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ABSTRACT
The scope of scientific computing continues to grow and now
includes diverse application areas such as network analysis, combi-
natorial computing, and knowledge discovery, to name just a few.
Large problems in these application areas require HPC resources,
but they exhibit computation and communication patterns that are
irregular, fine-grained, and non-local, making it difficult to apply
traditional HPC approaches to achieve scalable solutions. In this
paper we present Active Pebbles, a programming and execution
model developed explicitly to enable the development of scalable
software for these emerging application areas. Our approach relies
on five main techniques—scalable addressing, active routing, mes-
sage coalescing, message reduction, and termination detection—to
separate algorithm expression from communication optimization.
Using this approach, algorithms can be expressed in their natural
forms, with their natural levels of granularity, while optimizations
necessary for scalability can be applied automatically to match the
characteristics of particular machines. We implement several ex-
ample kernels using both Active Pebbles and existing programming
models, evaluating both programmability and performance. Our
experimental results demonstrate that the Active Pebbles model can
succinctly and directly express irregular application kernels, while
still achieving performance comparable to MPI-based implementa-
tions that are significantly more complex.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming

General Terms
Performance, Design
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1. INTRODUCTION
Computation is now well-accepted as a “third pillar” of science

(complementary to theory and experimentation). High-performance
computing (HPC) in particular has enabled computational scientists
to expand the frontiers of their disciplines. More recently, a
“fourth pillar” of science has been proposed, namely, data-intensive
science [14]. The computational resource requirements for data-
intensive science are just as vast as for traditional compute-intensive
science (consider Google or the Human Genome Project as exem-
plars). Thus, there is a pressing need to expand the scope of HPC
to include data-intensive applications. An important sub-class of
data-intensive applications is data-driven applications. In this class
of problems, the computational dependencies are embedded in the
data and discovered dynamically at run-time.

Traditional compute-intensive applications, such as those based
on discretized systems of PDEs, have natural locality (from the
local nature of the underlying operators). Scalable applications
can therefore be written to solve such problems using a relatively
coarse-grained approach, such as the BSP “compute-communicate”
model [28]; the communication operations themselves can also be
coarse, involving only a few (local) peers per process.

In contrast, data-driven problems tend to be fine-grained, i.e.,
a large number of small objects; irregular, i.e., connections be-
tween objects cannot be expressed analytically; and non-local,
i.e., the dependency graph does not have good separators [24].
As a result, these problems are not well suited to the parallel
programming approaches that have proven to be so effective for
compute-intensive applications. Additionally, most HPC hardware
has been developed for problems with compute-intensive charac-
teristics. This hardware has also become increasingly complex,
including clusters of multi-core systems that have widely varying
communication characteristics within the same machine. These
developments further hinder programming with standard models.

Many data-driven problems can scale on traditional HPC hard-
ware. The difficulty is in expressing fine-grained, irregular, non-
local computations in such a way as to be able to fully exploit
hardware that was designed for coarse-grained, regular, local com-
putations. This can be done (and has been done), with great
difficulty, by hand. However, with home-grown solutions like this,
the application developer is responsible for developing all layers
of the solution stack, not just the application. Furthermore, the
application developer is responsible for re-implementing this entire
stack when target platforms change, or when new applications
must be developed. In many ways, this is similar to the state of
affairs that faced the compute-intensive community prior to the
standardization of MPI.

Accordingly, an approach is needed that separates data-driven
applications from the underlying hardware so that they can be



expressed at their natural levels of granularity, while still being able
to (portably) achieve high performance.

To address this need, we have developed Active Pebbles1 (AP),
a new programming model accompanied by an execution model
specialized for data-driven computations. AP defines control and
data flow constructs for fine-grained data-driven computations that
enable low implementation complexity and high execution perfor-
mance. That is, with the Active Pebbles programming model, ap-
plications can be expressed at their “natural” granularities and with
their natural structures. The Active Pebbles execution environment
in turn coalesces fine-grained data accesses and maps the resulting
collective operations to optimized communication patterns in order
to achieve performance and scalability.

At the core of the Active Pebbles model are pebbles, light-
weight active messages that are managed and scheduled in a scal-
able way, and which generally have no order enforced between
them. In addition to pebbles, the AP model includes handlers
and distribution objects. Handlers are functions that are executed
in response to pebbles (or ensembles of pebbles) and are bound
to data objects with distribution objects to create targets. To
provide the simultaneous benefits of fine-grained programmability
with scalable performance, our model relies on the following five
integrated techniques:

1. Fine-grained Pebble Addressing — light-weight global ad-
dressing to route pebbles to targets.

2. Message Coalescing — combining messages to trade mes-
sage rate for latency and bandwidth.

3. Active Routing — restricting the network topology to trade
message throughput for latency for large numbers of pro-
cesses.

4. Message Reductions — pebble processing at sources and
intermediate routing hops (where possible).

5. Termination Detection — customizable detection of system
quiescence.

The Active Pebbles model has two distinct aspects: a pro-
gramming model plus an execution model. Pebbles and targets,
in combination with Pebble Addressing (1), define an abstract
programming model. The techniques in 2–5 describe an execution
model which translates programs expressed using the programming
model into high-performance implementations. Accordingly, tech-
niques used in the execution model are not simply implementation
details: e.g., message reductions in combination with routing cause
a decrease in the asymptotic message complexity of some algo-
rithms and are thus essential to our model.

2. RELATED WORK
Solutions to data-driven problems on shared memory machines

has been studied by several groups [2, 4, 18]. A fundamental result
from these efforts is that locking can limit performance due to lock
contention and additional memory traffic, decrease programmer
productivity, and stop progress in faulty environments [12]. Prede-
fined atomic memory operations such as compare and swap or fetch
and add allow the design of non-blocking and wait-free algorithms
but their expressiveness is limited [13] (e.g., to integer addition).
Transactional Memory provides an extension to the shared memory
programming model by allowing user-defined operations (transac-
tions) which succeed or fail atomically, thus reducing programming
complexity while still enabling non-blocking and wait-free algo-
rithms [12, 25].
1The term Active Pebbles expresses the idea that messages are
active and independent, but without individual identity (transported
and processed in bulk).

Scalable computing systems are by necessity distributed memory
machines with multiple coherence domains, and are thus more
complex to program. Message passing, an effective programming
model for regular HPC applications, provides a clear separation
of address spaces and makes all communication explicit. The
Message Passing Interface (MPI) is the de facto standard for pro-
gramming such systems [21]. However, irregular and dynamic
applications often need shared access to data structures which
naturally cross address spaces. MPI-2 One Sided [21, §11] and
Partitioned Global Address Space (PGAS) [22, 27] models strive
to fill this gap by allowing transparent access to remote mem-
ory in an emulated global address space. However, mechanisms
for concurrency control are limited to locks and critical sections;
some models support weak predefined atomic operations (e.g.,
MPI_Accumulate()). Stronger atomic operations (e.g., compare
and swap, fetch and add) and user-defined atomic operations are
either not supported or do not perform well. Thus, we claim that
these approaches do not provide the appropriate primitives for fine-
grained data-driven applications. Just as Transactional Memory
generalizes processor atomic operations to arbitrary transactions,
Active Pebbles generalizes one-sided operations to user-defined
pebble handlers.

Active Pebbles are similar to active messages [29]. However, ac-
tive messages are mostly used for low-level communication layers
that are not exposed to the users. Other advanced object communi-
cation models like Charm++ [17], X10 [7], and ParalleX [10] are
also based on active messages behind the scenes. Our approach
differs from these approaches in that AP has a much finer natu-
ral granularity (i.e., AP naturally expresses fine-grained problems
while also obtaining high performance). Moreover, our approach
allows direct expression of operations on fine-grained distributed
items. The figure below compares the natural granularities of AP
with other programming models.

Active 
Pebbles

Charm++ UPC, CAFChapel, X10 MPI

fine-grained coarse-grained

Our execution model could be a compilation target for an active
PGAS language such as X10 or Chapel [6]; however, we claim that
the techniques described in our execution model are required to al-
low those languages to efficiently target fine-grained applications—
and are thus a substantial part of our contribution.

2.1 Comparative Example
We compare and contrast related approaches with a simple ex-

ample problem. Assume that each of P processes wants to insert
n items into a hash table which is statically distributed across the
P processes and uses chaining to resolve collisions. The keys for
the hash table are uniformly distributed in [0,N), N � P. We
now compare possible implementations in different programming
models.

MPI. In one possible MPI implementation, each process would
collect distinct sets of items, each destined for one remote process.
After each process inserted all n requests, all processes would
participate in a complete exchange. This communication can either
be done with direct sends or with a single MPI_Alltoallv() operation
(plus an MPI_Alltoall() stage to determine the pairwise message
sizes). Each process would receive and add items to its local portion
of the hash table. On average, each would receive and process Ω(n)
items from Ω(P) peers, incurring a cost of Ω(n+P).

PGAS. A possible PGAS implementation would create the hash
table in the global address space and each process would add



items directly ensuring mutual exclusion by locking. This would
need Ω(n) lock/unlock messages in addition to the Ω(n) data
transfers per process. Resolving collisions is likely to require
further messages and locks (e.g., to allocate additional space).

Object-Oriented. In object-oriented parallel languages,
such as Charm++ [17] or X10 [7], the hash table would be a global
object (e.g., a Chare). Each item would trigger a member function
(e.g., insert) of the hash table object. For large n and P the vast
number of remote invocations and their associated management
overhead, as well as the small amount of computation per object,
would impact performance significantly.

Active Pebbles. Figure 1 shows a schematic view of the Active
Pebbles execution model. In an Active Pebbles implementation
the user would specify a handler function which adds data items
to the local hash table. The user would then send all data ele-
ments successively to the handler for each individual key (which is
globally addressable). The Active Pebbles framework takes these
pebbles and coalesces them into groups bound for the same remote
process (two items with keys 6 and 7 sent from process P2 to P3
in Figure 1). It can also perform reductions on these coalesced
groups of messages to eliminate duplicates and combine messages
to the same target key (shown at P3 “single-source reduction” in
Figure 1). Active routing sends all (coalesced) messages along a
virtual topology and applies additional coalescing and reductions
at intermediate hops (Figure 1 shows routing along a hypercube,
i.e., P0 sends messages to P3 through P1 where they are coalesced
and reduced, “multi-source reduction,” with other messages).

P0 P1

P2 P3

0 1

F

table.insert(0, F)

table.insert(6, D)

4 5

table.insert(7,B)

table.insert(6,A)
7 B

6 A

6 D
2 3

table.insert(6,A)

table.insert(...)

6 A6 D

6 D A

6 7

table.insert(4,A)

table.insert(4,B)

4 B A

MULTI-SOURCE REDUCTION

SINGLE-SOURCE REDUCTION

COALESCING

HYPERCUBE
ROUTING

Figure 1: Overview of the Active Pebbles model.

This example shows the advantages of the Active Pebbles model,
and how PGAS and object oriented models are inherently lim-
ited by the per-process message rate. Although MPI’s flexibility
allows the use of collective communication, high programming
effort would be required to implement coalescing and multi-stage
communication manually. The Active Pebbles model performs
such optimizations transparently and eliminates redundant commu-
nication.

3. THE ACTIVE PEBBLES MODEL
In this section we analyze each of the Active Pebbles mecha-

nisms in detail. Sections 3.1 and 3.2 describe the programming
model while Sections 3.3–3.6 describe the execution model. We
utilize the well-known LogGP model [1] as a framework for formal
analysis. The LogGP model incorporates four network parameters:
L, the maximum latency between any two processes; o, the CPU

injection overhead of a single message; g, the “gap” between two
messages, i.e., the inverse of the injection rate; G, the “gap” per
byte, i.e., the inverse bandwidth; and P, the number of processes.
We make two modifications to the original model: small, individual
messages (pebbles) are considered to be of one-byte size, and we
assume that the coefficient of G for an n-byte message is n rather
than n− 1 as in the original LogGP model. LogGP parameters
written with a subscript p refer to pebble-specific parameters im-
posed by our synthetic network. For example, Lp is the per-pebble
latency, which might be higher than the network latency L due to
active routing or coalescing; analogously, op, gp, and Gp are the
overhead, gap, and gap per byte for a pebble.

3.1 Active Pebbles Abstractions
The primary abstractions in the Active Pebbles model are peb-

bles and targets. Pebbles are light-weight active messages that
operate on targets (which can, transparently, be local or remote).
Targets are created by binding together a data object with a message
handler, through the use of a distribution object. In Figure 1,
targets are the destination buckets and their keys are used directly
as destination addresses. The distribution object in this example
maps each key i to process bi/2c. Pebbles flow through the network
from their source ranks to their destination ranks (determined by
the distribution object). Pebbles are unordered (other than by
termination detection), allowing flexibility in processing (such as
threading, when the underlying handler function is thread-safe, or
other forms of acceleration).

3.2 Fine-Grained Pebble Addressing
In the Active Pebbles model, messages are sent to individual

targets, not process ranks. Target identifiers (which are typically
domain-specific) are converted to ranks using a user-defined dis-
tribution object. Target identifiers form a global address space,
as in other GAS models. Active Pebbles supports both static
and dynamic distributions. When a static distribution is used, the
distribution will often require only constant space and constant
time for location computations. A dynamic distribution is likely
to require larger amounts of storage; however, applications need
not use dynamic distributions if static ones will suffice. Note
that, unlike some other object-based messaging systems, Active
Pebbles does not require any particular information to be kept
to communicate with a target; i.e., there is no setup required to
communicate, and a sending thread does not require any local
information about the destination target (other than the distribution,
which can be shared by many targets). A target identifier can be as
simple as a global index into a distributed array; such identifiers can
be created and destroyed at will, and are thus very lightweight. This
mechanism is similar to places in X10 or Chare arrays in Charm++
but those mechanisms enable migration and other other advanced
management and thus require O(n) time and space overhead to
manage n elements; a statically-distributed array in Active Pebbles
would only require O(1) space overhead to manage n elements,
on the other hand. To simplify applications, the fine-grained
addressing layer traps pebbles destined for the sending node and
calls the corresponding handler directly, avoiding overheads from
message coalescing, serialization, etc. In LogGP terms, addressing
moves some time from the application to the model’s op term
without an overall change to performance.

3.3 Message Coalescing
A standard technique for increasing bandwidth utilization is

message coalescing. Message coalescing combines multiple peb-
bles to the same destination into a single, larger message. This
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Figure 2: The Different Active Pebbles Features.

technique is well-known in the MPI arena and often performed
manually. In LogGP terms, the packing of n 1-byte messages into
one, n-byte message changes the overall message latency from (n+
1)o+L+G+(n−1)g to 2o+L+nG. Thus, coalescing improves
performance if G < o+g, which is true for all practical networks.
However, coalescing works against pipelining. While without
coalescing, the first pebble can be processed at the sender after
2o+L+G, coalescing delays this to 2o+L+nG. Thus, coalescing
improves bandwidth utilization and reduces the use of g and o at
cost of per-pebble latency Lp. Finding the optimal coalescing factor
is system-dependent and subject to active research. Our LogGP
discussion can be used as a good starting point and, in Active
Pebbles, a user can specify the coalescing factor at run-time. Also,
it may not be known exactly when the stream of pebbles will end,
and so a timeout or similar scheme can be used to know when to
stop accumulating pebbles. Active Pebbles includes a flush() call to
send pebbles immediately.

One disadvantage of message coalescing is its use of memory.
For fast access to buffers, one buffer must typically be kept for each
possible message destination. Some implementations also use an
individual, preallocated message buffer to receive messages from
each possible sender. Those buffers can be established lazily, i.e.,
allocated at first use, however, reserving space for P buffers per
process is impractical for large P if the communication is dense.
The next feature, active routing, is an efficient technique to reduce
the number of such buffers and increase performance.

3.4 Active Routing
Highly irregular applications often send messages from each

process to almost every other process. Thus, the packet injection
rate on each process’s outgoing network links and the number
of coalescing buffers become performance bottlenecks. To work
around these limitations, our implementation of the Active Pebbles
model can route messages through one or more intermediate hops
on their ways to their destinations. For example, a hypercube
topology can be embedded, with messages routed in such a way
that they are only sent along the edges of the hypercube. Thus,
each node only sends directly to a small number of other nodes,
allowing fewer, but larger, coalesced messages to be sent. Users can
also define their own routing schemes, including dynamic routing
for fault tolerance.

Several researchers have found (e.g., Bruck et al [5]) that software-
based routing improves performance on personalized (all-to-all)
communications. For example, Bader, Helman, and JáJá show that
adding one intermediate node into each message’s path leads to a
substantial performance improvement [3]; Plimpton et al show a
performance benefit, both in theory and in practice, of simulating a
hypercube topology for the HPCC RandomAccess benchmark [23].

Garg and Sabharwal discuss the benefits of manual software rout-
ing along a virtual torus on Blue Gene/L [11] and Yoo et al. [32]
use manual routing and message reductions to optimize breadth-
first search at large-scale. The original paper that introduced
the LogGP model shows a personalized broadcast (MPI_Scatter())
operation that uses tree-based routing [1], reducing the number of
messages sent from O(P2) to O(P logP), although the total number
of message bytes is increased by a factor of logP. In LogGP terms,
the assumption made is that o+ g is large enough compared to G
that it is acceptable to use extra bandwidth to reduce the number of
messages sent.

In many networks, routing increases the number of links used
by any given pebble, leading to greater bandwidth utilization.
However, routing allows pebbles from multiple sources and/or to
multiple destinations to be packed together into a single, larger
message, increasing the effectiveness of coalescing compared to
a non-routed network. A similar argument applies to reductions
across pebbles from multiple source nodes to the same destination
target; see Section 3.5 for an analysis. Thus, active routing can
reduce the number of packets sent across the network, potentially
leading to less congestion and a performance improvement.

Active routing also reduces the amount of memory needed for
message coalescing because it limits k, the number of other pro-
cesses that each process communicates with. Without routing,
k = P− 1, and thus each node requires a large number of com-
munication buffers. Hypercube routing, with k = log2 P, reduces
the number of buffers needed from Θ(P) to Θ(logP).

Active routing, in combination with other AP features, effec-
tively converts fine-grained point-to-point messaging operations
into coarse-grained optimized “collective” operations. For exam-
ple, one source sending separate pebbles to different destinations
will, by combining routing and message coalescing, actually use a
tree-based scatter operation that takes advantage of large message
support in the network (as in [1]). Similarly, a number of sources
sending pebbles to the same target will combine them into a tree-
based, optimized gather operation (similar to [5]).

Figure 2(b) shows routing along a hypercube (two messages are
coalesced at P5 and split up at P15; routing reduces the message
volume significantly). Messages flow only along the edges of
the hypercube compared with (logically) direct all-to-all routing in
Figure 2(a). Active Pebbles’ synthetic topologies can be optimized
for the topology of the physical communication network, as with
MPI collective operations (e.g., [5]).

3.5 Message Reductions
In many applications, multiple pebbles of the same type to the

same object are redundant: duplicate messages can be removed
or combined in some way. We call this optimization message



reduction; it can occur either at a message’s sender or—with active
routing—at an intermediate node. Reduction is implemented using
a cache. For duplicate removal, previous messages are stored in a
cache at each process; messages found in the cache are ignored.
As analyzed below, lookup cost is important for the benefit of
message reductions, requiring a fast, constant-time cache lookup at
the expense of hit rate. In our experiments, we use a direct-mapped
cache with runtime-configurable size; a miss replaces the contents
of a cache slot with the new pebble.

For messages with data payloads, two cases are possible: the
reduction operation is max (in some ordering; min is dual), in
which case the cache simply removes messages with suboptimal
values; or the reduction operation is something else that requires
messages to be combined. In the latter case, message data payloads
can be concatenated or combined (e.g., additively) as shown in
Figure 1. In LogGP terms, reductions replace n messages by n(1−
h) messages (where h is the cache hit rate), but they also increase
the value of op for each pebble to op+c, where c is the average cost
of searching and maintaining the cache. The decrease in messages
from n to n(1−h) is equivalent to sending n messages but replacing
G by c+(1−h)G. With message coalescing, G, c, and the message
count are the only important factors in messaging performance;
other factors are constant overheads. Without reductions, the time
to send one pebble is G; reductions reduce the (expected) time to
c+(1−h)G, leading to a benefit when hG > c.

This analysis only considers the effect of reductions on message
latencies and bandwidth consumption; however, the reduction in
computation at the target is likely to be even more important.
Reductions reduce the expected processing cost p for each pebble
to p(1−h). Messages requiring expensive computation thus benefit
from reductions by reducing the number of those computations
that occur. In particular, if a message can trigger a tree of other
messages, one reduction at the source of that message can prevent
many others from being sent at all.

Active routing can increase the benefit of reductions by allowing
reductions across messages from multiple sources to the same
target. With routing, a message is tested against the cache of every
node along its path, increasing the chance of a match being found.
For example, in a hypercube, each message is tested against up
to log2 P caches. Assuming the probabilities of hitting in each
cache are independent, the overall hit rate becomes 1−(1−h)log2 P

(approximately h log2 P) rather than the rate h for a single cache.
These multiple checks thus may lead to a greater reduction in
message volume than would occur without routing.

When messages are sent from different sources to one target,
routing and local message reductions at intermediate nodes com-
bine to synthesize a reduction tree as would be used by an op-
timized implementation of MPI_Reduce(). This emergent prop-
erty creates an efficient collective operation from point-to-point
messages, with the routing algorithm defining the structure of the
generated tree. Hypercube routing, for example, would generate
binary reduction trees (Figure 2(c) shows an all-to-P0 reduction)
with a logarithmic number of stages.

3.6 Termination Detection
The Active Pebbles model allows the handler for each pebble to

trigger new communications. Thus, in a message-driven computa-
tion, it is non-trivial to detect the global termination (quiescence) of
the algorithm. In the standard model for termination detection [8],
each process can either be active or passive. Active processes
perform computation and can send messages, as well as become
passive. Passive processes can only be activated by incoming mes-
sages. A computation starts with one or more active processes and

is terminated when all processes are passive and no messages are
in flight. Many algorithms are available to detect termination [20],
both for specialized networks and general, asynchronous message
passing environments.

The optimal termination detection algorithm for an algorithm
can depend on the features of the communication subsystem and
on the structure of the communication (dense or sparse). Our
framework enables easy implementation of different algorithms by
providing several hooks into the messaging layer. We implement
one fully general termination detection scheme (SKR [26]), using a
nonblocking allreduce() operation [15], similar to the four-counter
algorithm in [20].

3.6.1 Depth-Limited Termination Detection
Some applications can provide an upper bound for the longest

chain of messages that is triggered from handlers. For example,
a simple application where each message only accumulates or de-
posits data into its target’s memory does not require a generic termi-
nation detection scheme. Another example would be an application
that performs atomic updates on target locations that return results
(e.g., read-modify-write). These examples would require termina-
tion detection of depths one and two, respectively. Graph traversals
can generate chains of handler-triggered messages of unbounded
depth (up to the diameter of the graph), however. Several message-
counting algorithms meet the lower bound discussed in [16] and de-
tect termination in logP steps for depth one, while unlimited-depth
termination detection algorithms usually need multiple iterations
to converge. In the SKR algorithm, termination detection takes
at least 2 logP steps (two allreduce() operations). Our framework
offers hooks to specify the desired termination detection depth to
exploit this application-specific knowledge. We implement two
depth-one termination detection schemes: a message-counting al-
gorithm based on nonblocking reduce_scatter() [15], and an algo-
rithm that uses nonblocking barrier semantics and is able to lever-
age high-speed synchronization primitives [16]. Both algorithms
are invoked n times to handle depth-n termination detection.

3.6.2 Termination Detection and Active Routing
In active routing, each message travels over multiple hops which

increases the depth of termination detection. For example in hyper-
cube routing, an additional log2 P hops are added to the termination
detection. This is not an issue for detectors that can handle un-
limited depths, but it affects limited-depth detection. With s-stage
active routing and a depth-n termination requested by the appli-
cation, limited-depth termination detection would take n · s steps.
However, termination detection could take advantage of the smaller
set of possible neighbors from active routing, such as the log2 P
neighbors of each node in a hypercube. This would reduce the per-
round time to O(log logP), for a total time of O(logP log logP) as
compared to O(logP) without routing. Routing may benefit the
rest of the application enough to justify that increase in termination
detection time, however.

3.7 Synthetic Network Tradeoffs
The Active Pebbles model uses coalescing, reductions, active

routing, and termination detection to present an easy-to-use pro-
gramming model to the user while still being able to exploit the
capabilities of large-scale computing systems. Active Pebbles
transforms fine-grained object access and the resulting all-to-all
messaging into coarse-grained messages in a synthetic, or overlay,
network. The synthetic network transparently transforms message
streams into optimized communication schedules similar to those
used by MPI collective operations. Various aspects of the Active



Pebbles execution model can be adjusted to match the synthetic net-
work to a particular application, such as the coalescing factor, the
synthetic topology, and termination detection. The programming
interface remains identical for all of those options. Active Pebbles
can thus be optimized for specific machines without changes to
application source code, allowing performance-portability.

4. APPLICATION EXAMPLES
We examine four example applications using the Active Pebbles

model in order to explore the expressiveness and performance of
applications written using it. Implementations of these applications
in three models are evaluated: Active Pebbles; MPI; and Unified
Parallel C (UPC), which we use to illustrate the programming
techniques used in PGAS languages.2 We first present a simple
summary of these applications with more detailed explanations to
follow:

RandomAccess randomly updates a global table in the style of the
HPCC RandomAccess benchmark [19]. We use optimized ref-
erence implementations where appropriate, as well as simplified
implementations.

PointerChase creates a random ring of processes and sends mes-
sages around the ring.

Permutation permutes a data array distributed across P processes
according to another distributed array, as might be used to redis-
tribute unordered data after loading it.

Breadth First Search (BFS) is a graph kernel that explores a ran-
dom Erdős-Rényi [9] graph breadth-first.

4.1 RandomAccess
The parallel RandomAccess benchmark measures the perfor-

mance of updating random locations in a globally distributed ta-
ble [19]. The benchmark resembles access patterns from dis-
tributed databases and distributed hash tables. It uses a global table
of N elements distributed across P processes. The timed kernel con-
sists of 4N updates to the table of the form table[ran % N] ^= ran
where ran is the output of a random number generator. Processes
may not buffer more than 1024 updates locally.

PGAS. In UPC the table can be allocated in the shared space and
accessed just as in the sequential version of the algorithm:

UPCuint64_t ran;
shared uint64_t∗ table = upc_all_alloc(N ,sizeof(uint64_t));
for (int i = 0 ; i < 1024 ; ++i) {

ran = (ran << 1) ˆ (((int64_t)ran < 0) ? 7 : 0); // compute index
table[ran % N] ˆ= ran; // perform update

}

The UPC compiler/runtime then performs the necessary communi-
cation to perform the update to table.

MPI. MPI has no notion of shared data structures, so the updates
to non-local portions of the table must be explicitly communicated
to the remote process which then applies them. Rather than sending
individual updates we buffer 1024 updates sorted by destination
then communicate them collectively. The MPI implementation
of the RandomAccess application first buffers local updates, then
communicates the number of updates followed by the updates
themselves:

2“PGAS” here refers to fine-grained remote memory accesses (the
basic PGAS model), without active message extensions.

MPIfor (int i = 0 ; i < 1024 ; ++i) {
ran = (ran << 1) ˆ (((int64_t)ran < 0) ? 7 : 0); // compute index
long index = ran % N;
int owner = index / (N/P);

// perform local update
if (rank == owner)

table[index % (N/P)] ˆ= ran;
else // remote

out_bufs[owner].buf[out_bufs[owner].count++] = ran;
}
// ... allocate and prepare all-to-all communication buffers
MPI_Alltoall(out_bufs.count,. . . ,in_bufs.count,. . . );
// ... allocate and prepare all-to-allv communication buffers
MPI_Alltoallv(out_bufs.buf,out_bufs.count,. . . ,
MPI_Alltoallv(in_bufs.buf,in_bufs.count,. . . );

AP. In Active Pebbles we invoke remote handlers using pebbles.
To implement RandomAccess we first encapsulate the update op-
eration inside a handler:

APstruct update_handler {
bool operator()(uint64_t ran) const
{ table[ran % (N/P)] ˆ= ran; } // update to table

};

This handler is then invoked from a remote process by creating a
pebble type and assigning the handler to it. The pebble type encap-
sulates pebble addressing (through the block_owner_map type) and
routing (through the hypercube_routing object passed to the type’s
constructor). A separate operation attaches a particular handler
object to the pebble type:

APpebble_addressing_dest_hbr<. . . >
update_msg(transport, . . . , block_owner_map(N/P),

hypercube_routing(rank, size));
update_msg.set_handler(update_handler(table));

Active Pebbles detects messages which would be sent to the current
rank using pebble addressing and simply calls the appropriate
handler directly. This eliminates the need for applications to treat
local and remote data differently:

APfor (int i = 0 ; i < 1024 ; ++i) {
ran = (ran << 1) ˆ (((int64_t)ran < 0) ? 7 : 0);
update_msg.send(ran);

}

4.2 PointerChase
The PointerChase application creates a random permutation of

[0,P); each processor i then relays a single, small message to ele-
ment (i+1) modP of the permutation. This benchmark is intended
to model the performance of chains of dependent operations in an
irregular application. It primarily tests message latency, and thus is
expected to favor PGAS models.

PGAS. In UPC, notifying the next process to relay the message
can be implemented by polling on a counter allocated in the shared
space and waiting for its value to be updated:



UPCshared int∗ flags = upc_all_alloc(THREADS, sizeof(int));
for (int i = 0; i < rounds; ++i) {

while (flags[MYTHREAD] != i) {}
flags[next_rank] = i;

}

MPI. The implementation of the PointerChase application is sim-
ilar in MPI, except that messages replace the memory operations
and MPI_Wait() is used instead of polling (example simplified):

MPIfor (int i = 0; i < rounds; ++i) {
MPI_Recv(&data, 1, MPI_ANY_SOURCE, . . . );
MPI_Send(&next_rank, 1, next_rank, . . . );

}

AP. In Active Pebbles there is no main loop at all; the control flow
is entirely represented in the message handler:

APstruct msg_handler {
bool operator()(int source, const int∗ data, int count) {

if (rank != start) msg−>send(round, next);
else if (--round > 0) msg−>send(round, next);

} };

The message handler is initialized with the rank which sends the
first message (start), the number of loops around the ring to per-
form (round), and the next rank in the ring (next). After the handlers
are initialized all that is required to start the application is for the
start rank to send the first message:

APtyped_message<. . . >::type
msg(typed_message<. . . >
msg( ::make(transport, 1, msg_handler(0, rounds, next, msg)));

if (rank == start) msg.send(0, next);

4.3 Permutation
The Permutation application is designed to be representative of

a common task in scientific computing: distributing and permuting
unsorted data (e.g., after it has been read from a file). The data
distribution may exist to optimize locality, provide load-balancing,
or for domain-specific reasons. Permutation uses three arrays
representing input data (data), a permutation (perm), and the re-
ordered data (dataperm). These arrays each contain N elements, and
each is distributed across P processors. The data array contains an
index into the perm array which functions as a unique identifier
for the data element, as well as some associated data. The perm
array contains the destination for each input element; the inverse of
the permutation perm is applied. The result satisfies {∀i ∈ [0,N) :
dataperm[perm[data[i]]] = i}.

PGAS. In UPC we allocate the arrays in the shared space and use
upc_forall() to distribute the work:

UPCupc_forall (uint64_t i = 0; i < N; ++i; &data[i])
data_perm[perm[data[i]]] = i;

In the preceding example we simply store the indices i into dataperm;
a real application using this technique would assign the application
data associated with index i.

MPI. In the MPI implementation of Permutation a similar com-
munication pattern to that described in Section 4.1 is used. Rather
than a single Alltoall()/Alltoallv() round, two rounds are required
for Permutation. In the first round, elements of data are sent to the
process that stores perm[data[i]]. In the second round perm is ap-
plied and the data sent to the process which owns dataperm[perm[data[i]]].
We have omitted the lengthy code for the MPI implementation of
Permutation in the interest of brevity.

AP. The Active Pebbles implementation combines the movement
of data and the application of perm into a single phase using
dependent messages and depth-two termination detection to detect
completion. The MPI implementation must address the situations
where some dependent elements of data, perm, and dataperm may
be local and others remote. Active Pebbles handles these locality
concerns automatically because pebbles sent to local targets will
simply call the correct underlying handler with no performance
penalty. The Active Pebbles implementation uses two handlers, the
first receives elements of data, applies perm, and sends a pebble to
the owner of the appropriate target in dataperm:

APstruct permute_handler {
bool operator()(const pair<uint64_t, uint64_t>& x) const {

uint64_t target_idx = perm[get(local_map, x.first)];
put−>send(make_pair(target_idx, x.second));

} };

The second handler is the put handler used by the permute_handler.
This handler writes values to the specified target in dataperm:

APstruct put_handler {
bool operator()(const put_data& x) const
{ data_perm[get(local_map, x.first)] = x.second; }

};

After the message handlers are initialized, each process simply
sends pebbles for all of its local data:

APmake_coalesced_mt<. . . >::type data_permute(transport, . . . );
for (int i = 0; i < N/P; ++i)

data_permute.send(make_pair(data[i], N/P ∗ rank + i));

Once termination detection completes, all pebbles sent (both orig-
inally and from handlers) will have been processed, and so all
elements of dataperm will have been updated.

4.4 BFS
The final application we consider is breadth-first search on a

directed graph. Graph algorithms are an excellent application of the
Active Pebbles model because they often create many fine-grained
asynchronous tasks. All of the implementations use an Erdős-
Rényi random graph with a one-dimensional vertex distribution
across the P processors.

In a bulk-synchronous implementation BFS is implemented with
a single logical distributed queue, composed of logical queues on
each process. A push() operation on any process results in a vertex
being placed on the local queue of the vertex’s owning process.
Neither MPI nor UPC support dynamic shared data structures such
as queues directly. Buffering queue operations at the source and
applying them collectively addresses this limitation in both cases.
In the case of MPI, this is necessary because MPI_Accumulate()
is not expressive enough to implement queue update operations;
e.g., it cannot atomically fetch and increment a counter. In UPC,
vertices could be pushed directly onto the targets’ local queues,



but the queues would then need to be locked remotely, limiting
concurrency.

PGAS + MPI. The MPI and UPC implementations use similar
algorithms:

MPI/UPC Pseudocodeif (source is local) Q.push(source);
while (!Q.empty()) {

for (v : Q)
if (visited[v] == 0) {

visited[v] = 1;
for (w : neighbors[v]) {Q2.push(w);}

}
Q.clear(); swap(Q, Q2);

}

AP. In Active Pebbles we can choose a formulation of the BFS
algorithm that expresses a better mapping to the programming
model. Level-wise traversals of the BFS tree are possible using
a queue to buffer pebbles, as are versions which compute a BFS
numbering using a single-source shortest path algorithm. The
latter approach is asymptotically more expensive, but significantly
reduces the synchronization required and thus may be desirable
in practice. An implementation in Active Pebbles would define a
handler which utilized a distance property for each vertex:

APstruct bfs_handler {
// x is a 〈vertex, distance〉 pair
bool operator()(const pair<Vertex, int>& x) const {

if (x.second < distance[x.first]) {
distance[x.first] = x.second;
explore−>send(x.first, x.second + 1);

} } }; // explore is an instance of a message type

In this formulation there is no need for any queues: all the message
buffering and work coalescing performed by the queue in the other
implementations is performed by Active Pebbles. Running the
algorithm simply requires exploring the source vertex by sending
a message to a bfs_handler().

5. EXPERIMENTAL EVALUATION
We used Odin, a 128-node InfiniBand cluster (Single Data Rate),

for our performance experiments. Each node has two 2 GHz dual-
core Opteron 270 CPUs and 4 GiB of RAM. Our experiments used
Open MPI 1.4.1, OFED 1.3.1, and Berkeley UPC 2.10.2 (compiled
with --disable-multirail --enable-pshm). We used
g++ 4.4.0 as the compiler in our experiments (including as the
back-end compiler for MPI and UPC). Except for single-node runs,
all tests used four MPI processes per node. Our Active Pebbles
implementation, written in standard C++ using the AM++ active
message library [31], uses MPI as its underlying communication
mechanism. All scaling experiments test weak scaling, so data
sizes are reported per processor rather than globally.

5.1 Implementation Details
The coalescing buffer size (Section 3.3) was 4096 elements

for BFS and Permutation, 1024 for RandomAccess (due to the
lookahead limit in that benchmark), and no coalescing was used for
PointerChase. Our implementation uses advanced C++ features to
allow all pebble handlers for a coalesced message buffer to run in
a single, statically analyzable loop, avoiding dynamic dispatch at
the level of a single pebble. Routing experiments use a hypercube
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Figure 3: Benchmark Results (part 1).

topology (as in [23]), the best-performing of the four topologies
implemented; termination detection used the PCX (reduce-scatter)
algorithm from [16], generalized to support multiple termination
detection levels but unaware of message routing.

5.2 Results
RandomAccess. In Figure 3(a), we see the performance of the
RandomAccess benchmark implementations. Because of the avail-
ability of official, highly optimized, MPI-based implementations
of the benchmark, we also compared to those (HPCC version 1.4.1
using Sandia Opt 2, the fastest version on Odin). The graph shows
that our current Active Pebbles implementation performs worse
than the optimized, specialized, and more complex HPCC imple-
mentation [23]. However, Active Pebbles performs better than the
reference UPC implementation and our MPI implementation of
similar implementation complexity (see Section 4). Active routing
is slower than a non-routed implementation on small node counts;
routing has a cost in latency and its advantages (such as reduced
buffer memory usage) do not appear at small scales. Once beyond
128 processors (32 nodes), however, hypercube routing provides a
performance benefit. Similarly, our MPI implementation is fast on
small process counts, but it too suffers from the use of many sends
(through the MPI_Alltoallv() collective) at large scales.

PointerChase. Figure 3(b) shows Odin’s performance on the
PointerChase latency benchmark. This benchmark shows a clear
performance benefit for UPC over both MPI and Active Pebbles,
which is expected because PGAS models are designed for sending
fine-grained, asynchronous messages with very low latencies and
the network supports remote direct memory access (RDMA).
Active Pebbles, unlike UPC, is designed to support a large volume
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of small messages, emphasizing throughput for millions or billions
of messages over individual message latency. Even with message
coalescing disabled, overheads from dynamic memory allocation
and other features to support asynchronous messages still hindered
Active Pebbles’s performance.

Permutation. The results for the Permutation benchmark are
shown in Figure 4(a). For this experiment, 222 eight-byte elements
were permuted on each processor. As can be seen from the graph,
once multiple nodes (rather than processors on the same node) are
in use, UPC’s performance degrades substantially. On the other
hand, the Active Pebbles and MPI versions exhibit almost linear
weak scaling. In this benchmark, active routing was not useful—
sending messages directly between processes performed better.
Unlike RandomAccess’s 1024-element lookahead limit, elements
in Permutation can be streamed at any rate and elements never
need to wait for previous elements to complete. Thus, termination
detection is done only at the end of the overall benchmark, rather
than periodically within it. Additionally, without routing, message
handlers only send messages to a limited, fixed depth, enabling use
of a specialized termination detection algorithm. When routing is
used, on the other hand, messages can be nested to depth 2log2 P,
and so the generalized PCX termination detection algorithm must
perform that many global communications. An optimized imple-
mentation could replace those by localized operations with each
node’s neighbors in the hypercube.

BFS. Figure 4(b) shows the performance of the BFS benchmark
on Odin. Note that the BFS implementation for AP tested here is
level-synchronized; i.e., the message handler inserts each incoming
vertex into a queue to be processed in the next level, but does

not itself directly trigger the exploration of other vertices. As
in the other benchmarks (except PointerChase), the MPI and AP
implementations show minimal increase in runtime as problem size
is increased (because the experiment uses weak scaling), while the
UPC version’s time grows quickly as more nodes are added. UPC
results beyond 32 processors were not shown because the version
failed to finish in an acceptable time. The BFS benchmark is level-
synchronized [32], so termination detection is performed for every
vertex level.

6. CONCLUSION
We have presented a programming model, Active Pebbles,

designed for the direct expression of highly irregular applications
at their “natural” granularities. The key elements of the model are
pebbles sent between very fine-grained objects: targets. These
pebbles trigger actions on the receiving targets, as in a model
such as Charm++, but allow for finer object granularities. For
example, sending messages to a target does not require any explicit
bookkeeping. Our model allows high-performance, performance-
portable, and intuitive high-level expression of fine-grained algo-
rithms such as graph traversals. We implement a corresponding
execution model that effectively converts fine-grained, point-to-
point communications into optimized collective operations using
five main techniques: fine-grained target addressing, message
coalescing, active routing, message reductions, and configurable
termination detection. These techniques combine to allow fine-
grained algorithms, expressed at their natural granularities, to
perform as well as more complicated, MPI-based implementations.
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