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Abstract—Bit-reproducibility has many advantages in the
context of high-performance computing. Besides simplifying
and making more accurate the process of debugging and
testing the code, it can allow the deployment of applications
on heterogeneous systems, maintaining the consistency of the
computations. In this work we analyze the basic operations
performed by scientific applications and identify the possible
sources of non-reproducibility. In particular, we consider the
tasks of evaluating transcendental functions and performing
reductions using non-associative operators. We present a set
of techniques to achieve reproducibility and we propose im-
provements over existing algorithms to perform reproducible
computations in a portable way, at the same time obtaining
good performance and accuracy. By applying these techniques
to more complex tasks we show that bit-reproducibility can be
achieved on a broad range of scientific applications.

Keywords-determinism; reproducibility; parallelism; IEEE-
754 standard;

I. INTRODUCTION

The apparent paradox between the theoretical determin-
istic behavior of computers and the difficulty of reaching
reproducible results is the consequence of many factors,
some of which concern the increasing parallelism that has
progressively taken place in every kind of computations. The
goal of performing bit-reproducible computations is often
regarded as difficult and prohibitively expensive [1]. As we
show in this work, many relevant tasks can be solved in
a reproducible fashion by building applications specifically
designed to be deterministic, and the performance of these
applications can be competitive with respect to their non-
reproducible counterparts.

In this work, we define reproducibility as an application
property. We call an application (bit-)reproducible1 if it
provides the same output when provided with the same
input across different runs, which may be executed on
different hardware, in different software environments, with
a different data distribution or with a different numbers of
processing elements.

Bit-reproducibility has obvious advantages for debugging
and testing purposes. Being able to reproduce the exact be-
havior of an application on a different number of processors,
a different hardware architecture or for several consecutive

* this online version is slightly updated
1we use “bit reproducible” and “reproducible” interchangeably

runs is often of key importance in order to locate and
isolate bugs. Especially, when refactoring an application in
a way that the results should not change, reproducibility
can significantly ease testing. However, debugging is only a
secondary use-case for us. Many applications being run on
large, parallel high performance computing facilities simu-
late the behavior of complex and highly non-linear systems.
Prominent examples can be found in molecular dynamics or
weather and climate simulation. For example, for weather
and climate systems a small difference in computation on the
level of a rounding error may rapidly lead to a completely
different evolution of the weather patterns [2]. This behavior
of non-linear systems is well understood [3], [4] and does
not per-se impose the concerned applications to be bit-
reproducible in order to be useful. Nevertheless, there are
use cases where bit-reproducibility is important for such
applications.

One such use-case is relevant in meteorology: With the
stagnating performance of storage subsystems it may soon
become impractical to store all data produced by a climate
simulation. Being able to reproduce the simulation in a
heterogeneous computing environment and on a different
number of processors is required in order to be able to
produce a consistent set of diagnostics when analyzing the
simulation. Also, with stagnating inter-node communication
speeds with respect to increasing floating-point performance,
it may become advantageous to replace communication with
redundant computation. If the reproducibility of these com-
putations is not guaranteed, the evolution of the simulation
on different processors may no longer be consistent.

Bit-reproducibility is a semantic requirement of the op-
erations performed by the floating-point unit. In the devel-
opment of an application, all steps that define this seman-
tics must be carefully performed with certain restrictions.
The important factors are the designing of the algorithm,
the implementation through a programming language, the
compilation, the run-time environment and hardware. Al-
though we occasionally refer to hardware features and
compilation stages, the scope of this paper is the algo-
rithmic/programming level. In this work, we demonstrate a
set of tools that can be used to implement bit-reproducible
floating-point applications. We show that, if implemented
well, the proposed techniques have low or negligible over-



heads such that they can be used in production settings. Our
main contributions of this paper are:
• An empirical study of the performance impact of

a reproducible portable implementation of standard
transcendental functions in comparison to the native
platform libraries. We show that our tuned reproducible
implementation is (in the geometric mean) even faster
than the platform libraries on five systems and for ten
functions).

• The derivation of an algorithm for bit-reproducible sum
reduction in a distributed-memory environment.

• A detailed performance study showing that our repro-
ducible reduction performs better than existing schemes
and comparable to non-reproducible reductions (maxi-
mum 10% slower in out-of-cache case).

II. FLOATING-POINT ALGEBRA

A. Background

The IEEE-754 [5] standard defines the format used to
represent floating-point values, the rounding modes and the
arithmetic operations, i.e. the sum ⊕, the subtraction 	, the
multiplication ⊗, the division � and the square root sqrt.
Floating-point numbers are represented as x · 2E , where
x ∈ [1, 2) is a number defined by m binary digits (bits),
and E, Emin ≤ E ≤ Emax, is an integer number called
exponent. m, Emin and Emax are defined by the format.
Numbers that can be expressed in this notation are said
to be representable. Rounding modes include the round-to-
nearest, round-towards-zero, round-towards-positive-infinity
and round-towards-negative-infinity and can be selected by
changing the internal state of the floating-point unit (FPU).
Every rounding mode defines a rounding function fl(x) that
produces a representable number out of a real number x.
Every arithmetic operation is defined as the rounding of
the exact result of the abstract arithmetic operation. For
example, the sum of two numbers a ⊕ b is defined as
fl(a + b). In computations that require more than a single
operation all the intermediate values are rounded. As a result,
the operators ⊕ and ⊗ are not associative.

Example 1. Summing numbers with very different mag-
nitude in floating-point arithmetic can lead to relatively
high rounding errors. In the double precision format, the
sum 257 ⊕ 1 gives as result 257: the contribution of the
second addend was exactly zero. Therefore, the expressions
(257 	 257) ⊕ 1 and (257 ⊕ 1) 	 257 give two completely
different results (1 and 0, respectively), although they are
equivalent in standard arithmetic.

Example 2. The values a = 1.2, b = 3.3, c = 4.8
are expressed in the binary16 format [6] as: a =
1.00110011012 · 20, b = 1.10100110102 · 21, c =
1.00110011012 · 22. The sum of these values can be com-
puted as (a ⊕ b) ⊕ c as well as a ⊕ (b ⊕ c). The former

gives the result 1.00101001102 · 23, while the latter gives
1.00101001112 · 23. These results differ because of the
intermediate rounding.

Compilers play an important role in the definition of the
floating-point semantics. To some extent, they are allowed to
reinterpret the code provided by the user and to apply non-
conservative optimizations. The documentation provided by
the compiler vendor is an important reference for the
programmer. The technical report provided by Intel [7]
addresses both generic issues and issues related to the Intel
Compiler.

In order to be able to perform a rough analysis of the
rounding errors, we introduce the concepts of machine
epsilon (ε) and units in the last place (ulps). The former is
a number defined for every floating-point format (its value
is 2−23 for the single precision and 2−52 for the double
precision format) expressing the maximal relative rounding
error. The unit in the last place identifies the difference
between two consecutive representable normalized numbers.
Since this difference depends on the exponent of the number,
the unit in the last place is a function of the numbers.
For example, ulp(1.0) = ε, ulp(x) = ulp(−x) =
ulp

(
2blog2(|x|)c

)
= 2blog2(|x|)cε, for all normal numbers.

Every operation that involves exactly one rounding can
introduce a maximal absolute error equal to κ · max ((x)),
where x is the operand or result with largest magnitude
and κ ∈ {1/2, 1} depending on the rounding mode. For
example, the error introduced by the sum fl(1.4)⊕ fl(0.8)
is bounded by ulp(fl(1.4) ⊕ fl(0.8)) = 2ε, since the
maximum exponent of all the operands and the result is 1
(the result is approximately 2.6). In Example 1 the maximal
error of the sum is bounded by ulp(257), since 257 is
the largest operand. The well-known article [8] addresses
many important aspects of the computation in floating-point
arithmetics.

In this work we assume that the state of the FPU is fixed.
Although we sometimes provide more general rules, we also
assume that the selected rounding mode is the default, i.e.,
round-to-nearest with ties to even.

B. Portable reproducible arithmetic functions

A possible source for non-determinism can stem from
using external functions in computational parts of the code.
If the vendor of the library does not specify its exact floating-
point semantics, no assumptions can be made about the
reproducibility of the computation. Besides the possible non-
determinism embedded in the functions themselves, another
possible issue is the usage of different libraries implementing
the same interface. This can happen particularly if the same
application runs on different systems, on which different im-
plementations, or different versions of the same library could
be installed. If a library for specific computations is needed,
the programmer has to make sure that its implementation



is deterministic and that exactly the same implementation
exists on all relevant architectures.

Different architectures have different features concerning,
among others, the memory layout, the instruction set, the
parallelism. However, one can rely on the fact that all
computationally relevant architectures implement a common
subset of the IEEE-754 [5], [6] standard, which makes it
possible to perform internally deterministic computations.

Since floating-point computations are mostly non-
associative, the order of the operations must be strictly
defined. The IEEE-754 2008 [6] standard includes the new
ternary instruction Fused-Multiply Add (FMA), that per-
forms a multiplication followed by an addition involving just
one rounding. Using this instruction, the expression a · b+ c
is evaluated as fl(a · b+ c) instead of fl(fl(a · b) + c), thus
obtaining more precise result with less effort. However, this
introduces an ambiguity, since two semantically different
operations FMA(a, b, c) and (a⊗ b)⊕ c are expressed with
the same code in most programming languages. Different
compilers, or different compiler flags can cause the same
code to use the former or the latter operation, breaking
the internal determinism. Many compilers will avoid FMA
instructions when optimizing expressions with brackets like
(a*b)+c, although the standards do not force this behavior.

Since the format of floating-point numbers is completely
defined by the IEEE-754 standard, one can portably perform
bit-wise operations on floating-point numbers. To check
whether a double-precision number x has magnitude larger
than 1, one can take its high-order 32 bits as xhi and check
(xhi & 0x7ff00000) > 0x3f800000. While this technique is
portable, special attention must be paid if the code is to be
ported on architectures with different endianness.

Many implementations of transcendental functions make
use of lookup tables. Lookup tables avoid to perform some
computation by storing reference values for specific inputs
and using them as starting point for the computation of
the result. Since the cost of computation with respect to
memory access decreases on a regular basis, along with the
fact that some architectures don’t provide a suitable caching
mechanism for storing such tables, implementations based
exclusively upon computation are the best candidates for
high-performance portable reproducible functions.

C. Case study: standard transcendental functions

We consider now the example of basic mathematical func-
tions. C, C++ and Fortran standards establish the availability
of a set of mathematical functions as part of the standard
library, but do not define their return values. This allows
the programmers to use these functions without knowing
which implementation will be used, but it is not guaranteed
what result will be provided and what maximum error
these routines have. A possible solution to this problem
would be the standardization of the return values of the
mathematical functions. Proposals for defining [9], [10] and

implementing [11] such functions exist but the state of the
art is not affected by them.

NVIDIA provides, as part of the CUDA toolkit, a set of
device functions that includes all the functions specified by
the C standard. The documentation of the toolkit contains
a list of the maximum errors for each function in terms of
ulps [12]. Since these functions do not use lookup tables
and are based just upon computation, they can be used as
a template to construct a set of portable reproducible func-
tions. The code provided by NVIDIA contains portions that
are specifically designed for CUDA devices. For instance,
the non-standard function rsqrt is occasionally used. One
can substitute non-portable code with code performing stan-
dard operations without loss of accuracy — in this case
rsqrt(x) = 1.0/sqrt(x).
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Figure 1. Performance penalty of double-precision reproducible transcen-
dental functions based on CUDA library.

Figure 1 shows the performance loss of the reproducible
implementation of transcendental functions with respect to
the standard library installed on different systems, i.e., Glibc
for the CPU and the CUDA toolkit for GPUs. The loss of
performance is defined as the ratio of the time required by
the deterministic implementation to the time required by the
standard one on the corresponding platform to perform the
task of evaluating the function on 222 input values.

Figure 2 shows the geometric mean of the performance
loss of all implemented functions for every architecture. The
reproducible implementation based upon the CUDA library
has been proven to be overall faster than many standard
libraries. The geometric mean of the means presented in
Figure 2 is 0.83, which is a performance improvement.
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Figure 2. Geometric means over the set of transcendental functions shown
in Figure 1



III. REDUCTION OPERATIONS

We now discuss the more complex problem of reduc-
tions, which is used in many applications. Reductions are
mathematically defined with a commutative and associative
operator � and a sequence vi as:

T = v1 � v2 � . . .� vn.

The definition of the reductions does not provide a brack-
eting, as the evaluation order for commutative and asso-
ciative operators is unimportant. This is not the case in
floating-point arithmetic, whose operators ⊕ and ⊗ are non-
associative (though they are commutative): the result of a
floating-point reduction depends therefore on the bracketing.
In order to make the result of such a reduction reproducible,
the bracketing must be fixed. While this is feasible also
in the distributed-memory case, it is difficult to implement
efficiently. Although fixing the bracketing is the only generic
method for performing reproducible reduction with a non-
associative operator, a special approach for sum reductions
allows to avoid this intrusive requirement. In the remaining
part of this section we explain this approach and how it
can be applied to obtain reproducible reductions without the
need for a fixed bracketing.

A. Deterministic sum reduction

The method discussed in this section has been first ex-
plored by Rump [13] and by Demmel and Nguyen [14],
[15]. We introduce the terminology and the approach that
we will extend in the next section. We refer in particular to
[14], where the whole method presented here is precisely
derived and explained.

The technique is based on the fact that, by pre-rounding
the values, it is possible to perform the floating-point sums
so that no more rounding is involved. In order to apply a
pre-rounding, a constant positive value M called extractor
is used. M must be a power of two (negative exponents are
allowed) and its magnitude must be larger than that of every
partial sum of the values vi. Demmel and Nguyen show that
n values vi can be reproducibly reduced in a floating-point
format whose precision is ε, if

M ≥ n · |vi| / (1− 2nε) ∀ 1 ≤ i ≤ n. (1)

The pre-rounding consists in summing separately every
value vi with the extractor M , subtracting M from the result
and adding the result of the subtraction qi := (vi ⊕M)	M
to the partial sum T :=

∑n
i=1 qi. We call the values qi

contributions to the sum. The following example shows the
procedure applied on two values.

Example 3. We will reduce the binary16 values v1 =
fl(3.16) = 1.1001010010 · 21 and v2 = fl(1.73) =
1.10111010112 · 20 using the extractor M = 16 = 1 · 24.
In the sum v1 ⊕ M the trailing two bits of the man-
tissa of v1 do not pass any information, as they are in-

significant to the result2. The result of the sum is thus
v1⊕M = 1.00110010102 · 24. The result of the subtraction
is q1 = (v1 ⊕ M) 	 M = 1.10010100002 · 21, where
the trailing 3 bits are zero as result of the cancellation.
When the same procedure is performed with v2, the result is
q2 = (v2⊕M)	M = 1.10111100002·20. Both contributions
qi have enough trailing bits set to 0 to sum them without
rounding errors: the value q1⊕q2 is 1.00111001002 ·22. The
fact that the result has an exponent higher than those of the
original values caused two trailing bits of the results to be
discarded, but these bits were 0 as effect of the pre-rounding.
The sum q1 ⊕ q2 was thus free of rounding errors.

The procedure is supported by the fact that the contribu-
tions qi are integer multiplies of εM . There are no rounding
errors because a) the sums are semantically equivalent to
error-free integer sums, and b) this sum can be exactly
contained by a floating-point value, since we chose an
extractor which is large enough, following (1).

In the procedure shown in Example 3 some information
is lost, since qi is only an approximation of vi. This infor-
mation can be recovered by using the error-free subtraction
ri := vi 	 qi. The remainder ri contains exactly the
part of vi that has not been considered in the sum. The
accuracy of the reduction can be improved by applying the
same procedure explained above to the remainders, i.e., pre-
rounding them using a suitable extractor and performing
the error-free sum of the corresponding contributions. A
suitable extractor M2 for the remainders ri is a power of
two with the property M2 ≥ n·|ri| / (1− 2nε) ∀1 ≤ i ≤ n,
analogously to (1). Since |ri| < κεM — where κ ∈ {1, 1/2}
depends on the rounding mode — every power of two with
M2 ≥ nεM/(1− 2nε) will be suitable. By defining

αn := 2dlog2(n/(1−2nε))e,

one can set M2 = αnκεM , which is a power of two and
satisfies the aforementioned requirement.

Example 4. Continuing on the same setting of Example 3,
we can now compute the remainders ri = vi − qi: r1 =
1.02 ·2−8, r2 = −1.012 ·2−8. As expected, both remainders
satisfy |ri| ≤ κεM — in this case κ = 1/2, M = 24, ε =
2−10, κMε = 2−7. The extractor used to pre-round these
remainders will be M2 = αnκεM = 2−5.

M

v1

1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 1 0 0 1 0

q1 r1

E=4

E=0

Figure 3. Pre-rounding of value v1 in Examples 3 and 4. Extractor M
has exponent 4, value v1 has exponent 0.

2depending on the rounding mode. See [5] for detailed explanations.



We will call the pre-rounding of the values vi and the
sum of the corresponding contributions first-level extraction.
The extractor that we have denoted with M until here will
be more precisely identified by M1. The corresponding
contributions will be q1i and the remainders r1i . The sum of
the contributions q1i will be identified by T 1. The extractor
used to pre-round the remainders r1i will be M2, the corre-
sponding contributions q2i , their sum T 2. The remainders of
the pre-rounding operation will be r2i . The process of pre-
rounding the remainders r1i and summing the corresponding
contributions will be called second-level extraction. One can
add arbitrary many levels by pre-rounding the remainders of
the previous level. The superscripts of the variables M , T , q,
r and N (not yet introduced) will identify the level, not the
exponent, for the remaining part of the section. The number
of levels used is identified by k.

In order to implement this algorithm in a distributed-
memory environment, a global reduce is needed at the
beginning in order to choose the first-level extractor M1

and another global reduce is needed at the end, in order to
sum all the local results. Since all sums derived from an
extraction are associative and thus order-independent, the
final reduce does not have to be internally deterministic in
order to provide a reproducible result. This is implemented
in Algorithm 9 (Parallel K-Fold Reproducible sum, later
referred to as double-sweep algorithm) proposed by Demmel
and Nguyen in [14], where the mathematical background and
derivation are explained in detail, along with the error es-
timate for the multi-level reduction: the maximal difference
between the computed sum T :=

∑k
f=1 T

f , where k is the
number of levels, and the exact sum is

Erep,k = 2kκε |T |+ 8n

1− 8nκε
(κε)

2
M1 +

2

3
nκεMk. (2)

B. Single-sweep deterministic sum

The double-sweep algorithm requires two communication
steps, one at the beginning and one at the end, and la-
tency hiding is impossible. With today’s high-performance
applications being designed to exploit to parallelism given
by large number of computing processes, this need for
communication can decrease the efficiency of the reduction.
We design in this section an algorithm that avoids the first
communication step and provides a completely reproducible
and accurate result.

We base our design on initial ideas by Demmel and
Nguyen [15]. Indeed, a technique similar to the one pre-
sented in this section has been published concurrently and
independently by Demmel and Nguyen in [16]. In order to
reduce the amount of computation required by the multi-
level extraction, the authors of that paper make use of new
instructions that fuse a bit-mask and a sum in a single
floating-point operation, obtaining performance improve-
ment where these instructions are available, e.g., on the
MIC architecture, at the cost of a small accuracy loss. The

results obtained by Demmel and Nguyen show performance
degradation of up to 5x compared to a non-reproducible sum
for small number of processes and a 20% penalty for large
number of processes. We aim at reducing these penalties
maintaining at the same time a good accuracy. However, the
technique presented in [16] supports a much larger number
of input values than the algorithm proposed in this work.

In the previous section we have made use of extractors
whose magnitude was defined as a function of vmax :=
|max(vi)|. The sequence Mf was indeed defined as

M1 = αn2dlog2(vmax)e

Mf+1 = αnεM
f .

We define now a sequence Nf that does not depend on
vmax, thus removing the need to compute it. In this sequence
the starting value is the largest possible extractor, while the
relationship between two consecutive extractors is the same
that was used to define Mf+1:

N1 = 2Emax

Nf+1 = αnεN
f .

M1

M2

M3

vmax

Emax Emin

M1

M2

M3

vmax

N1

N2

N3

N4

Figure 4. The sequence Mf used in the previous section is displayed in
the two top examples. The last example shows the sequence Nf , which
depends on the number of elements, but not on the magnitude of vmax.

Figure 4 shows the difference between the two definitions.
The sequence Mf depends on the magnitude of vmax for
the magnitude of the first extractor. The sequence Nf starts
instead with a fixed N1. These definitions differ remarkably
from those presented in [16], where the ratio between two
extractors is fixed a-priory and independently from the
number of input values.

Definition 1. An extractor M supports the value vi among
n if

M ≥ αn2dlog2(|vi|)e. (3)

In the following, when not otherwise stated, we will ex-
press that an extractor supports a value, or that a value is
supported, implicitly meaning among the number of values
in the array.

When comparing this definition with (1), which is a
weaker requirement, it is clear that a value M supporting
all the n elements of a vector is suitable for extracting them
using the pre-rounding techniques explained in the previous



section.
The algorithm that we propose performs a single sweep

through the vector and chooses dynamically the set of
extractors used to pre-round the values. During the start-up,
the lowest extractor Nf supporting the first value v1 is found
and the set of extractors {Nf , . . . , Nf+k} is chosen for the
multi-level pre-rounding. The algorithm keeps track of the
maximal value supported by the largest extractor in this set.
At every iteration a new value vi is loaded and processed:
if the value is still supported by the largest extractor in the
set — i.e., if its absolute value is lower than or equal to the
maximal supported value —, then the pre-rounding operation
is performed in the same way we presented in the previous
section. Otherwise, the set of extractors must be updated by
discarding the lowest one and including a larger one at the
beginning. The procedure must be repeated until the new
largest extractor supports the value vi.

Figure 5 shows this procedure. In this figure, and in the
remaining part of the section, the current largest extractor is
designated by M1, and the set itself by {M1, . . . ,Mk}.

N1

N2

N3

N4

max(vj)

M1 M2

N1

N2

N3

N4

max(vj)

M1
M2

vi
j<i

j<i

Figure 5. Update of the extractor set in a two-level reduction. The value
vi is supported by the current largest extractor N3: a larger extractor N2

enters the set, while the extractor N4 is discarded.

The contributions extracted with every extractor Mf are
summed into the corresponding partial sum T f . When the
procedure explained in the previous paragraph is used to
include a new extractor, a new corresponding partial sum
must also be initialized, while the last partial sum T k is
discarded. The initialization of the new leading partial sum
T 1 is not trivial, as the following example shows.

Example 5. In the binary16 format, we want to per-
form a two-level reduction the values v1 = fl(0.4) =
1.10011001102 · 2−2 and 4 < v2 < 5 among a vector of
n values, using the extractors M1 = 27 and M2 = 22.
For a small n (e.g., n = 20), v1 is supported by both
extractors, while v2 is supported by M1 only. If v1 is
processed first, and the current maximal extractor is M1,
the first and second-level contributions and remainders of
v1 are q11 = 1.12 · 2−2, r11 = 1.100112 · 2−6, q21 = 1.12 ·
2−6, r21 = 1.12 ·2−10. If instead the current largest extractor
is M2, the first-level contribution and remainder are q̃11 =
1.00112 ·2−2, r̃11 = 1.12 ·2−10 (the second-level contribution
is in this case unimportant). Clearly, q̃11 = q11 + q21 and
r̃11 = r21 , meaning that the total contributions of v1 into

the sum have been the same and the final remainder is the
same. But they are distributed differently among the partial
sums. This breaks the reproducibility if at some point a
large value (e.g., v2) requires that the current second-level
partial sum is discarded. At that point, depending on the
order of processing of the values, two possible results can
be obtained: either q21 is discarded, or it is not, because it is
part of the current first-level contribution.

To solve the situation depicted in this example, we add
one more larger level, the zeroth level. The extractor set
contains one more entry, M0, larger than M1. For every
processed value vi, the contribution q0i is computed and
summed in the partial sum T 0. The first-level contribution
q1i is computed by extracting the same value vi using M1.
Note that the zeroth-level remainder r0i is not needed and
thus not computed. When the procedure of choosing a
new extractor is followed because an unsupported value
is found, the new first-level partial sum is initialized to
the value contained in the old zeroth-level: T 1

new = T 0.
The contributions redundantly contained in both the old
zeroth and the first level are subtracted: T 2

new = T 1 − T 0.
The new zeroth-level partial sum is set to zero, since the
contributions to this level by values supported by M1 are
exactly zero: T 0

new = 0. To clarify the last sentence,
we remind that there is an upper bound to the absolute
value of vi given by the fact that it is supported by the
old M1 (see Definition 1). Since M0 = αnεM

0
new and

vi ≤ M1 = αnεM
0 = (αnε)

2M0
new, we can eventually

bound the absolute value of vi by |vi| < 1
2εM

0
new, which

ensures that vi ⊕ M0
new = M0

new, i.e., its contribution is
zero. Lemma 1 (appendix3) contains a detailed proof of this
fact.

Example 6. We apply the derived technique on Example 5.
When v1 is processed and the current largest extractor is
M2, the contribution of v1 to M1 and M2 are computed
as q̂f1 : q̂11 = (v1 ⊕M1) 	M1 = 1.12 · 2−2, q̂21 = (v1 ⊕
M2) 	M2 = 1.100112 · 2−2. When v2 is processed and
a new extractor enters the computation, in order to recover
the correct contributions of v1 to M1 and of the remainder
r11 to M2, it is sufficient to do: q11 = q̂11 = 1.12 · 2−2,
q21(= (r11 ⊕ M2) 	 M2) = q̂21 − q̂11 = 1.12 · 2−6. When
compared these values with q11 and q21 those obtained in
Example 5, one can see that they match perfectly.

If the array is distributed among p processes, each one
owning np values, each process must perform a local com-
putation without the need for an initial global reduction to
find the maximum value. Since different processes can end
the local reduction with different extractor sets, during the
final reduction the partial results must be reduced so that the
partial sums corresponding to the same level are summed

3*An identical version of this paper including the appendix can be
downloaded at http://htor.inf.ethz.ch/sec/bitrep-ipdps.pdf.



Algorithm 1 Merge of partial sums: MergeLevels

Require:
(
hmax,p, T p

)
and

(
hmax,q, T q

)
are the resulting

levels and partial sums coming from processes p and q.
1: hdiff = hmax,p − hmax,q
2: if hdiff ≥ 0, then
3: T fp = T fp ⊕ T

f−hdiff
q for f = hdiff to k

4: else
5: T fp = T

f+hdiff
p ⊕ T fq for f = k to −hdiff

6: T fp = T fq for f = −hdiff − 1 to 0
7: end if
8: hmax,p = max{hmax,p, hmax,q}

Ensure:
(
hmax,p, T p

)
is the sum of both partial results

together. Algorithm 1, which addresses this issue, is used as
operator within the standard MPI_Reduce to provide the
correct global partial sums. The partial sums are eventually
summed by the root process. Algorithm 2 implements the
whole procedure.

C. Accuracy

The multi-level pre-rounding reduction with initial max-
imum computation uses the optimal set of extractors, i.e.,
whose largest extractor M1 is the smallest extractor support-
ing vmax. The single-sweep algorithm does not know vmax.
It fixes the sequence of suitable extractors Nf . At the end
of the computation, the largest used extractor is at least as
large as the optimal extractor M1, i.e., the largest extractor
of the optimal set. In the best case the largest used extractor
is equal to the optimal extractor. It can not always be the
case, since only a small number of extractors are part of the
sequence N used by the single-sweep algorithm. Figure 6
shows two cases: in the first case the sequence N contains an
extractor (Nf+1) which is slightly larger than the optimal
extractor M1; in the second case the first element of the
sequence N which at least as large as M1 is Nf , which is far
larger than M1. In the former case the accuracy of the single-
sweep algorithm with k levels is similar to the accuracy of
the double-sweep algorithm with the same number of levels.
In the latter case the accuracy of the single-sweep algorithm
is much worse because many significant bits are wasted as
effect of the selection of a suboptimal largest extractor.

Nf

Nf+1

M1

Nf

Nf+1

M1
a) b)

Figure 6. Sketch of a) good and b) bad case of relationship between
optimal largest extractor M1 and actually used largest extractor in the
extractor set for the single-sweep algorithm (Nf+1 resp. Nf ).

Unfortunately, since the sequence N depends just on
the number of values n, it is not possible to adjust the
extractors to fit the situation better. This leads to possible

Algorithm 2 Multiple-level vector extraction with adaptive
extractor on distributed-memory
Require: v is a vector of global size n, local size np

1: α = 2dlog2(
n

1−2nε )e
2: h = argminf≥2

{
Nf : Nf supports v1 among n

}
3: Mf = Nh+f for f ∈ {0, 1, . . . , k}
4: T f = 0 for f ∈ {0, 1, . . . , k}
5: vmax = M1/αn
6: for i = 1 to np in any sequential order do
7: while |vi| > vmax, do
8: for f = k to 3
9: Mf = Mf−1; T f = T f−1

10: end for
11: M2 = M1; T 2 = T 1 	 T 0

12: M1 = M0; T 1 = T 0

13: M0 = Nh−2; T 0 = 0
14: h = h− 1; vmax = M1/αn
15: end while
16: q0 = (M0 ⊕ vi)	M0

17: T 0 = T 0 ⊕ q0
18: r0 = vi
19: for f = 1 to k
20: qf = (Mf ⊕ rf−1)	Mf

21: T f = T f ⊕ qf
22: rf = rf−1 	 qf
23: end for
24: end for
25: T 1 = T 1 	 T 0

26: Reduce
((
h,
[
T 0, T 1, . . . T k

])
, MergeLevels

)
27: t = 0
28: for f = k to 0 do: t = t⊕ T f ; end for
Ensure: t is the deterministic sum of the k-level high-order

parts of the values vi

10
4

10
6

10
8

0

10-15-15�10-10�10-5�100

105

1010

1015

Vector size

A
b
s
o
lu

te
 e

rr
o
r

Conventional

Single 1

Single 2

Single 3

Double 1

Double 2

Figure 7. Absolute error comparison of conventional reduction, single-
sweep and double-sweep reduction in double-precision with exponentially
distributed input data (λ = 10−8). Single 1, Single 2 and Single 3 labels
refer to the single-sweep algorithm with corresponding number of levels.
Double 1 and Double 2 labels refer to the double-sweep algorithm.

large oscillations of the actual accuracy and to a loose error
bound. Indeed, the only a-priori bound is given by the fact
that there is a maximal difference between the exponent of
the largest used extractor and that of the optimal extractor.
This difference is the difference between two levels. In other



words, the absolute error of the single-sweep algorithm with
k levels is at most as large as the absolute error of the
double-sweep algorithm with k − 1 levels, which is given
in (2). The reason for this is that the optimal extractor lies
between the largest extractor actually used and the second-
level used extractor. Therefore, the (k + 1)-th actually used
extractor is at most as large as the (k)-th extractor after the
optimal one, i.e., the last extractor used by the k-th level
double-sweep algorithm.. The actual absolute error strongly
depends on the maximum value of the array, which in turn
depends on the distribution of data. Different distributions
lead to different absolute errors.

Figure 7 shows double-precision experimental results in
which the absolute error of both algorithms and of the
conventional algorithm are compared. We explore the error
when the vector elements are exponentially distributed with
λ = 10−8 to maximize the error for reproducible algorithms.
As expected, the accuracy of the single-sweep algorithm
depends on the size of the vector and is not monotonic
because a small variation of the size of the vector can
determine an improvement or a worsening of the situation
depicted in Figure 6. The accuracy of Single 2, i.e., the two-
levels single-sweep algorithm, is approximately the same of
Double 1, i.e., one-level double-sweep, in the worst cases;
in the best cases its accuracy is complete (it is accurate
to the least significant bit). Single 3 and Double 2 always
returned the exact result in every experiment. The exact
value is computed through a 4-level double-sweep algorithm,
which gives always the exact result if the input values are
non-negative, as the maximum absolute error is still less
significant than the least significant bit of the result.

D. Performance

We now compare the performance of the distributed
reduction using the conventional algorithm, the two-level
double-sweep, and the three-level single-sweep with a theo-
retical model and experimental results. We select one more
level in the single-sweep case in order to maintain at least
the same accuracy as the double-sweep algorithm.

The conventional algorithm performs np flops locally to
compute the sum, then an MPI_Reduce. The double-sweep
algorithm with k = 2 performs a local max reduction (one
flop for the absolute value, one for max, 2np flops in total)
followed by an MPI_Allreduce, then a local computation
involving 8np flops followed by an MPI_Reduce. The
single-sweep algorithm with k = 3 performs instead a single
MPI_Reduce operation after a local computation involving
16np flops. In the out-of-cache case, the main memory
accesses are more relevant than the number of flops. The
double-sweep algorithm reads the whole array twice (16np
bytes in double-precision), while the single-sweep algorithm
reads it just once (8np bytes). The given numbers are first-
order approximations.
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Figure 8. Performance comparison of conventional reduction performed
with MKL (Conv), single-sweep reduction with two levels (Single2), with
three levels (Single3) and double-sweep reduction with 1 level (Double 1)
on varying number of processes, each owning 220 double-precision values,

We define α as the communication latency, β as the
main memory bandwidth, and γ as the FPU bandwidth (i.e.,
the number of floating-point operations per second). We
assume that MPI_Reduce uses a binary tree communica-
tion pattern, that the number of communicated values (no
more than k + 2 values, i.e., usually no more than 5) is
negligible and that the local computation and main memory
prefetch into the cache can overlap. The time required
by the double-sweep algorithm is thus 2dlog2(p)e · α +
max {16np/β, 10np/γ}, while the time required by the single-
sweep algorithm is dlog2(p)e·α+max {8np/β, 16np/γ}. In the
out-of cache case, the single-sweep algorithm is expected to
be always faster than the double-sweep one, as it requires
less communication and less main memory reads. In the in-
cache case the single-sweep algorithm can be expected to
be faster if 6 np/γ < dlog2(p)e · α (more accurate models
may depend on CPU or GPU type).

We performed a test in double-precision format on the
Piz Daint cluster4. Figure 9 shows the results of local com-
putation, communication and overall performance on 16384
processes, whereas Figure 8 shows the performance of the
reduction algorithms on a varying number of processes.
The results show that the communication required by the
double-sweep dominates the runtime in the in-cache case,
while the single-sweep algorithm is balanced in both in-
cache and out-of-cache cases. In this experiment the single-
sweep algorithm is faster than the double-sweep algorithm
without loss of accuracy and its overhead to the conventional
algorithm is less than 10% for large arrays.

IV. CASE STUDIES

We now discuss how our developed tools can be applied
to various science domains in order to develop reproducible
parallel programs.

A. Linear algebra and applications thereof

Linear algebra contains a broad set of operations that form
the basis for many computational applications. Constructing
a reproducible library for linear algebra means moving an

4http://www.cscs.ch/computers/piz_daint/index.html
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Figure 9. Performance comparison of conventional reduction performed with MKL (Conv), single-sweep reduction with two levels (Single2), with three
levels (Single3) and double-sweep reduction with 1 level (Double 1) in double-precision format with 16384 MPI processes. The gray bar separates the
in-cache and out-of-cache cases and highlightes the different performance behaviour due to the increasing relevance of the loading from the main memory.

important step towards the ability to construct reproducible
scientific applications. The problems that can threaten repro-
ducibility are mainly due to reductions:

• Basic linear algebra operations like scalar product,
matrix-vector and matrix-matrix multiplications are es-
sentially particular types of reductions. By applying the
pre-rounding technique for reductions, these operations
can be made reproducible also for the distributed case.

• Matrix decompositions can be performed by just mak-
ing use of the mentioned basic operations. LU decom-
positions, e.g., can be implemented, as in the commonly
used function getf2, as a sequence of rank-1 updates,
which are in turn made reproducible by applying the
already mentioned techniques. The getrf function
decomposes instead the matrix in blocks and applies
a sequence of getf2 and other lower-level operations.
This method can be made reproducible if the block size
is fixed, which can be a restrictive requirement.

• Construction of sparse matrices, for example in the
compressed row storage format (CRS), is usually per-
formed by incrementally adding non-zero values. If
several entries refer to the same position in the matrix,
a reduction must be performed, which is the only issue
that could compromise reproducibility.

• Sparse solvers like the preconditioned conjugate gradi-
ent rely on basic linear algebra (matrix-vector multipli-
cation in particular) applied to a sparse matrix and fast
solution of a system with the preconditioner matrix. All
these operations can be made in deterministic as shown,
which would automatically lead to reproducible solvers.

A broadly used technique to solve partial differential
equations is the finite elements method. The steps needed
to solve a finite element problem starting from a spatial
discretization are a) the computation of the contributions of
each basis function into the stiffness matrix A and into the
right-hand side vector φ, b) the assembly of the stiffness
matrix in a sparse format like CRS, c) the assembly of
the right-hand side vector φ and d) the solution of the
system Ax = φ. To compute the contributions of the basis
functions, a quadrature must be performed. As a quadrature

is a weighted sum of the evaluation of the function to be in-
tegrated in a set of points, two requirements must be satisfied
in order for point a) to be reproducible: the function must be
deterministic and the reduction must be reproducible. The
former is achieved by considering the methods explained
in Section II, while the latter can be achieved by fixing
the order of the weighted sum. Parallelism in usually not
applied when computing single quadratures, and mesh points
and basis functions have a reproducible order defined by
the mesh. Fixing the sum order is thus feasible and has no
overhead. We have shown that assembling a CRS matrix can
be made reproducible even if the order in which the single
values appear is not determined, which can be the case if
a different data distribution is applied. As result, the matrix
A and the right-hand side vector φ are fully reproducible.
The solution of the system through a sparse solver was also
treated previously, leading to the conclusion that the finite
elements method can be implemented in a reproducible way.

B. Stencils

Other widely used methods involve computations per-
formed on structured grids in form of stencils: every entry of
a field is computed at every iteration by evaluating a function
whose input are the values contained in other fields. The data
is usually distributed among the participating computational
units. Since the shape of the stencils are fixed, the portions
of the fields needed to compute a specific value are limited
and well-known. In order to update a value all the values that
take place in the corresponding computation must be made
available to the computational unit responsible for that value.
If these values are non-local, a communication is performed.

The assumptions that ensure that a stencil computation is
reproducible are a) that the functions used to update the
values are deterministic and b) that all values needed to
perform the update are consistently available. The latter is a
requirement for the stencil computation to be consistent and
is therefore assumed to be true in any case. For the former,
we refer to Section II.



V. RELATED WORK

As already mentioned, work on reproducible reductions
has been performed by Demmel and Nguyen [14], [15], [16].
An asynchronous parallel model to provide deterministic
reductions has been developed by Budlimic̀ et al. [17].
Internally deterministic algorithms have been developed by
Blelloch et al. [18].

Sources of non-determinism in particular in MPI com-
munications have been studied by Chiang et al. [19]. Other
studies on non-determinism caused by parallelism have been
performed by Bergan et al. [20], Bocchino et al. [21],
Leiserson et al. [22], Olszewski et al. [23].

Jooybar et al. proposed [24] a GPU architecture capable
of enforcing bit-reproducibility in computations exploiting at
the same time the massive multi-threaded parallelism. Fur-
ther work on IEEE-754 floating-point operations performed
on GPU architectures with OpenCL has been performed by
Leeser et al. [25].

Bit-reproducibility is a problem that needs attention
at many levels. This work focused on the algorith-
mic/programming part. Our approach is thus different from
that of many other works. The heterogeneity of these works
on the same topic shows its importance and its vastness.

VI. CONCLUSIONS

We presented techniques and algorithms that solve the
problem of achieving bit-reproducible results for specific
tasks maintaining, or improving, accuracy and performance
over conventional, non-reproducible counterparts. The re-
search on this promising topic is active, but still in early
stages. With our contribution, we pursued the goal of provid-
ing practical knowledge, which can be directly used to build
applications that can benefit from bit-reproducibility. We
released the code used in this work under the BSD license
at the URL http://github.com/andyspiros/bitrep, in the hope
that a collaborative effort to build a toolset for reproducible
computations can be started. The practical knowledge that
we provided can be also used at all levels, e.g., by library
vendors to ensure the reproducibility of their products.

In an HPC context that is developing towards increasing
heterogeneity, the ability to construct software products able
to consistently and efficiently run on different platforms
can make the difference between promising and successful
efforts. In highly non-linear systems, in particular in climate
science, the goal of achieving bit-reproducibility can be
crucial in order to exploit current and future heterogeneous
hardware platforms. From this point of view, the role of bit-
reproducibility is bound to become increasingly important.
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APPENDIX

This appendix provides additional proofs and algorithms
that are not a core part of the paper. The appendix can
thus be omitted from the review process. This text will be
removed in the camera-ready version.

Algorithm 3 implements the double-sweep method. It is
a modified version of Algorithm 9 in [14]. The modification
consists by the fact that the theoretical algorithm proposed
by Demmel and Nguyen performs actually k+1 sweeps: one
sweep at the beginning to find the maximal value, then one
sweep per level. The latter part can be trivially adapted to a
single sweep to improve the memory access pattern. Another
change is the extraction operation. As Demmel and Nguyen
explain in detail, in order to target directed rounding modes,
different kind of extraction operations can be performed. In
their algorithm, they target directed roundings and extract
the value vi with T f = T f ⊕ vi. This approach does not
work in the round-to-nearest with ties to even mode that we
are targeting. We rely therefore on the method shown in the
same paper, Algorithm 2.

Lemma 1. Given a value vi supported by an extractor Nf

among n (according to Definition 1), the contribution of vi
to the sum carried by extractor Nf−2 is zero, under the
assumption that n is small (nε < 0.1 is enough).

Proof: By definition Nf = αnεN
f−1 =

αnε
(
αnεN

f−2) = α2
nε

2Nf−2. We also remind the
definition αn = 2dlog2(n/(1−2nε))e. Since nε < 1/8,
n/(1 − 2nε) ≤ 2n ⇒ αn ≤ 2dlog2(2n)e ≤
2dlog2(n)+1e ≤ 2dlog2(n)e+1 ≤ 2 · 2dlog2(n)e ≤ 4 · n.
We can now bound Nf by: Nf ≤ 16ε2Nf−2.
From Definition 1: |vi| ≤ Nf ≤ 16ε2Nf−2. Clearly
16ε < 1

4 ⇒ |vi| ≤ 1
4N

f−2. Therefore, vi⊕Nf−2 = Nf−2.

Algorithm 3 Multi-level vector extraction, adapted from
[14], Algorithm 9
Require: v is the local part with size np of a global vector

of size n, k ≥ 1
1: m = maxi≤np {|vi|}
2: m = AllReduce(m, MAX)

3: αn = 2dlog2(
n

1−2nε )e
4: M1 = αn · 2dlog2(m)e

5: Mf = αnεM
f−1 for 2 ≤ f ≤ k

6: T f = 0 for 1 ≤ f ≤ k
7: for i = 1 to n in any sequential order do
8: r0 = vi
9: for f = 1 to k do

10: Sf = (rf−1 ⊕Mf )	Mf

11: T f = T f ⊕ qf
12: rf = rf−1 − qf
13: end for
14: end for
15: Reduce

([
T 1, . . . T f

]
, SUM

)
16: t =

∑k
f=1 T

f

Ensure: t is the deterministic sum of the k levels of high-
order parts of the global vector


