-zero entries of U are exactly those in the first column
and the non-zero entries of V are exactly those in the first
row. Then, to compute U · V we need to perform N2 many
multiplications because each non-zero entry of U needs to
be multiplied with each non-zero entry of V . However, with
each additional read-I/O we can only perform O(M ·B) new
multiplications because each of the O(B) values that are
being brought into memory can be multiplied at most with
the O(M) values that are in memory. Therefore, to perform
all N2 multiplications we need to perform Ω

(
N2

B·M

)
read-

I/Os. Further, since U ·V has N2 non-zeros we need Ω
(

N2

B

)
write-I/Os to store them.

1) The overall I/O-complexity of our Algorithm: In this
section, we prove the claims about the I/O-complexity of
our algorithm to conclude the proof of the theorem. Before
considering the I/O-complexity of general instance sizes we
look at the base case: instances small enough to fit entirely
into fast memory.

Lemma 3. When N ∈ O(M), Algorithm 1 uses O(M/B)
read-I/Os.

Proof. Recall that the number of I/Os used with a LRU-
eviction policy differs only by constant factors from the
number of I/Os used by an optimal eviction policy [26].
Therefore we can assume WLOG that whenever we remove a
block of data from fast memory, this block contains values that
will be reused farthest in the future. In particular, if we have a
block of data that will not be needed again in the computation

(for example entries of U · V that we finished to compute)
this block will be evicted before we evict any block of data
that contains values that are still needed. Hence, if we can
show that Algorithm 1 has at no moment more than O(M)
values that will be needed again in the computation, the result
would follow: we would spend O(M/B) I/Os to read each of
the entries of U and V once and after that we would never
need to write (and later re-read) temporary values to external
memory because at all times all values that are still needed fit
into fast memory.
At each moment during the execution of Algorithm 1, the set
of values that are needed again can be partitioned as follows:

1) entries of U and V ,
2) edge-entries of C∧∧, C∧∨, C∨∧, and C∨∨

3) values that will be needed again during whichever sub-
computation the algorithm is currently performing (com-
putation of C∧∧, C∧∨, C∨∧, or C∨∨).

The total number of values in (1) is in O(M). Further,
Lemma 1 implies that the total number of values in (2) is
≤ 4 · 4 · N . Hence, letting A(N) denote the total number
of values in (2) and (3) this quantity satisfies the recursive
relation

A(N) ≤ 16 ·N + A(N/2). (10)

Therefore A(N) ∈ O(N) and hence A(N) ∈ O(M).

Note: In order to obtain the I/O-complexity from the previ-
ous lemma we did not need to switch to another routine (which
of course would be invalid for a cache-oblivious algorithm).
Only the analysis depends on M and B but the algorithm does
not.

Lemma 4. Algorithm 1 uses in the worst case O
(

N2

B·M

)
read-

I/Os.

Proof. The sorting step in the beginning of our algorithm can
be done with [1]

O

(
N

B
logM/B (N/B)

)
(11)

read- and write-I/Os and is therefore not a bottleneck of our
algorithm. Furthermore, once we sorted the input, we do not
need to sort it again in the recursive calls of our algorithm.
Hence, we can analyze the I/O-complexity of our algorithm
with a recursive relation that does not take the I/O-complexity
of sorting into account.

If we let R(N) denote the read-I/O-complexity of our
algorithm for input size N = NU +NV , we have the recursive
relation

R(N) ≤ 4 ·R
(
N

2

)
+ c

N

B
, (12)

where 4 · R
(
N
2

)
corresponds to the computations of U∧V ∧,

U∨V ∧, U∧V ∨ and U∨V ∨ and cNB , where c is some constant,
corresponds (recall Lemma 2) to the transformation of the
internal-edge form of these submatrices to the internal-edge
form of the larger matrix C.



“Telescoping” the recurrence relation (12), we obtain

R(N) ≤ 42 ·R
(
N

22

)
+

(
4

2
+ 1

)
c
N

B

. . .

≤ 4log2(
N
M ) ·R

(
N

2log2(
N
M )

)
+

((
4

2

)log2(
N
M )−1

+ . . . +
4

2
+ 1

)
c
N

B

= 4log2(
N
M ) ·R(M) + (2log2(

N
M ) − 1)c

N

B

=
N2

M2
·R(M) + (

N

M
− 1)c

N

B
.

(13)

Furthermore, according to Lemma 3 we have the base case
R(M) ∈ O(M

B ). Therefore,

R(N) ≤
(
N

M

)2

·O
(
M

B

)
+c

N2

B ·M
∈ O

(
N2

B ·M

)
. (14)

Lemma 5. Algorithm 1 has a worst-case write-I/O-complexity
of O

(
N2/B

)
.

Proof. Let W (N) denote the write-I/O-complexity for input
size N . Notice that W (N) satisfies the same recursive relation
(12) as the read-I/O-complexity R(N). However, the base case
differs, because the product of two matrices with totally M
non-zero entries can have up to M2 non-zero entries and hence
the required number of write-I/Os can be up to

W (M) =
M2

B
6= R(M) =

M

B
. (15)

Plugging this different base case into the “telescoped” recur-
sive relation (13), we obtain

W (N) ∈ O(N2/B). (16)

C. The I/O-complexity of SpGEMM without Storing

Theorem 2. SpGEMM without storing can be done with
O( N2

B·M ) read- and write-I/Os.

Proof. The recursive relation (12) for read-I/Os and its base
case (13) are the same as for SpGEMM with storing. Hence,
the read-I/O-complexity is the same.

Also the write-I/Os satisfy again the same recursive relation,
but the base case is

W (M) = O(
M

B
), (17)

because we only have to store the O(M) edge-entries of the
product matrix. Plugging this base case into the inequality
(13), we obtain again

W (N) ∈ O(
N2

B ·M
). (18)

Note: The overall I/O-complexity (defined as the sum of
read- and write-I/Os) of our algorithm is optimal for SpGEMM
without storing, but the write-I/O-complexity O( N2

B·M ) is not
optimal. One could solve this problem with 0 write-I/Os
by iterating over all m × n (possibly zero-valued) entries
of the product matrix and compute each one of them with
O( N2

B·M ) read-I/Os (this high number of read-I/Os is needed
because the input matrices are unsorted and sorting them
would require write-I/Os). Hence, this approach with 0 write-
I/Os would require O( N4

B·M ) read-I/Os and lead to an overall
I/O-complexity that is far from optimal. It remains an open
question if this problem can be solved with O( N2

B·M ) read-I/Os
and 0 write-I/Os or if there is an inherent trade-off between
read-I/Os and write-I/Os.

V. APPLICATION TO GRAPH ALGORITHMS

It is well known that sparse graph problems require partic-
ularly many I/Os (as noted for example by [23]). For some
of those problems the state-of-the art solutions still produce
asymptotically one cache-miss per instruction, independently
of the size of the internal memory or the cache-line.

Since many sparse graph problems can be translated into
sparse matrix multiplication problems (either of the adjacency
matrix, incidence matrix or the Laplacian matrix, each of
which is sparse when the graph is sparse), it is worthwhile
to consider the applicability of our results in this context
of algebraic graph theory. Examples of graph computations
that involve matrix multiplications include finding cycles [2],
[3], [53], subgraphs [41], shortest paths [49], [50], [55],
solving reachability [24], [45], matchings [16], [20], [39],
[44], and others [18], [34]. So for each of these problems
our algorithm could be used to save I/Os. For some graph
problems our improved worst-case I/O-complexity may even
lead to new state-of-the-art solutions. This is the case with the
2- vs. 3-Sparse-Diameter problem, which we will discuss as
a motivating example in the remainder of this section.

A. Use Case: 2– vs. 3–Diameter Problem

The 2- vs 3-diameter problem consists in determining
if the diameter of a given graph is greater than 2. [23]
showed that this problem can be solved with O( |V |

2

B·M ) I/Os
on a sparse (meaning |E| ∈ O(|V |)), undirected graph.
This was an improvement over the previously best-known
O(|V |2 log(|V |)/B) I/O-complexity, that one obtained by
solving this problem with the exact diameter computation of
[6]. However, for sparse, directed graphs we are not aware of
any I/O-efficient solutions of the 2- vs 3-diameter problem. To
solve this problem again by computing the exact diameter, not
even O(|V |2 log(|V |)/B) I/Os are enough, as the previously
used method would not be applicable anymore (only for
sparse, directed, planar graphs this would be enough).

Notice however that this problem can be phrased elegantly
in terms of sparse matrix multiplication: When G is a directed
graph with adjacency matrix AG, its diameter is greater than
2 if and only if AG · (AG +I) has a non-diagonal entry that is
zero. Furthermore, when G is sparse and given by its adjacency



list, we can efficiently transform this list into the entry lists
of the sparse matrices AG and AG + I (for both matrices
each edge (a, b) is transformed into an entry (a, b, 1) and to
the latter matrix, diagonal ones are added). Hence, we can
apply our sparse matrix multiplication algorithm to compute
AG · (AG + I) and then verify that the product matrix has
no non-diagonal entries that are zero. Notice that the step of
verifying that AG · (AG + I) has no non-diagonal entries that
are zero, can be done without scanning through all its elements
(which could take up to Ω(|V |2/B) I/Os), by directly counting
how many non-diagonal non-zero entries we write. And since
we do not read the entries of AG ·(AG+I) again, we can avoid
writing them all together and simply count how man entries we
would write. Therefore, we can apply here our algorithm for
SpGEMM without storing. In this way we solve this problem
with O( |V |

2

B·M ) I/Os.

VI. DISCUSSION

1) Our Notion of Optimality: In this paper we optimize
the worst-case-I/O-complexity in terms of N . The reason for
this choice is that this is the most relevant measure when it
comes to applying matrix multiplication to derive solutions for
other theoretical problems. For example, when we use matrix
multiplication to tackle graph problems as in the previous
section, N equals the size |E| of the corresponding graph
and since for graph algorithms “optimality” typically refers
to worst-case-optimality in terms of the size of the graph, we
need matrix multiplication algorithms that are optimal in terms
of N . Clearly, there are matrix multiplication algorithms that
are more efficient than ours on special classes of matrices.
For example, with the algorithm proposed by Greiner [27] we
can get better I/O-complexity when we multiply O(1)-regular
matrices and the algorithm of Pagh and Stöckel [43] performs
better when the output matrix is again sparse. Also when the
input matrices are diagonal or dense (which corresponds to
N ∼ n2), we can perform multiplication more efficiently.
However, these are only special subclasses of matrices, and
hence these algorithms cannot be used to derive I/O-optimal
algorithms for general graphs (they would only result in
efficient solutions for graphs with adjacency matrices that
happen to belong to one of these subclasses). Due to the worst-
case-optimality in terms of N achieved by our algorithm, we
belive that it has the potential to help produce I/O-efficient
solutions for other sparse graph problems.

2) Matrices with Non-zero Entries in only one Row or
Column: Notice that our algorithm splits the matrices U and
V recursively along “parallel lines” (the matrices from the
left are split along a horizontal line and the matrices from
the right along a vertical line) until the whole multiplication
fits into the fast memory. Therefore, these matrices become
always “thinner” and may still be further divided even when
one of the matrices has all its non-zero entries in only one row
or column. In our pseudo-code we did not consider switching
to a different method when we are in this situation, because it
would not have improved the worst-case I/O-complexities and

would only have made the pseudo-code more complex. Yet in
practice one could save here I/Os by solving this as a sparse
matrix vector multiplication problem.

3) Parallelism: The computations of the matrix multiplica-
tions U∧ ·V ∧, U∧ ·V ∨, U∨ ·V ∧, and U∨ ·V ∨ are independent
of each other and can be performed in parallel. In fact, in
the analysis of our algorithms, when we compute for example
U∧ ·V ∧ and then U∧ ·V ∨, we count twice the I/Os for reading
U∧. That is, we do not rely on keeping U∧ in memory. Hence,
if we assign the computations of the matrices U∧ · V ∧ and
U∧ ·V ∨ to different machines, and consequently have to read
the matrix U∧ twice, this does not affect the I/O-optimality
of our algorithm.

VII. CONCLUSION

Sparse matrix-matrix multiplication (SpGEMM) is a fun-
damental problem with a plethora of applications in engi-
neering [29], general computational science [46], [54], graph
processing [7], [13], [14], [32], [47], [51], and others [15].
Developing algorithms for solving SpGEMM that minimize
the number of I/Os has been of significant interest in both
theoretical and practical domains [32], [43]. However, unlike
the multiplication of dense matrices, it is challenging to
provide a fast SpGEMM due to its inherent lack of locality.

Addressing this challenge, we introduce the first I/O-optimal
and cache-oblivious algorithm for SpGEMM. The worst-case
I/O-complexity of our algorithm (O

(
N2

MB

)
read-I/Os and

O
(
N2/B

)
write-I/Os) is not only better than that of the cache-

oblivious algorithm of Dusefante and Jakob (Õ
(
N3/B

)
) [25],

but it even outperforms the cache-aware algorithm of Pagh and
Stöckel by a logarithmic multiplicative factor [43].

A key observation and the basis of our algorithm is that
the multiplication of two sparse matrices can be reduced to
four multiplications of (appropriately preprocessed) half-sized
sparse matrices and two vector additions. A recursion on this
form of decomposition is the core part of our algorithm. Con-
trary to several existing schemes, for example a randomized
algorithm by Pagh and Stöckel [43], our approach is simple
and deterministic. We believe that our recursive decomposition
of SpGEMM may be used to tackle other problems related to
minimizing I/O-communication.

In the analysis of our algorithm, we distinguish between the
complexity of I/O-reads and I/O-writes. With this we extend
a current line of research on “asymmetric read and write
costs” [17], that is motivated by the inherent differences in
the demand for conducting reads and writes in algorithms,
as well as the differences of cost of reads and writes in the
majority of architectures.

Finally, our algorithm comes with many direct use cases.
We offer a broad discussion of its applicability to the domain
of graph computations, and one concrete example, in which
we apply the algorithm to improve the state-of-the-art solution
to the 2- vs 3-sparse-diameter problem on sparse and directed
graphs.
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