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ABSTRACT
Matrix factorizations are among the most important building blocks

of scientific computing. However, state-of-the-art libraries are not

communication-optimal, underutilizing current parallel architec-

tures. We present novel algorithms for Cholesky and LU factoriza-

tions that utilize an asymptotically communication-optimal 2.5D

decomposition. We first establish a theoretical framework for de-

riving parallel I/O lower bounds for linear algebra kernels, and

then utilize its insights to derive Cholesky and LU schedules, both

communicating N 3/(P
√
M) elements per processor, where M is

the local memory size. The empirical results match our theoretical

analysis: our implementations communicate significantly less than

Intel MKL, SLATE, and the asymptotically communication-optimal

CANDMC and CAPITAL libraries. Our code outperforms these

state-of-the-art libraries in almost all tested scenarios, with matrix

sizes ranging from 2,048 to 524,288 on up to 512 CPU nodes of the

Piz Daint supercomputer, decreasing the time-to-solution by up to

three times. Our code is ScaLAPACK-compatible and available as

an open-source library.
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Figure 1: Left: measured runtime speedup of COnf LUX vs.
fastest state-of-the-art library (S=SLATE [28], C=CANDMC [57],
M=MKL [34]). Right: COnf LUX’s achieved % of machine peak per-
formance.

St. Louis, MO, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3458817.3476167

1 INTRODUCTION
Matrix factorizations, such as LU and Cholesky decompositions,

play a crucial role in many scientific computations [42, 49, 65], and

their performance can dominate the overall runtime of entire ap-

plications [19]. Therefore, accelerating these routines is of great

significance for numerous domains [18, 44]. The ubiquity and im-

portance of LU factorization is even reflected by the fact that it is

used to rank top supercomputers worldwide [25].

Since the arithmetic complexity of matrix factorizations isO(N 3)

while the input size is O(N 2), these kernels are traditionally con-

sidered compute-bound. However, the end of Dennard scaling [22]

puts increasing pressure on data movement minimization, as the

cost of moving data far exceeds its computation cost, both in terms

of power and time [40, 63]. Thus, deriving algorithmic I/O lower

bounds is a subject of both theoretical analysis [15, 36, 37] and

practical value for developing I/O-efficient schedules [33, 59, 60].

While asymptotically optimal matrix factorizations were pro-

posed, among others, by Ballard et al. [7] and Solomonik et al. [33,

61], we observe two major challenges with the existing approaches:

First, the presented algorithms are only asymptotically optimal:

the I/O cost of these proposed parallel algorithms can be as high

as 7 times the lower bound for LU [61] and up to 16 times for

Cholesky [33]. This means that they communicate less than “stan-

dard” 2D algorithms like ScaLAPACK [14] only for almost prohibi-

tively large numbers of processors — e.g., according to the LU cost

https://doi.org/10.1145/3458817.3476167
https://doi.org/10.1145/3458817.3476167
https://doi.org/10.1145/3458817.3476167
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MATRIX FACTORIZATIONS (SECTIONS 6-10)

GENERAL I/O LOWER BOUNDS (SECTIONS 2-5)
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Figure 2: From the input program through the I/O lower bounds to communication-minimizing parallel schedules and high performing
implementations. In this paper, we mainly focus on the Cholesky and LU factorizations. The proofs of the lemmas presented in this work can
be found in the extended version of this paper (https://arxiv.org/abs/2108.09337).

model [61], it requires more than 15,000 processors to communi-

cate less than an optimized 2D algorithm. Second, their time-to-

solution performance can be worse than highly-optimized, existing

2D-parallel libraries [33].

To tackle these challenges, we first provide a general method

for deriving precise I/O lower bounds of Disjoint Array Access

Programs (DAAP) — a broad range of programs composed of a

sequence of statements enclosed in an arbitrary number of nested

loops. We then illustrate the applicability of our framework to

derive parallel I/O lower bounds of Cholesky and LU factorizations:

1

3

N 3

P
√
M

and
2

3

N 3

P
√
M

elements, respectively, where N is the matrix

size, P is the number of processors, andM is the local memory size.

Moreover, we use the insights from deriving the above lower

bounds to develop COnf LUX andCOnf CHOX, near communication-

optimal parallel LU and Cholesky factorization algorithms that

minimize data movement across the 2.5D processor decomposition.

For LU factorization, to further reduce the latency and bandwidth

cost, we use a row-masking tournament pivoting strategy resulting

in a communication requirement of
N 3

P
√
M
+ O(N

2

P ) elements per

processor, where the leading order term is only 1.5 times the lower

bound. Furthermore, to secure high performance, we carefully tune

block sizes and communication routines to maximize the efficiency

of local computations such as trsm (triangular solve) and gemm
(matrix multiplication).

We measure both communication volume and achieved perfor-

mance of COnf LUX and COnf CHOX and compare them to state-of-

the-art libraries: a vendor–optimized Intel MKL [34], SLATE [28] (a

recent library targeting exascale systems), as well as CANDMC [57,

58] and CAPITAL [32, 33] (codes based on the asymptotically op-

timal 2.5D decomposition). In our experiments on the Piz Daint

supercomputer, we measure up to 1.6x communication reduction

compared to the second-best implementation. Furthermore, our

2.5D decomposition communicates asymptotically less than SLATE

andMKL, with even greater expected benefits on exascale machines.

Compared to the communication-avoiding CANDMC library with

I/O cost of 5N 3/(P
√
M) elements [61], COnf LUX communicates

five times less. Most importantly, our implementations outperform
all compared libraries in almost all scenarios, both for strong and

weak scaling, reducing the time-to-solution by up to three times

compared to the second best performing library (Figure 1).

In this work, we make the following contributions:

• A general method for deriving parallel I/O lower bounds of a

broad range of linear algebra kernels.

• COnf LUX and COnf CHOX, provably near-I/O-optimal parallel

algorithms for LU and Cholesky factorizations, with their full

communication volume analysis.

• Open-source and fully ScaLAPACK-compatible implementations

of our algorithms that outperform existing state-of-the-art li-

braries in almost all scenarios.

A bird’s eye view of our work is presented in Figure 2.

2 BACKGROUND
We now establish the background for our theoretical model (Sec-

tions 3-5). We use it to derive parallel I/O lower bounds for Cholesky

and LU factorizations (Section 6) that will guide the design of our

communication-minimizing implementations (Section 7).

2.1 Machine Model
To model algorithmic I/O complexity, we start with a model of

a sequential machine equipped with a two-level deep memory

hierarchy. We then outline the parallel machine model.

Sequential machine. A computation is performed on a sequential

machine with a fast memory of limited size and unlimited slow

memory. The fast memory can hold up toM elements at any given

time. To perform any computation, all input elements must reside

in fast memory, and the result is stored in fast memory.

Parallel machine. The sequential model is extended to a machine

with P processors, each equipped with a private fast memory of size
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M . There is no global memory of unlimited size — instead, elements

are transferred between processors’ fast memories.

2.2 Input Programs
We consider a general class of programs that operate on multidi-

mensional arrays. Array elements can be loaded from slow to fast

memory, stored from fast to slowmemory, and computed inside fast

memory. These elements have versions that are incremented every

time they are updated.Wemodel the program execution as a compu-

tational directed acyclic graph (cDAG, details in Section 2.3), where

each vertex corresponds to a different version of an array element.

Thus, for a statement A[i, j] ← f (A[i, j]), a vertex corresponding
to A[i, j] after applying f is different from a vertex corresponding

to A[i, j] before applying f . In a cDAG, this is expressed as an edge

from vertex A[i, j] before f to vertex A[i, j] after f . Initial versions
of each element do not have any incoming edges and thus form

the cDAG inputs. The distinction between elements and vertices is
important for our I/O lower bounds analysis, as we will investigate

how many vertices are computed for a given number of loaded

vertices.

An input program is a collection of statements S enclosed in loop

nests, each of the following form (we use the loop nest notation

introduced by Dinh and Demmel [23]):

for ψ 1 ∈ D1, for ψ 2 ∈ D2(ψ 1), . . . , for ψ l ∈ Dl (ψ 1, . . . , ψ l−1) :

S : A0[ϕ0(ψ)] ← f (A1[ϕ1(ψ)], A2[ϕ2(ψ)], . . . , Am [ϕm (ψ)]),

where (cf. Figure 3 for a summary) for each innermost loop iteration,

statement S is an evaluation of some function f onm inputs, where

every input is an element of array Aj , j = 1, . . . ,m, and the result

of f is stored to the output array A0.

Each loop has an associated iteration variable ψ t
that iterates

over its domain ψ t ∈ Dt
. All l iteration variables form the itera-

tion vector ψ = [ψ 1, . . . ,ψ l ]. Array elements are accessed by an

access function vector ϕj = [ϕ1j , . . . ,ϕ
dim(Aj )

j ] that maps dim(Aj )

iteration variables to a unique element in array Aj (note that the

access function vector is injective). Only vertices associated with

the newest element versions can be referenced. Furthermore, a

given vertex can be referenced by only one access function vector

per statement. We refer to this as the disjoint access property. The
access dimension of Aj (ϕ j ), denoted dim(Aj (ϕ j )), is the number of

different iteration variables present in ϕ j . We call such programs

Disjoint Access Array Programs.

Example: Consider statement S1 of LU factorization (Figure 3). The
loop nest depth is l = 2, with two iteration variablesψ 1 = k andψ 2 =

i forming the iteration vectorψ = [k, i]. For access A[k,k], the
access function vector ϕ j = [k,k] is a function of only one iteration
variable k . Therefore, dim(Aj ) = 2, but dim(Aj (ϕj)) = 1.

2.3 I/O Complexity and Pebble Games
We now establish the relationship between DAAP and the red-blue

pebble game - a powerful abstraction for deriving lower bounds

and optimal schedules of cDAG evaluation.

2.3.1 cDAG and red-blue pebble game. We base our computation

model on the red-blue pebble game, played on the computational

directed acyclic graph G = (V ,E), as introduced by Hong and

Kung [37]. Every vertex v ∈ V represents the result of a unique

X-partition (S2)

Dominator set                                         .

cDAG

3,3
3 3,21,3 2,2 3,1

0,3 1,2 2,1
3,00,2 1,1

2,00,1
1,0

0,0

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Input matrix A

Input vertices  .      
of the cDAG 

Multiple 
versions 

(vertices) of 
element 

A[3,1]

Intermediate 
computation
s (vertices)

Output vertices      
of the cDAG 

STATEMENT S2

IN-PLACE LU 
FACTORIZATION

(pivoting omitted)

STATEMENT S1

Iteration 
variables

Access 
function 
vectors

Iteration 
vector  .

Iteration 
variables

Subcomputation .

Iteration 
vector  .

Access 
function 
vectors

Data reuse between 
statements

Figure 3: In-place LU factorization (for simplicity, no pivoting is
performed). The algorithm contains two statements (S1 and S2), for
which we provide key components of our program representation
together with the corresponding cDAG for N = 4. For statement S2,
we also provide a graphical visualization of a single subcomputation
H in its X -partition.

computation stored in some memory, and a directed edge (u,v) ∈ E
represents a data dependency. Vertices without any incoming (out-

going) edges are called inputs (outputs). To perform a computation,

i.e., to evaluate the value corresponding to vertex v , all vertices
that are direct predecessors of v must be loaded into fast memory.

The vertices that are currently in fast memory are marked by a red

pebble on the corresponding vertex of the cDAG. Since the size of

fast memory is limited, we can never have more thanM red pebbles

on the cDAG at any moment. Analogously, the contents of the slow

memory (of unlimited size) is represented by an unlimited number

of blue pebbles.

2.3.2 Dominator and Minimum Sets [37]. For any subset of ver-

tices H ⊂ V , a dominator set Dom(H ) is a set such that every path

in the cDAG from an input vertex to any vertex in H must contain

at least one vertex in Dom(H ). In general, for a givenH , its Dom(H )
is not uniquely defined. The minimum set Min(H ) is the set of all
vertices in H that do not have any immediate successors in H . In

this work, to avoid the ambiguity of non-uniqueness of domina-

tor set size (in principle, for any subset, its valid dominator set is

always the whole V ), we will refer to Dommin (H ) as a minimum

dominator set, i.e. a dominator set with the smallest size.

Intuition. One can think of H ’s dominator set as a set of inputs
required to execute subcomputationH , and ofH ’s minimum set as the
output of H . We use the notions of Dommin (H ) and Min (H ) when
proving I/O lower bounds. Intuitively, we bound computation “volume”
(number of vertices inH ) by its communication “surface”, comprised of
its inputs - vertices in Dommin (H ) - and outputs - vertices inMin(H ).

2.3.3 X -Partitioning. Introduced by Kwasniewski et al. [45],

X -Partitioning generalizes the S-partitioning abstraction [37]. An
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X -partition of a cDAG is a collection of s mutually disjoint subsets

(referred to as subcomputations) P(X ) = {H1, . . . ,Hs },
⋃s
i=1 Hi =

V with two additional properties:

• P(X ) has no cyclic dependencies between subcomputations.

• ∀H , |Dommin (H )| ≤ X and |Min (H )| ≤ X .

For a given cDAG and for any given X > M , let Π(X ) denote a
set of all its valid X -partitions, P(X ) ∈ Π(X ). Kwasniewski et al.

prove that an I/O optimal schedule of G that performs Q load and

store operations has an associated X -partition Popt (X ) ∈ Π(X )

with size |Popt (X )| ≤
Q+X−M
X−M for any X > M ([45], Lemma 2).

2.3.4 Deriving lower bounds. To bound the I/O cost, we further

need to introduce the computational intensity ρ. For each subcom-

putation Hi , ρi is defined as a ratio of the number of computations

(vertices) in Hi to the number of I/O operations required to pebble

Hi , where the latter is bounded by the size of the dominator set

Dom(Hi ) [45]. Then, the following lemma bounds the number of

I/O operations required to pebble a given cDAG:

Lemma 1. (Lemma 4 in [45]) For any constant Xc , the number
of I/O operations Q required to pebble a cDAG G = (V ,E) with
|V | = n vertices usingM red pebbles is bounded by Q ≥ n/ρ, where
ρ = |Hmax |

Xc−M is the maximal computational intensity and Hmax =

argmaxH ∈P(Xc )
|H | is the largest subcomputation among all valid

Xc -partitions.

3 GENERAL SEQUENTIAL I/O LOWER BOUNDS
We now present our method for deriving the I/O lower bounds of a

sequential execution of programs in the form defined in Section 2.2.

Specifically, in Section 3.2 we derive I/O bounds for programs that

contain only a single statement. In Section 4 we extend our analysis

to capture interactions and reuse between multiple statements.

In this paper, we present only the key lemmas required to estab-

lish the lower bounds of parallel Cholesky and LU factorizations.

However, the method covers a much wider spectrum of algorithms.

For curious readers, we present all proofs of provided lemmas in

the extended version of this paper
1
.

We start by stating our key lemma:

Lemma 2. If |Hmax | can be expressed as a closed-form function of
X , that is if there exists some function χ such that |Hmax | = χ (X ),
then the lower bound on Q can be expressed as

Q ≥ n
(X0 −M)

χ (X0)
,

where X0 = argminX ρ = argminX
χ (X )
X−M .

To find χ (X ), we take advantage of the DAAP structure. Observe

that every computation (and therefore, every compute vertexv ∈ V
in the cDAG G = (V ,E)) is executed in a different iteration of the

loop nest, and thus, there is a one-to-one mapping from a value

of the iteration vectorψ to the compute vertex v . Moreover, each

vertex accessed from any of the input arrays Ai is also associated

with some iteration vector value - however, if dim(Ai ) < l , this is
a one-to-many relation, as the same input vertex may be used to

evaluate multiple compute vertices v . This is, in fact, the source of

the data reuse, and exploiting this relation is a key to minimizing

the I/O cost. If for all input arraysAi we have that dim(Ai ) = l , then

1
https://arxiv.org/abs/2108.09337

OPTIMIZATION PROBLEM:

Figure 4: Lemma 3 bounds the set sizes (both the subcomputation’s
H and input access sets’ |Aj (D ) |) with the number of values |Dt |

each iteration variable ψ t takes during the subcomputation.

for each compute vertex v ,m different, unique input vertices are

required, there is no data reuse and it implies a trivial computational

intensity ρ = 1

m .

The high-level idea of our method is to count how many different
iteration vector valuesϕ can be formed if we know howmany different
values each iteration variable ϕ1, . . . ,ϕl takes. We now formalize

this in Lemmas 3-6.

3.1 Iteration vector, iteration domain, access set
Each execution of statement S is associated with the iteration vector
valueψ = [ψ 1, . . . ,ψ l ] ∈ Nl representing the current iteration, that

is, the values of iteration variablesψ 1, . . . ,ψ l
. Each subcomputation

H is uniquely defined by all iteration vectors’ values associated with

vertices pebbled in H = {ψ1, . . . ,ψ |H |}. For each iteration variable

ψ t
, t = 1, . . . , l , denote the set of all values thatψ t

takes during H
as Dt

. We define D = [D1, . . . ,Dt ] ⊆ D as the iteration domain of

subcomputation H .

Furthermore, recall that each input access Aj [ϕj(ψ)] is uniquely

defined bydim(ϕ j ) iteration variablesψ 1

j , . . . ,ψ
dim(ϕ j )
j . Denote the

set of all values each ofψk
j takes during H as Dk

j . Given D, we also

denote the number of different vertices that are accessed from each

input array Aj as |Aj (D)|.
We now state the lemma which bounds |H | by the iteration sets’

sizes |Dt | (the intuition behind the lemma is depicted in Figure 4):

Lemma 3. Given the ranges of all iteration variablesDt , t = 1, . . . , l

during subcomputation H , if |H | =
∏l

t=1 |D
t |, then ∀j = 1, . . . ,m :

|Aj (D)| =
∏dim(ϕ j )

k=1 |Dk
j | and |H | is maximized among all valid

subcomputations that iterate over D = [D1, . . . ,Dt ].

Intuition. Lemma 3 states that if each iteration variable ψ t ,
t = 1, . . . , l takes |Dt | different values, then there are at most∏l

t=1 |D
t | different iteration vector valuesψ that can be formed in

H . Thus, to maximize |H | all combinations of values of ψ t should
be evaluated. On the other hand, this also implies the maximiza-

tion of all access sizes |Aj (D)| =
∏dim(ϕ j )

k=1 |Dk
j |. This result is more

general than, e.g., polyhedral techniques [11, 15, 51] as it does not
require loop nests to be affine. Instead, it solely relies on set algebra
and combinatorial methods.

3.2 Finding the I/O Lower Bound
Denoting Hmax = argmaxH ∈P(X ) |H | as the largest subcomputa-

tion among all valid X -partitions, we use Lemma 3 and combine it

with the dominator set constraint from Section 2.3.3. Note that all

access set sizes are strictly positive integers |Dt | ∈ N+, t = 1, . . . , l .
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Otherwise, if any of the sets is empty, no computation can be per-

formed. However, as we only want to find the bound on the number

of I/O operations, we relax the integer constraints and replace them

with |Dt | ≥ 1. Then, we formulate finding χ (X ) (Lemma 2) as the

following optimization problem:

max

l∏
t=1
|Dt | s.t.

m∑
j=1

dim(ϕ j )∏
k=1

|Dk
j | ≤ X

∀1 ≥ t ≥ l : |Dt | ≥ 1 (1)

We then find |Hmax | = χ (X ) as a function of X using Karush

–Kuhn–Tucker (KKT) conditions [43]. Next, we solve

d
χ (X )
X−M
dX

= 0. (2)

Denoting X0 as the solution to Equation (2), we finally obtain

Q ≥ |V |
(X0 −M)

χ (X0)
. (3)

Computational intensity and out-degree-one vertices. There
exist cDAGs where every non-input vertex has at least u ≥ 0 direct

predecessors that are input vertices with out-degree 1. We can use

this fact to put an additional bound on the computational intensity.

Lemma 4. If in a cDAG G = (V ,E) every non-input vertex has at
least u direct predecessors with out-degree one that are graph inputs,
then the maximum computational intensity ρ of this cDAG is bounded
by ρ ≤ 1

u .

4 DATA REUSE ACROSS MULTIPLE
STATEMENTS

Until now, we have analyzed each statement separately. However,

almost all computational kernels contain multiple statements con-

nected by data dependencies — e.g., a column update (S1) and a

trailing matrix update (S2) in LU factorization (Figure 3). The chal-

lenge here is that, in general, I/O cost Q is not composable: due to

the data reuse, the total I/O cost of the program may be smaller

than the sum of I/O costs of its constituent kernels. In this section

we examine how these dependencies influence the total I/O cost of

a program.

We derive I/O lower bounds for programs with w statements

S1, . . . , Sw in two steps. First, we analyze each statement Si sepa-
rately, as in Section 3. Then, we derive how many loads could be

avoided at most during one statement if another statement owned

shared data. There are two cases where data reuse can occur: I) in-
put overlap, where shared arrays are inputs for multiple statements,

and II) output overlap, where the output array of one statement is

the input array of another.

Case I). Assume there are w statements in the program, and

there are k arrays Aj , j = 1, . . . ,k that are shared between at least

two statements. We still evaluate each statement separately, but we

will subtract the upper bound on shared loads Qtot ≥
∑w
i=1Qi−∑k

j=1 |Reuse(Aj )|, where |Reuse(Aj )| is the reuse bound on arrayAj
(Section 4.1). Case II). Consider each pair of “producer-consumer”

statements S and T , that is, the output of S is the input of T . The

I/O lower bound QS of statement S does not change due to the

reuse, as the same number of loads has to be performed to evaluate

S . On the other hand, it may invalidate QT , as the dominator set

of T formulated in Section 3.1 may not be minimal — inputs of a

statement may not be graph inputs anymore. For each “consumer”

statement T , we reevaluate Q ′T ≤ QT using Lemma 6. Finally,

for a program consisting of w statements in total, connected by

the output overlap, we have Qtot ≥
∑w
i=1Q

′
i . Note that for each

“producer” statement i ,Q ′i = Qi , i.e. output overlap does not change

their I/O lower bound.

4.1 Case I: Input Reuse and Reuse Size
Consider two statements S and T that share one input array Ai .
Let |Ai (RS )| denote the total number of accesses to Ai during the
I/O optimal execution of a program that contains only statement S .
Naturally, |Ai (RT )| denotes the same for a program containing only

T . Define Reuse(Ai ) B min{|Ai (RS )|, |Ai (RT )|}. We then have:

Lemma 5. The I/O cost of a program containing statements S andT
that share the input array Ai is bounded by

Qtot ≥ QS +QT − Reuse(Ai ),

whereQS ,QT are the I/O costs of a program containing only statement
S or T , respectively.

Note that Reuse(Ai ) is an overapproximation of the actual reuse.

Since finding the optimal schedule is PSPACE-complete [46], we

conservatively assume that only the minimum number of loads

from Ai is performed. Thus, Lemma 5 generalizes to any number

of statements S1, . . . , Sw sharing array Ai — the total number of

loads from Ai is lower-bounded by a maximum number of loads

from Ai among Sj , maxj=1, ...,w |Ai (RSj )|.

4.2 Case II: Output Reuse and Access Sizes
Consider the case where the output A0 of statement S is also the

input Bj of statement T . Furthermore, consider subcomputation

H of statement T (and its associated iteration domain D). Any
path from the graph inputs to vertices in B0(D) must pass through

vertices in Bj (D). The following question arises: Is there a smaller

set of vertices B′j (D), |B
′
j (D)| < |Bj (D)| that every path from graph

inputs to Bj (D) must pass through?

Let ρS denote computational intensity of statement S . With that,

we can state the following lemma:

Lemma 6. Any dominator set of set Bj (D) must be of size at least

|Dom(Bj (D))| ≥
|Bj (D ) |
ρS .

Corollary 1. Combining Lemmas 6 and 3, the data access size of
|Bj (D)| during subcomputation H is

|Dom(Bj (D))| ≥

∏dim(ϕ j )
k=1 |Dk

j |

ρS
. (4)

Similarly to case I, this result also generalizes to multiple “con-

sumer” statements that reuse the same output array of a “producer”

statement, as well as any combination of input and output reuse

for multiple arrays and statements. Since the actual I/O optimal

schedule is unknown, the general strategy to ensure correctness of

our lower bound is to consider each pair of interacting statements

separately as one of these two cases. Since both Lemma 5 and 6
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overapproximate the reuse, the final bound may not be tight - the

more inter-statement reuse, the more overapporixmation is needed.

Still, this method can be successfully applied to derive tight I/O
lower bounds for many linear algebra kernels, such as matrix fac-

torizations, tensor products, or solvers.

5 GENERAL PARALLEL I/O LOWER BOUNDS
We now establish how our method applies to a parallel machine

with P processors (Section 2.1). Since we target large-scale dis-

tributed systems, our parallel pebbling model differs from the one

introduced e.g. by Alwen and Serbinenko [5], which is inspired

by shared-memory models like PRAM [39]. Instead, we disallow

sharing memory (pebbles) between the processors, and enforce

explicit communication — analogous to the load/store operations

— using red and blue pebbles. This allows us to better match the

behavior of real, distributed applications that use, e.g., MPI.

Each processor pi owns its private fast memory that can hold

up toM words, represented in the cDAG asM vertices of color pi .
Vertices with different colors (belonging to different processors)

cannot be shared between these processors, but any number of

different pebbles may be placed on one vertex.

All the standard red-blue pebble game rules apply with the fol-

lowing modifications:

(1) compute. Uf all direct predecessors of vertexv have pebbles

of pi ’s color placed on them, one can place a pebble of color

pi on v (no sharing of pebbles between processors),

(2) communication. If a vertex v has any pebble placed on it,

a pebble of any other color may be placed on this vertex.

From this game definition it follows that from a perspective of

a single processor pi , any data is either local (the corresponding

vertex has pi ’s pebble placed on it) or remote, without a distinction

on the remote location (remote access cost is uniform).

Lemma 7. The minimum number of I/O operations in a parallel
pebble game, played on a cDAG with |V | vertices with P processors
each equipped withM pebbles, is Q ≥ |V |P ·ρ , where ρ is the maximum
computational intensity, which is independent of P (Lemma 1).

6 I/O LOWER BOUNDS OF PARALLEL
FACTORIZATION ALGORITHMS

Wegather all the insights from Sections 2 to 5 and use them to obtain

the parallel I/O lower bounds of LU and Cholesky factorization

algorithms, which we use to develop our communication-avoiding

implementations.

6.1 LU Factorization
In our I/O lower bound analysis we omit the row pivoting, since

swapping rows can increase the I/O cost by at most N 2
, which is

the cost of permuting the entire matrix. However, the total I/O cost

of the LU factorization is O(N 3/
√
M) [61].

LU factorization (without pivoting) contains two statements (Fig-

ure 3). Observe that we can use Lemma 4 (out-degree one vertices)

for statement S1 : A[i,k] = A[i,k] / A[k,k]. The loop nest

depth is lS1 = 2, with iteration variables ψ 1 = k and ψ 2 = i. The
dimension of the access function vector (k,k) is 1, revealing poten-
tial for data reuse: every input vertex A[k,k] is accessedN −k times

and used to compute vertices A[i,k], k + 1 <= i < N . However,

the access function vector (i,k) has dimension 2; therefore, every

compute vertex has one direct predecessor with out-degree one,

which is the previous version of element A[i,k]. Using Lemma 4,

we therefore have ρS1 ≤ 1.

We now proceed to statement S2 : A[i,j] = A[i,j] - A[i,k]

* A[k,j]. Let |Dk | = K , |Di | = I , |D j | = J . Observe that there is
an output reuse (Section 4.2 and Figure 3, red arrow) of A[i,k]
between statements S1 and S2. We therefore have the following

access size in statement S2: |A2(DS2)| = | A[i,k]| =
IK
ρS1 ≥ IK

(Equation 4). Note that in this case where the computational inten-

sity is ρS1 ≤ 1, the output reuse does not change the access size

|A2(DS2)| of statement S2. This follows the intuition that it is not

beneficial to recompute vertices if the recomputation cost is higher

than loading it from the memory. Denoting HS2 as the maximal

subcomputation for statement S2 over the subcomputation domain

D, we have the following (Lemma 3):

• |HS2 | = KI J
• |A1(D)| = | A[i,j] | = I J
• |A2(D)| = | A[i,k] | = IK
• |A3(D)| = | A[k,j] | = K J
• |Dom(HS2)| = |A1(D)| + |A2(D)| + |A3(D)| = I J + IK + K J

We then solve the optimization problem from Section 3.2:

max KI J , s.t.

I J + IK + K J ≤ X

I ≥ 1, J ≥ 1, K ≥ 1

Which gives |HS2 | = χ (X ) =
(
X
3

) 3

2

for K = I = J =
(
X
3

) 1

2

.

Then, we find X0 that minimizes the expression ρS2(X ) =
|Hmax |
X−M

(Equation 2), yielding X0 = 3M . Plugging it into ρS2(X ), we con-
clude that the maximum computational intensity of S2 is bounded

by ρS2 ≤
√
M/2.

We bounded the maximum computational intensities ρS1 and
ρS2, that is, the minimum number of I/O operations to compute

vertices belonging to statements S1 and S2. As the last step, we find
the total number of compute vertices for each statement: |V1 | =∑N
k=1(N−k−1) = N (N−1)/2, and |V2 | =

∑N
k=1

∑N
i=k+1(N−k−1) =

N (N − 1)(N − 2)/3. Using Lemmas 1 (bounding I/O cost with the

computational intensity) and 7 (I/O cost of the parallel machine),

the parallel I/O lower bound for LU factorization is therefore

QP,LU ≥
2N 3 − 6N 2 + 4N

3P
√
M

+
N (N − 1)

2P
=

2N 3

3P
√
M
+ O

(N 2

P

)
.

Previously, Solomonik et al. [61] established the asymptotic I/O

bound for sequential execution Q = O(N 3/
√
M). Recently, Olivry

et al. [51] derived a tight leading term constant Q ≥ 2N 3/(3
√
M).

To the best of our knowledge, our result is the first non-asymptotic

bound for parallel execution. The generalization from the sequential

to the parallel bound is straightforward. Note, however, that this is

only the case due to our pebble-based execution model, and it may

thus not apply to other parallel machine models.

6.2 Cholesky Factorization
We proceed analogously to our derivation of the LU I/O bound

— here we just briefly outline the steps. The algorithm contains

three statements (Listing 1). For statements S1 and S2, we can
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again use Lemma 4 (out-degree-one vertices). For S1 : L(k,k) =
sqrt(L(k,k)), the loop nest depth is l1 = 1, we have a single

iteration variable ψ 1 = k, and a single input array A1 = L with

the access function ϕ1(ψ) =(k,k). Since there is only one iteration

variable present in ϕ1, we have dim(ϕ1) = 1 = l1. Therefore, for
every compute vertex v we have one direct predecessor, which is

the previous version of element L(k,k). We conclude that ρS1 ≤ 1

and |VS1 | = N .

1 for k = 1:N
2 S1: L(k,k) = sqrt(L(k,k));
3 for i = k+1:N
4 S2: L(i,k) = (L(i,k)) / L(k,k);
5 for j = k+1:i
6 S3: L(i,j) = L(i,j) - L(i,k) * L(j,k);
7 end; end; end;

Listing 1: Cholesky Factorization

For statement S2 : L(i,k) = (L(i,k)) / L(k,k), we also have
output reuse of L(k,k) between statements S2 and S1. However,
as with the output reuse considered in the LU analysis, the com-

putational intensity is ρS1 ≤ 1. Therefore, it does not change the

dominator set size of S2. We then use the same reasoning as for the

corresponding statement S1 in LU factorization, yielding ρS2 ≤ 1.

For statement S3, we derive its bound similarly to S2 of LU, with

ρS3 =
√
M/2 and |VS3 | =

∑N
k=1

∑N
i=k+1(i − k − 1) = N (N − 1)(N −

2)/6. Note that compared to LU, the only significant difference is

the iteration domain |V3 |. Even though Cholesky has one statement

more – the diagonal element update L(k,k) – its impact on the

final I/O bound is negligible for large N .

Again, using Lemmas 1 and 7 we establish the Cholesky factor-

ization’s parallel I/O lower bound:

QChol ≥ Q1 +Q2 +Q3 =
|V1 |

Pρ1
+
|V2 |

Pρ2
+
|V3 |

Pρ3
≈

N 3

3P
√
M
+
N 2

2P
+
N

P

The derived I/O lower bound for a sequential machine (P = 1)

improves the previous boundQchol ≥ N 3/(6
√
M) derived by Olivry

et al. [51]. Furthermore, to the best of our knowledge, this is the

first parallel bound for this kernel.

7 NEAR-I/O OPTIMAL PARALLEL MATRIX
FACTORIZATION ALGORITHMS

We now present our parallel LU and Cholesky factorization algo-

rithms. We start with the former, more complex algorithm, i.e. LU

factorization. Pivoting in LU poses several performance challenges.

First, since pivots are not known upfront, additional communica-

tion and synchronization is required to determine them in each step.

Second, the nondeterministic pivot distribution between the ranks

may introduce load imbalance of computation routines. Third, to

minimize the communication a 2.5D parallel decomposition must

be used, i.e. parallelization along the reduction dimension. We ad-

dress all these challenges with COnf LUX — a near Communication
Optimal LU factorization using X -Partitioning.

7.1 LU Dependencies and Parallelization
Due to the dependency structure of LU, the input matrix is of-

ten divided recursively into four submatrices A00, A10, A01, and

Figure 5: LU Factorization cDAG for n = 4with the logical decompo-
sition into A00, A10, A01, and A11. Dashed arrows represent commu-
tative dependencies (reduction of a value). Solid arrows represent
non-commutative operations, meaning that any parallel pebbling
has to respect the induced order (e.g., no vertex in A11 can be peb-
bled before A00 is pebbled).

A11 [24, 61]. Arithmetic operations performed in LU create non-

commutative dependencies (Figure 5) between vertices in A00 (LU

factorization of the top-left corner of the matrix), A10, and A01 (tri-

angular solve of left and top panels of the matrix). Only A11 (Schur

complement update) has no such dependencies, and may therefore

be efficiently parallelized in the reduction dimension. A high-level

summary is presented in Algorithm 1.

Algorithm 1 COnf LUX
Input: Input matrix A ∈ Rn×n
Output: In-place factored matrix A, permutation matrix P
A1 ← A ◃ First step

P ← I ◃ Permutation matrix is initially identity

for t = 1, . . . , N
v do

1. Reduce next block column ◃ Cost:
(N−t ·v )·v ·M

N 2

2. [rows, Pt+1] ← TournPivot(At , Pt ) ◃ Find next v pivots. Cost: v2

⌈
log( N√

M
)

⌉
3. Scatter computed A00 and v pivot rows ◃ Cost: v2 + v
4. Scatter A10 ◃ Cost:

(N−t ·v )v
P

5. Reduce v pivot rows ◃ Cost:
(N−t ·v )·v ·M

N 2

6. Scatter A01 ◃ Cost:
(N−t ·v )v

P
7. FactorizeA10(At ) ◃ 1D parallel., block-row

8. Send data from panel A10 ◃ Cost:
(N−t ·v )N ·v

P
√
M

9. FactorizeA01(At ) ◃ 1D parallel., block-column

10. Send data from panel A01 ◃ Cost:
(N−t ·v )N ·v

P
√
M

11. FactorizeA11(At ) ◃ 2.5D parallel.

At+1 ← At [rows, v :end] ◃ Recursively process remaining rows and columns

end for

7.2 LU Computation Routines
The computation is performed in

N
v steps, wherev is a tunable block

size. In each step, only submatrix At of input matrix A is updated.

Initially,At is set toA.At can be further viewed as composed of four

submatrices A00, A10, A01, and A11 (see Figure 6). These submatri-

ces are distributed and updated by routines TournPivot, FactorizeA10,

FactorizeA01, and FactorizeA11:

• A00. This v × v submatrix contains the first v elements of the

current v pivot rows. It is computed during TournPivot, and, as it
is required to compute A10 and A01, it is redundantly copied to

all processors.

• A10 and A01. Submatrices A10 and A01 of sizes (N − t · v) × v
and v × (N − t · v) are distributed using a 1D decomposition
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1. Column 

reduction

3. Scatter A00

4. Scatter A10

5. Pivot row reduction

9. 

10. Distribute A01

11.

Each proc. reduces 

2 layers locally 

(same proc. color)

6. Scatter A01

7. 8. Distribute A10

4 processors

in first layer 

4 processors

in sec. layer 

16x16 matrix, 

2x2x2 block 

cyclic decomp:

B
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TE
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FL
Y
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N

Figure 6: COnf LUX’s parallel decomposition for P = 8 processors
decomposed into a [Px, Py, Pz] = [2, 2, 2] grid, together with the
indicated steps of Algorithm 1. In each iteration t , each processor
[pi, pj, pk ] updates (2 − ⌊(t + pi)/Px ⌋) × (2 − ⌊(t + pj)/Py ⌋) tiles of
A11. In the presented example, there arev = 4 planes in dimension k
to be reduced, which are distributed among Pz = 2 processor layers
(green and yellow tiles).

among all processors. They are updated using a triangular solve.

1D decomposition guarantees that there are no dependencies

between processors, so no communication or synchronization is

performed during computation, as A00 is already owned by every

processor.

• A11 This (N − t · v) × (N − t · v) submatrix is distributed using

a 2.5D, block-cyclic distribution (Figure 6). First, the updated

submatrices A10 and A01 are broadcast among the processors.

Then, A11 (Schur complement) is updated. Finally, the first block

column and v chosen pivot rows are reduced, which will form

A10 and A01 in the next iteration.

Block size v . The minimum size of each block is the number of

processor layers in the reduction dimension (v ≥ c = PM
N 2

). How-

ever, to secure high performance, this value should be adjusted

to hardware parameters of a given machine (e.g., vector length,

prefetch distance of a CPU, or warp size of a GPU). Throughout

the analysis, we assume v = a · PMN 2
for some small constant a.

7.3 Pivoting
Our pivoting strategy differs from state-of-the-art block [6], tile [4],

or recursive [24] pivoting approaches in two aspects:

• To minimize I/O cost, we do not swap pivot rows. Instead, we

keep track of which rows were chosen as pivots and we use

masks to update the remaining rows.

• To reduce latency, we take advantage of our derived block de-

composition and use tournament pivoting [29].

Tournament Pivoting. This procedure finds v pivot rows in each

step that are then used to mask which rows will form the new A01

and then filter the non-processed rows in the next step. It is shown

to be as stable as partial pivoting [29], which might be an issue for,

e.g., incremental pivoting [54]. On the other hand, it reduces the

O(N ) latency cost of partial pivoting, which requires step-by-step

column reduction to find consecutive pivots, to O
( N
v
)
, where v is

the tunable block size parameter.

Row Swapping vs. Row Masking. To achieve close to optimal

I/O cost, we use a 2.5D decomposition. This, however, implies that

in the presence of extra memory, the matrix data is replicated

PM
N 2

times. This increases the row swapping cost from O
( N 2

P ) to

O
( N 3

P
√
M

)
, which asymptotically matches the I/O lower bound of the

entire factorization. Performing row swapping would then increase

the constant term of the leading factor of the algorithm from
N 3

P
√
M

to
2N 3

P
√
M
. To keep the I/O cost of our algorithm as low as possible,

instead of performing row-swapping, we only propagate pivot row

indices. When the tournament pivoting finds thev pivot rows, they

are broadcast to all processors with only v cost per step.

Pivoting in COnf LUX. In each step t of the outer loop (line 1 in

Algorithm 1),
N√
M

processors perform a tournament pivoting rou-

tine using a butterfly communication pattern [55]. Each processor

owns

√
M N−vt

N rows, among which it chooses v local candidate

pivots. Then, final pivots are chosen in log( N√
M
) “playoff-like” tour-

nament rounds, after which all
N√
M

processors own both v pivot

row indices and the already factored, new A00. This result is dis-

tributed to all remaining processors (line 2). Pivot row indices are

then used to determine which processors participate in the reduc-

tion of the current A01 (line 4). Then, the new At is formed by

masking currently chosen rows At ← At [rows,v : end] (Line 12).

7.4 I/O cost of COnf LUX
We now prove the I/O cost of COnf LUX, which is only a factor of

1

3
higher than the obtained lower bound for large N .

Lemma 8. The total I/O cost of COnf LUX, presented in Algorithm 1,

is QCOnfLUX =
N 3

P
√
M
+ O

(
N 2

P

)
.

Proof. We assume that the input matrixA is already distributed

in the block cyclic layout imposed by the algorithm. Otherwise, data

reshuffling imposes only Ω
( N 2

P
)
cost, which does not contribute to

the leading order term. We first derive the cost of a single iteration t
of the main loop of the algorithm, proving that its cost isQstep (t) =
2Nv(N−tv)

P
√
M

+ O
(
Nv
P

)
. The total cost after

N
v iterations is:

QCOnfLUX =

N
v∑
t=1

Qstep(t ) =
N 3

P
√
M
+ O

(
N 2

P

)
.

We define P1 = N 2

M and c = PM
N 2

. P processors are decomposed

into the 3D grid [
√
P1,
√
P1, c]. We refer to all processors that share

the same second and third coordinate as [:, j,k]. We now examine

each of 11 steps in Algorithm 1.

Step 2. Processors with coordinates [:, t mod

√
P1, t mod c] per-

form the tournament pivoting. Every processor owns the first v
elements of N − (t − 1)v rows, among which they choose the nextv
pivots. First, they locally perform the LUP decomposition to choose

the local v candidate rows. Then, in ⌈log
2
(
√
P1)⌉ rounds they ex-

changev×v blocks to decide on the final pivots. After the exchange,

these processors also hold the factorized submatrixA00. I/O cost per
processor: v2 ⌈log

2
(
√
P1)⌉.

Steps 3, 4, 6. FactorizedA00 and v pivot row indices are broadcast.

First v columns and v pivot rows are scattered to all P . I/O cost per
processor: v2 +v + 2(N−tv)v

P .

Steps 1 and 5. v columns and v pivot rows are reduced. With

high probability, pivots are evenly distributed among all processors.

There are c layers to reduce, each of size (N − tv)v . I/O cost per
processor: (N−tv)vcP =

2(N−tv)vM
N 2

.
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COnf LUX (LU) COnfCHOX (Cholesky)
description comm. cost comp. cost description comm. cost comp. cost

pivoting TournPivot v2 ⌈log
2
(
√
P1)⌉ v3/3 ⌈log

2
(
√
P1)⌉ (no pivoting) — —

A00 local getrf 0 0 (done during TournPivot) potrf v2 v3/6

A10 and A01 reduction, local trsm 2(N−tv )vM
N 2

2(N−tv )v2

2P (similar to LU)
2(N−tv )vM

N 2

2(N−tv )v2

2P

A11 scatter, local gemm 2(N−tv )v
P

(N−tv )2v
P scatter, local gemmt

(triangular gemm)

2(N−tv )v
P

(N−tv )2v
2P

Table 1: Comparison of the implemented LU and Cholesky factorizations. Even though Cholesky performs half as many computations (the
use of gemmt instead of gemm in A11), it communicates the same amount of data, since the number of elements needed to perform gemm and
gemmt is the same.

Steps 7, 9, 11. The updates FactorizeA10, FactorizeA01, and

FactorizeA11 are local and incur no additional I/O cost.

Steps 8 and 10. Factorized A10 and A01 are scattered among all

processors. Each processor requires
v(N−tv)
c
√
P1

elements from A10

and A01. I/O cost per processor: 2(N−tv)Nv
P
√
M

.

Summing steps 1 – 11: Qstep (t) =
2Nv(N−tv)

P
√
M

+ O
(
Nv
P

)
. �

Note that this cost is a factor 1/3 over the lower bound established

in Section 6.1. This is due to the fact that any processor can only

maximally utilize its local memory in the first iteration of the outer

loop. In this first iteration, a processor updates a total of

√
M ×
√
M

elements of A. In subsequent iterations, however, the local domain

shrinks as less rows and columns are updated, which leads to an

underutilization of the resources. Since the shape of the iteration

space is determined by the algorithm, this behavior is unavoidable

for P ≥ N 2/M . Note that the bound is attainable by a sequential

machine, however.

7.5 Cholesky Factorization
From a data flow perspective, Cholesky factorization can be viewed

as a special case of LU factorization without pivoting for symmet-

ric, positive definite matrices. Therefore, our Cholesky algorithm —

COnf CHOX— heavily bases on COnf LUX, using the same 2.5D par-

allel decomposition, block-cyclic data distribution, and analogous

computation routines.

For both algorithms, the dominant cost, both in terms of compu-

tation and communication, is the A11 update. Due to the Cholesky

factorization’s iteration domain, which exploits the symmetry of

the input matrix, the compute cost is twice as low, as only one half

of the matrix needs to be updated. However, the input size required

to perform this update is the same — therefore, the communication

cost imposed by A11 is similar. We list the key differences between

the two factorization algorithms in Table 1.

8 IMPLEMENTATION
Our algorithms are implemented in C++, using MPI for inter-node

communication. For static communication patterns (e.g., column

reductions) we use dedicated, asynchronous MPI collectives. For

runtime-dependent communication (e.g., pivot index distribution)

we use MPI one-sided [31]. For intra-node tasks, we use OpenMP

and local BLAS calls (provided by Intel MKL [34]) for computations.

Our code is available as an open-source git repository
2
.

Parallel decomposition. Our experiments show that the paral-

lelization in the reduction dimension, while reducing communica-

tion volume, does incur performance overheads. This is mainly due

to the increased communication latency, as well as smaller buffer

sizes used for local BLAS calls. Since formal modeling of the tradeoff

between communication volume and performance is outside of the

scope of the paper, we keep the depth of parallelization in the third

dimension as a tunable parameter, while providing heuristics-based

default values.

Data distribution. COnf LUX and COnf CHOX provide ScaLA-

PACKwrappers by using the highly-optimized COSTA algorithm [38]

to transform the matrices between different layouts. In addition,

they support the COSTA API for matrix descriptors, which is more

general than ScaLAPACK’s layout, as it supports matrices dis-

tributed in arbitrary grid-like layouts, processor assignments, and

local blocks orderings.

9 EXPERIMENTAL EVALUATION
We compare COnf LUX and COnf CHOX with state-of-the-art im-

plementations of corresponding distributed matrix factorizations.

Measured values. We measure both the I/O cost and total time-

to-solution. For I/O, the aggregate communication volume in dis-

tributed runs is counted using the Score-P profiler [41]. We provide

both measured values and theoretical cost models. Local

std::chrono calls are used for time measurements and the maxi-

mum execution time among all ranks is reported.

Infrastructure and Measurement. We run our experiments on

the XC40 partition of the CSCS Piz Daint supercomputer which

comprises 1,813 CPU nodes equipped with Intel Xeon E5-2695 v4

processors (2x18 cores, 64 GiB DDR3 RAM), interconnected by the

Cray Aries network with a Dragonfly network topology. Since the

CPUs are dual-socket, two MPI ranks are allocated per compute

node.

Comparison Targets. We use 1) Intel MKL (v19.1.1.217). While

the library is proprietary, our measurements reaffirm that, like

ScaLAPACK, the implementation uses the suboptimal 2D proces-

sor decomposition; 2) SLATE [28] — a state-of-the-art distributed

linear algebra framework targeted at exascale supercomputers; 3)

2
https://github.com/eth-cscs/conflux
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MKL [34] SLATE [28] CANDMC [57] CAPITAL [33] COnf LUX / COnf CHOX (this work)

Decomposition 2D, panel decomp. 2D, block decomp. Nested 2.5D, block decomp. 2.5D, block decomp. 1D / 2.5D, block decomp.

Block size user-specified
user-specified,

(default 16)

N 3

P ·M ,
N 2

P
√
M

user-specified optimized, ≥ P ·M
N 2

Program parameters required from user  required from user  provided defaults  optimized defaults optimized defaults

Parallel I/O cost N 2

√
P
+ O

(
N 2

P

)
N 2

√
P
+ O

(
N 2

P

)
5N 3

P
√
M
+ O

(
N 2

P
√
M

)
[61]

45N 3

8P
√
M
+ O

(
N 2

P
√
M

)
[33]

N 3

P
√
M
+ O

(
N 2

P
√
M

)
Table 2: Parallelization strategies and I/O cost models of the considered matrix factorization implementations. MKL and SLATE require a user
to specify the processor decomposition and the block size. CANDMC provides default values, but our experiments show that the performance
was significantly improved when we tuned the parameters. COnf LUX and COnfCHOX outperform all state-of-the-art libraries with out-of-
the-box parameters. We validated our parallel I/O cost models: for MKL, SLATE,COnf LUX, and COnfCHOX, the error was within +/-3%. For
CANDMC and CAPITAL, we used the models derived by the authors [33, 61], which overappoximated the measured values by approx. 30-40%.

(a) Communication volume per node for vary-
ing node counts P and a fixed N =16,384. Only
the leading factors of the models are shown. The
models are scaled by the element size (8 bytes).

(b) Communication volume per node forweak scal-
ing (constant work per node), N = 3200 ·

3
√
P . 2.5D

algorithms (CANDMC and COnf LUX) retain con-
stant communication volume per processor.

(c) Communication reduction vs. second-best algorithm
(M=MKL, S=SLATE), for varying P , N , for both mea-
sured and predicted scenarios.

Figure 7: Communication volume measurements across different scenarios for MKL, SLATE, CANDMC, and COnf LUX. In all considered
scenarios, enough memory M ≥ N 2/P 2/3 was present to allow for the maximum number of replications c = P 1/3.

the latest version of the CANDMC and CAPITAL libraries [32, 58],

which use an asymptotically-optimal 2.5D decomposition. The im-

plementations and their characteristics are listed in Table 2.

Problem Sizes.We evaluate the algorithms starting from 2 com-

pute nodes (4 MPI ranks) up to 512 nodes (1,024 ranks). For each

node count, matrix sizes range from N = 2,048 to N = 2
19 =

524,288, provided they fit into the allocated memory (e.g., LU or

Cholesky factorization on a double-precision input matrix of dimen-

sion 262,144 × 262,144 cannot be run on less than 32 nodes). Runs in

which none of the libraries achieved more than 3% of the hardware

peak are discarded since by adding more nodes the performance

starts to deteriorate.

Our benchmarks reflect real-world problems in scientific com-

puting. The High-Performance Linpack benchmark uses a maximal

size of N = 16,473,600 [62]. In quantum physics, matrix size scales

with 2
qubits

. In physical chemistry or density functional theory

(DFT), simulations require factorizing matrices of atom interactions,

yielding sizes ranging from N = 1,024 up to N = 131,072 [18, 66].

In machine learning, matrix factorizations are used for inverting

Kronecker factors [52] whose sizes are usually around N = 4,096.

This motivates us to focus not only on exascale problems, but also

improve performance for relatively small matrices (N ≤100,000).

CommunicationModels.Togetherwith empirical measurements,

we put significant effort into understanding the underlying com-

munication patterns of the compared LU factorization implementa-

tions. Both MKL and SLATE base on the standard partial pivoting

algorithm using the 2D decomposition [10]. For CANDMC and

CAPITAL, the models provided by the authors [33, 61] are used.

For COnf LUX and COnf CHOX, we use the results from Section 7.

These models are summarized in Table 2.

10 RESULTS
Our experiments confirm advantages of COnf LUX and COnf CHOX
in terms of both communication volume and time-to-solution over

all other implementations tested. A significant communication re-

duction can be observed (up to 1.42 times for COnf LUX compared

with the second-best implementation for P = 1,024). Moreover, the

performance models predict even greater benefits for larger runs

(expected 2.1 times communication reduction for a full-machine run

on the Summit supercomputer – Figure 7c). Most importantly, our

implementations consistently outperform existing implementations

(up to three times – Figures 1 and 8).

Communication volume. Fig. 7a presents the measured com-

munication volume per node, as well as our derived cost models
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(a) Strong scaling, N = 2
17 = 131,072 (b) Strong scaling, N = 2

14 = 16,384 (c) Weak scaling, N = 8,192·
√
P

Figure 8: Achieved % of peak performance for LU factorization. We show median and 95% confidence intervals.

(a) Strong scaling, N = 2
17 = 131,072 (b) Strong scaling, N = 2

14 = 16,384 (c) Weak scaling, N = 8,192·
√
P

Figure 9: Achieved % of peak performance for Cholesky factorization. We show median and 95% confidence intervals.
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Figure 10: Left: measured runtime speedup of COnfCHOX vs.
fastest state-of-the-art library (S=SLATE [28], C=CAPITAL [33],
M=MKL [34]). Right: COnfCHOX’s achieved % ofmachine peak per-
formance.

(Table 2) presented with solid lines, for N = 16,384. Observe that

COnf LUX communicates the least for all values of P . Note that
since both MKL and SLATE use similar 2D decompositions, their

communication volumes are mostly equal, with a slight advantage

for SLATE. In Fig. 7b, we show the weak scaling characteristics

of the analyzed implementations. Observe that for a fixed amount

of work per node, the 2D algorithms - MKL and SLATE - scale

sub-optimally. Figure 7c summarizes the communication volume

reduction of COnf LUX compared with the second-best implemen-

tation, both for measurements and theoretical predictions. It can

be seen that for all combinations of P and N , COnf LUX always

communicates the least. For all measured data points, the asymp-

totically optimal CANDMC performed worse than MKL or SLATE.

The figure also presents the predicted communication cost of all

considered implementations for up to P = 262,144 based on our

theoretical models.

Performance. Our measurements show that both COnf LUX and

COnf CHOX outperform all considered state-of-the art libraries in

almost all scenarios (Figures 1 and 10). Thanks to the optimized

block data decomposition and efficient overlap of computation and

communication, our implementations achieve high performance

already on relatively small matrices (approx. 40% of hardware peak

for cases where N 2/P > 2
27
). In cases where the local domain per

processor becomes very small (N 2/P < 2
27
) our block decompo-

sition does not add that much benefit, since the performance is

mostly latency-bound, and not bandwidth-bound. This is visible

not only in strong scaling (Figures 8 and 9, a) and b)), but also in

weak scaling (c)), where the input size per processor N 2/P is con-

stant. This is again caused by latency overheads of scattering data

between 1D and 2.5D layouts.
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Pebbling [13, 26, 37, 45, 56] Projection-based [8, 15, 20, 21, 23, 51] Problem specific [1, 9, 17, 48, 66]

Scope  General cDAGs  Programs Geometric structure of iteration space  Individually tailored for given problem

Key
Features

 General scope

 Expresses complex data dependencies

 Directly exposes schedules

 Intuitive

 PSPACE-complete in general case

 No guarantees that a solution exists

 No well-established method how to

automatically translate code to cDAGs

 Well-developed theory and tools

 Guaranteed to find solution

for given class of programs

 Bounds are often not tight

 Fails to capture dependencies

between statements

 Limited scope

 Takes advantage of problem-specific

features

 Tends to provide best practical results

 Requires large manual effort

for each algorithm separately

 Difficult to generalize

 Often based on heuristics

with no guarantees on optimality

Table 3: Overview of different approaches to modeling data movement.

However, as the local domains become larger and may be more

efficiently pipelined and overlapped using asynchronous MPI rou-

tines and intra-node OpenMP parallelism, the advantage becomes

significant (Figures 8 and 9). COnf LUX outperforms existing li-

braries up to three times (for P = 4,N = 4096, second-best library

is SLATE – Figure 1) and COnf CHOX achieves up to 1.8 times

speedup (e.g., P = 4,N = 4,096, second-best is again SLATE).

Implications for Exascale. Both the communication models’ pre-

dictions (Figure 7c) and measured speedups (Figures 1 and 10) allow

us to predict that when running our implementations on exascale

machines, we can expect to see further performance improvements

over state-of-the-art libraries. Furthermore, throughput-oriented

hardware, such as GPUs and FPGAs, may benefit even more from

the communication reduction of our schedules. Thus, COnf LUX
and COnf CHOX not only outperform the state-of-the-art libraries

at relatively small scales — which are most common use cases

in practice [18, 52, 66] — but also promise speedups on full-scale

performance runs on modern supercomputers.

11 RELATEDWORK
Previous work on I/O analysis can be categorized into three classes

(see Table 3): work based on direct pebbling or variants of it,

such as Vitter’s block-based model [64]; works using geometric
arguments of projections based on the Loomis-Whitney inequal-

ity [47]; and works applying optimizations limited to specific struc-

tural properties such as affine loops [27], and more generally,

the polyhedral model program representation [9, 48, 51]. Al-

though the scopes of those approaches significantly overlap — for

example, kernels like matrix multiplication can be captured by most

of the models — there are important differences both in methodol-

ogy and the end-results they provide, as summarized in Table 3.

Dense linear algebra operators are among the standard core

kernels in scientific applications. Ballard et al. [8] present a com-

prehensive overview of their asymptotic I/O lower bounds and I/O

minimizing schedules, both for sparse and dense matrices. Recently,

Olivry et al. introduced IOLB [51] — a framework for assessing

sequential lower bounds for polyhedral programs. However, their

computational model disallows recomputation (cf. Section 4.2).

Matrix factorizations are included in most of linear solvers’ li-

braries. With regard to the parallelization strategy, these libraries

may be categorized into three groups: task-based: SLATE [28]

(OpenMP tasks), DLAF [35] (HPX tasks), DPLASMA [12] (DaGuE

scheduler), or CHAMELEON [3] (StarPU tasks); static 2D parallel:
MKL [34], Elemental [53], or Cray LibSci [16]; communication-
minimizing 2.5D parallel: CANDMC [57] and CAPITAL [33].

In the last decade, heavy focus was placed on heterogeneous ar-

chitectures. Most GPU vendors offer hardware-customized BLAS

solvers [50]. Agullo et. al [2] accelerated LU factorization using up to

4 GPUs. Azzam et. al [30] utilize NVDIA’s GPU tensor cores to com-

pute low-precision LU factorization and then iteratively refine the

linear problem’s solution. Moreover, some of the distributed mem-

ory libraries support GPU offloading for local computations [28].

12 CONCLUSIONS
In this work, we present a method of analyzing I/O cost of DAAP —

a general class of programs that covers many fundamental compu-

tational motifs. We show, both theoretically and in practice, that

our pebbling-based approach for deriving the I/O lower bounds is

more general: programs with disjoint array accesses cover a wide

variety of applications,more powerful: it can explicitly capture

inter-statement dependencies, more precise: it derives tighter I/O
bounds, and more constructive: X -partition provides powerful

hints for obtaining parallel schedules.

When applying the approach to LU and Cholesky factoriza-

tions, we are able to derive new lower bounds, as well as new,

communication-avoiding schedules. Not only do they communi-

cate less than state-of-the-art 2D and 3D decompositions — by a

factor of up to 1.6× — but most importantly, they outperform exist-

ing commercial libraries in a wide range of problem parameters (up

to 3× for LU, up to 1.8× for Cholesky). Finally, our code is openly

available, offering full ScaLAPACK layout compatibility.
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