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Abstract
Designing a partial differential equations solver is a complex task which involves making choices
about the solution algorithm and its parameters. Such choices are usually done on the basis
of personal preference or numerical experiments, which can introduce significant bias on the
selection process. In this work we develop a methodology to drive this selection process towards
the optimal choices by modelling the accuracy and the performance of the solution algorithm.
We show how this methodology can be successfully applied on the linear advection problem. As
a result, the selection can be optimally performed with a much lower investment on the devel-
opment of high-performance versions of the solvers and without using the target architecture
for numerical experiments.
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1 Introduction
Partial differential equations (PDEs) are ubiquitous in modern science and their solution is the
primary goal of many high-performance computing (HPC) applications. Due to the abundance
of numerical methods for the solution of PDEs, choosing an algorithm with an optimal trade-
off between the computational cost and the quality of the solution can be a difficult task, and
scarce literature exists on the topic of making such an opportune choice [1].

Some characteristics of the numerical methods make them more suited for certain classes of
problems. Elliptic problems are, e.g., often solved using the Finite Element Method (FEM), due
to its suitability for time-independent problems. Conservation equations are frequently tackled
using the Finite Volume Method (FVM) [2] or the Discontinuous Galerkin Method (DG) [3],
the latter allowing for simpler increase of the convergence order. However, many exceptions to
this simple categorization exist [4], and Finite Difference methods are applied for many types
of PDEs and still present in many simulation codes. Consequently, one has a broad choice of
algorithms to solve PDEs, and each solution method comes with a broad choice of variants and
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parameters: The formulation of the equations, the space discretization and the time marching
scheme are just some examples of factors which influence the development of a solver [5, 6].

In this article we choose a typical problem which arises in weather and climate simulations:
advection. Advection is one of the key processes that happen in the atmosphere and its accurate
resolution is of primary importance. Moreover, the advection velocity is one of the main limiting
factors to the time step size due to stability and accuracy constrains [7], which affects the
simulation runtime. In this study, we discretize the linear advection problem using FD schemes
and use accuracy and performance modeling to select the discretization order, time marching
scheme and Courant number1 that minimize the runtime under a given accuracy constraint.

The present work is a first step towards the development of a methodology to solve such op-
timization problems on a broader range of PDEs and solvers. The encouraging results presented
here show that expensive tests performed using actual implementations on specific computer
hardware for the purpose of selecting the best method can be replaced by modeling, with much
lower cost due to implementation of a high-performance version of the solvers to be tested
— our model requires simple prototypes without any performance optimization — and to the
node-hours required to perform these tests on the target architecture.

Our main contributions are the following:

• The development of an accuracy model for linear Finite Difference solvers, with the ability
to provide solid predictions of the L2 error norm and to perform stability analysis;

• The application of a performance model for such solvers, with the ability to accurately
predict the runtime of simulations on different modern computer architectures;

• The formulation and solution of an optimization problem with the goal of minimizing the
cost of a simulation under the constraint of a maximum error, by considering a set of
solvers and their configuration parameters; and

• The execution of experiments on parallel computers to validate our methodology.

This work was supported by the Swiss National Science Foundation under Sinergia grant
CRSII2 154486/1 crClim.

1.1 Related work
Previous work which specifically addressed optimization of Finite Difference advection solvers
focused mainly on stability analysis. A review of early work on stability is given by Lax
and Richmyer [8]. Recent work on the optimization of these schemes has been performed by
Baldauf [7], where maximum CFL numbers for a large set of linear schemes are derived, with
the assumption that larger CFL numbers will provide comparable accuracy at a lower cost.
Novel Runge-Kutta schemes with a large stability region have been proposed by Allampalli et
al. [9]. The present work investigates more accurately the cost of such schemes in terms of a
performance measure and to give an understanding of the accuracy-performance relationship.
Optimized Runge-Kutta schemes with respect to accuracy, stability and performance have
been dervived with FD space discretization by Calvo et al. [10], with pseudospectral methods
by Tselios and Simos [11] and with DG by Toulorge and Desmet [12].

Work focused on accuracy estimation and accuracy-constrained optimization has been per-
formed by Lockard et at. [13], where the concept of the PPW (Points Per Wavelenght) quantity
is introduced and minimal PPW requirements to reach a certain accuracy is derived for multiple
solvers. Also, Zingg [14] shows how to derive new Finite Difference / Runge-Kutta schemes for
linear advection, with a lower order than theoretically possible with the same cost, but with
accuracy features specifically tailored for the relevant wavelengths. Our research alleviates the

1The Courant number is the ratio of the product of the time step size and the velocity to the grid spacing
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limitation of these works in the topic of the performance prediction and assessment: the cited
articles use as a cost model a simple operation or stencil applications count, while we strive
to be more specific in terms of the expected runtime on different architectures. Similar works,
with the same limitations, have been performed by Pirozzoli et al. [15, 16]

Comparative studies for other equations and other solvers are abundant in the literature.
Benzley et al. [17] review the convergence accuracy of several FEM meshes for the solution of
elastic continuum problems, but do not use a performance model. Work focused on performance-
accuracy relationship for FEM has been performed by Cifuentes and Kalbag [18], although it
only provides empirical measurements, and no models. Castillo et al. [19] provided as insightful
discussion about a-priori error estimation for the DG method. The error-controlled Fast Multi-
pole Method [20] is well suited for error-constrained optimization. The topic has been touched
by Arnold et al. [21], with empirical results, and research is currently active in that direction.

2 Accuracy modeling
In this section we present a model for the a-priori estimation of the error given by linear Finite
Difference (FD) schemes. As a case study, consider the advection equation in one dimension [22]:

∂ϕ

∂t
= −c · ∂ϕ

∂x
(1)

The typical FD approach to discretize this equation is to substitute the spatial derivative
by a computation involving only a fixed set of neighboring values (stencil) and the temporal
derivative by an integration method, such as one of the Runge-Kutta schemes. For instance, the
derivative stencil could be the following third-order upwind discretization (assuming a positive
advection velocity c):

∂ϕ

∂x

∣∣∣∣
xj

≈ 2ϕ(xj+1) + 3ϕ(xj)− 6ϕ(xj−1) + ϕ(xj−2)

6∆x
(2)

The temporal derivative could be implemented using the classical Runge-Kutta method
(named RK41 in [23]):

k1 := f
(
ϕn
j

)
, k2 := f

(
ϕn
j +

∆t

2
k1

)
, k3 := f

(
ϕn
j +

∆t

2
k2

)
, k4 := f

(
ϕn
j +∆t k3

)

ϕn+1
j := ϕn

j +
∆t

6
(k1 + 2k2 + 2k3 + k4),

where f is the function which computes the right hand side value −c · ∂ϕ∂x by means of the chosen
spatial discretization stencil.

In the following we will identify each solver using the notation PαQβ, where α and β represent
the spatial and temporal discretization order of the method respectively. For instance, the
method described in the previous paragraph is named P3Q4. We always choose the most compact
upwind or centered stencil of the desired spatial order [22] and the RK32 and RK41 Runge-
Kutta schemes as defined in [23] as the third and fourth-order integration schemes respectively.

In order to analyze the behavior of the chosen discretization, we use the Von-Neumann
analysis [22]. We assume initial conditions in the form of a wave with wavenumber k:

ϕ0
j := ei·k·j ∆x, (3)

and we apply one time step of the solution algorithm, which delivers the numerical result
ϕ1
j . The ratio of this result to the initial condition is called amplification factor and denoted

by A := ϕ1
j/ϕ

0
j . This complex number, which is independent of j for linear schemes, gives

information about the amplitude and the phase of the resulting wave through its absolute value
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Figure 1: Comparison of exact (dashed lines) and numerical (solid lines) solution to the linear
advection problem for three different solvers. The black horizontal and vertical lines show the
prediction for amplitude and phase given by the numerical solver respectively.

|A| and its argument arg(A) respectively. The FD scheme is only consistent, if these values
converge to 1 and k · c ·∆t respectively when ∆x and ∆t tend to 0. Moreover, the amplitude
should never be larger than 1 to avoid instability.

Figure 1 shows how this analysis can predict with excellent accuracy the evolution of the
wave by a FD scheme. We recognize a damping scheme (P1Q4), an unstable amplifying scheme
(P3Q1) and a scheme with a large phase error (P2Q3). The amplitude and phase of the simulated
wave after n time steps will be |A|n and arg(A) · n respectively. The numerical solution at the
time t = n∆t corresponding to the initial conditions given in equation (3) can be predicted
without running the scheme by:

ϕ(t;x) = |A|n · ei·k·(j ∆x−arg(A)·n∆t) (4)

This allows for a good approximation of the L2 error norm at the end of the simulation,
which is defined as follows:

εL2 :=

∫

Ω

(ϕ̄(t;x)− ϕ(t;x))
2
dx, with ϕ̄(t;x) := ei·k·(x−c·t), (5)

where ϕ̄(t;x) represents the exact solution, and ϕ(t;x) is the numerical solution computed at
the time t, interpolated to x. In the experiments performed in this work we approximate εL2

with a first-order quadrature using the same grid points as the spatial discretization, so that
the interpolation plays no role.

To generalize, we can use the following initial conditions and respective analytic solution:

ϕ0
j :=

M∑
m=1

bm · ei·km·j ∆x, ϕ̄(t;x) :=
M∑

m=1

bm · ei·km·(x−c·t) (6)

for any M ∈ N, bm ∈ R, km ∈ R+. The numerical solution is predicted by the model as:

ϕ(t;x) =
M∑

m=1

|Akm
| bm · ei·km·(x−arg(Akm )·t). (7)

The amplification factor A depends on the wave number, and we indicate this dependency
by subscribing the relevant wave number in Akm

. Our model captures the different velocities
and aplifications which are applied to waves of different wave numbers.

In order to validate our model, we solve the linear advection equation with the initial
condition given in the first panel of Figure 2. Different solvers are used, and for each of them
a convergence study is performed: the grid spacing and the time step size are progressively
reduced. We compute the error norm for each instance and compare it with the prediction
offered by the model. The result of this comparison is shown in the center panel. The prediction
offered by the model is almost indistinguishable from the actually obtained error. The behavior
exhibited by the P5Q4 and by the P7Q4 schemes with very small grid spacings is due to the
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ϕn+1
j := ϕn

j +
∆t

6
(k1 + 2k2 + 2k3 + k4),

where f is the function which computes the right hand side value −c · ∂ϕ∂x by means of the chosen
spatial discretization stencil.

In the following we will identify each solver using the notation PαQβ, where α and β represent
the spatial and temporal discretization order of the method respectively. For instance, the
method described in the previous paragraph is named P3Q4. We always choose the most compact
upwind or centered stencil of the desired spatial order [22] and the RK32 and RK41 Runge-
Kutta schemes as defined in [23] as the third and fourth-order integration schemes respectively.

In order to analyze the behavior of the chosen discretization, we use the Von-Neumann
analysis [22]. We assume initial conditions in the form of a wave with wavenumber k:

ϕ0
j := ei·k·j ∆x, (3)

and we apply one time step of the solution algorithm, which delivers the numerical result
ϕ1
j . The ratio of this result to the initial condition is called amplification factor and denoted

by A := ϕ1
j/ϕ

0
j . This complex number, which is independent of j for linear schemes, gives

information about the amplitude and the phase of the resulting wave through its absolute value
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Figure 1: Comparison of exact (dashed lines) and numerical (solid lines) solution to the linear
advection problem for three different solvers. The black horizontal and vertical lines show the
prediction for amplitude and phase given by the numerical solver respectively.

|A| and its argument arg(A) respectively. The FD scheme is only consistent, if these values
converge to 1 and k · c ·∆t respectively when ∆x and ∆t tend to 0. Moreover, the amplitude
should never be larger than 1 to avoid instability.

Figure 1 shows how this analysis can predict with excellent accuracy the evolution of the
wave by a FD scheme. We recognize a damping scheme (P1Q4), an unstable amplifying scheme
(P3Q1) and a scheme with a large phase error (P2Q3). The amplitude and phase of the simulated
wave after n time steps will be |A|n and arg(A) · n respectively. The numerical solution at the
time t = n∆t corresponding to the initial conditions given in equation (3) can be predicted
without running the scheme by:

ϕ(t;x) = |A|n · ei·k·(j ∆x−arg(A)·n∆t) (4)

This allows for a good approximation of the L2 error norm at the end of the simulation,
which is defined as follows:

εL2 :=

∫

Ω

(ϕ̄(t;x)− ϕ(t;x))
2
dx, with ϕ̄(t;x) := ei·k·(x−c·t), (5)

where ϕ̄(t;x) represents the exact solution, and ϕ(t;x) is the numerical solution computed at
the time t, interpolated to x. In the experiments performed in this work we approximate εL2

with a first-order quadrature using the same grid points as the spatial discretization, so that
the interpolation plays no role.

To generalize, we can use the following initial conditions and respective analytic solution:

ϕ0
j :=

M∑
m=1

bm · ei·km·j ∆x, ϕ̄(t;x) :=
M∑

m=1

bm · ei·km·(x−c·t) (6)

for any M ∈ N, bm ∈ R, km ∈ R+. The numerical solution is predicted by the model as:

ϕ(t;x) =
M∑

m=1

|Akm
| bm · ei·km·(x−arg(Akm )·t). (7)

The amplification factor A depends on the wave number, and we indicate this dependency
by subscribing the relevant wave number in Akm

. Our model captures the different velocities
and aplifications which are applied to waves of different wave numbers.

In order to validate our model, we solve the linear advection equation with the initial
condition given in the first panel of Figure 2. Different solvers are used, and for each of them
a convergence study is performed: the grid spacing and the time step size are progressively
reduced. We compute the error norm for each instance and compare it with the prediction
offered by the model. The result of this comparison is shown in the center panel. The prediction
offered by the model is almost indistinguishable from the actually obtained error. The behavior
exhibited by the P5Q4 and by the P7Q4 schemes with very small grid spacings is due to the
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Figure 2: Usability of the accuracy model. Markers represent the experimental results. Solid
lines represent the model prediction.

floating-point accuracy: no error reduction is possible with the double precision data type used
in these experiments, thus the lines become almost flat. The error model captures this effect,
although its prediction accuracy is deteriorated for the same reasons.

We perform an experiment to assess the model usability: For varying ε, we search for the
coarsest simulation (i.e., the simulation with the largest grid spacing), whose predicted error
is not higher than ε. We then run the simulation with the obtained grid spacing and compare
the Obtained error with ε. ε will be called Required accuracy, i.e., the largest error which
is considered acceptable. The last panel in Figure 2 presents the results of this experiment.
The vertical axis represents the overshoot of the model, i.e., the ratio of the obtained error to
the requested accuracy. This ratio should lie as close as possible to the horizontal black line
representing the neutral case. In the worst case, our model produces an overshoot of 6% for
the highest order scheme and less than 1% for all other schemes.

3 Performance modeling
The performance of a solver can be defined in various ways, which typically correspond to the
inverse of some measure of the resources used to solve the problem under consideration. The
most usual resources are time, node-hours and energy. A solver performs better than another
if it solves the same task with a lower cost. The assessment and prediction of the cost is the
topic of this section.

Operation counts, i.e., the number of floating point operations a solver performs to compute
the result, has proven [24] to provide successful comparisons for a group of similar methods, but
cannot be used to compare the expected performance of the same algorithm across architectures.
Moreover, it disregards important factors like cache effects, thread synchronization, and, most
importantly, memory access. The evolution of the performance of computational units and
DRAM are vastly different [25]. It is therefore increasingly important to consider DRAM
bandwidth as the main aspect when analyzing the performance of an application.

A more realistic and architecture-agnostic performance model is the well-known Roofline
model [26]. In this model, the performance is limited by two factors, which are specific to
the hardware on which the computation happens: the peak performance in terms of floating-
point operations per second and the maximum bandwidth between the DRAM memory and the
processing units. The arithmetic intensity of an algorithm expresses the ratio of the arithmetic
operations are performed on floating-point values to the number of bytes transferred between
the DRAM and the processing units. This value specifies which of the two factors is limiting
the performance: if the intensity is low, memory bandwidth will be the limiting factor, while
intensive algorithms will have their performance bounded by the peak performance.

Finite Difference stencil computations typically exhibit low arithmetic intensity. For in-
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stance, an Euler integration step of linear advection with the third order stencil (2), applied on
arrays whose size is N will require the following steps:

• Load the initial condition for ϕ and the velocity u,

• Run the stencil and add the result to the initial condition to obtain the new value of ϕ,

• Store the newly computed ϕ to the memory,

• If the computation runs on an accelerator, consider a constant cost to launch the kernel.

This corresponds to transferring 3N floating point values — under the optimistic assumption
of perfect cache reuse — and performing 11N floating-point operations — under the pessimistic
assumption of no optimizations performed by the compiler. Since each floating-point value is
either 4 or 8 bytes long, the ratio of the arithmetic operations to the transferred bytes is at
most 11

12 flops/byte for single-precision values and 11
24 flops/byte for double-precision values. On

modern architectures, such arithmetic intensity values put the mentioned algorithm clearly on
the memory-bound region, where the memory bandwidth is the limiting factor. All methods
used in this article exhibit similar low values of arithmetic intensity, making all of them memory-
bound. The performance model used in this work predicts the runtime as follows:

T = n ·

[
1

β
·

S∑
s=1

(ms,in +ms,out) + S · α

]
, (8)

where n is the total number of time steps, S is the number of stages in the Runge-Kutta
integration method, ms,in and ms,out [bytes] are the number of bytes consumed and produced,
respectively, by the s-th stage, α [s] is the constant cost associated to the launch of a kernel
(if any) and β [bytes/s] is the hardware memory bandwidth. The result is the runtime T [s].
In order to assess the expected bandwidth β, the STREAM benchmark [27] is used, while the
cost α is estimated by performing simple experiments.

4 Our methodology
We make use of the accuracy and performance models introduced in the previous sections
to solve the the global optimization problem. Both models take as input the description of
the solver, i.e., the integration scheme (Integrator) and the spatial derivative discretization
(Stencil). We show a diagram of the work performed by the methodology in Figure 3.

The accuracy model produces expressions representing the amplitude and phase modifica-
tions applied by the solver on the relevant waves. This step is performed symbolically using
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Figure 3: Workflow to the optimization of a solver. Circles represent the inputs, while boxes
show the internal values used by the methodology and hexagonals denote the products of the
models. Solid arrows represent symbolic manipulations and exact computations, while dashed
arrows represent numerical approximations.
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floating-point accuracy: no error reduction is possible with the double precision data type used
in these experiments, thus the lines become almost flat. The error model captures this effect,
although its prediction accuracy is deteriorated for the same reasons.

We perform an experiment to assess the model usability: For varying ε, we search for the
coarsest simulation (i.e., the simulation with the largest grid spacing), whose predicted error
is not higher than ε. We then run the simulation with the obtained grid spacing and compare
the Obtained error with ε. ε will be called Required accuracy, i.e., the largest error which
is considered acceptable. The last panel in Figure 2 presents the results of this experiment.
The vertical axis represents the overshoot of the model, i.e., the ratio of the obtained error to
the requested accuracy. This ratio should lie as close as possible to the horizontal black line
representing the neutral case. In the worst case, our model produces an overshoot of 6% for
the highest order scheme and less than 1% for all other schemes.

3 Performance modeling
The performance of a solver can be defined in various ways, which typically correspond to the
inverse of some measure of the resources used to solve the problem under consideration. The
most usual resources are time, node-hours and energy. A solver performs better than another
if it solves the same task with a lower cost. The assessment and prediction of the cost is the
topic of this section.

Operation counts, i.e., the number of floating point operations a solver performs to compute
the result, has proven [24] to provide successful comparisons for a group of similar methods, but
cannot be used to compare the expected performance of the same algorithm across architectures.
Moreover, it disregards important factors like cache effects, thread synchronization, and, most
importantly, memory access. The evolution of the performance of computational units and
DRAM are vastly different [25]. It is therefore increasingly important to consider DRAM
bandwidth as the main aspect when analyzing the performance of an application.

A more realistic and architecture-agnostic performance model is the well-known Roofline
model [26]. In this model, the performance is limited by two factors, which are specific to
the hardware on which the computation happens: the peak performance in terms of floating-
point operations per second and the maximum bandwidth between the DRAM memory and the
processing units. The arithmetic intensity of an algorithm expresses the ratio of the arithmetic
operations are performed on floating-point values to the number of bytes transferred between
the DRAM and the processing units. This value specifies which of the two factors is limiting
the performance: if the intensity is low, memory bandwidth will be the limiting factor, while
intensive algorithms will have their performance bounded by the peak performance.

Finite Difference stencil computations typically exhibit low arithmetic intensity. For in-
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stance, an Euler integration step of linear advection with the third order stencil (2), applied on
arrays whose size is N will require the following steps:

• Load the initial condition for ϕ and the velocity u,

• Run the stencil and add the result to the initial condition to obtain the new value of ϕ,

• Store the newly computed ϕ to the memory,

• If the computation runs on an accelerator, consider a constant cost to launch the kernel.

This corresponds to transferring 3N floating point values — under the optimistic assumption
of perfect cache reuse — and performing 11N floating-point operations — under the pessimistic
assumption of no optimizations performed by the compiler. Since each floating-point value is
either 4 or 8 bytes long, the ratio of the arithmetic operations to the transferred bytes is at
most 11

12 flops/byte for single-precision values and 11
24 flops/byte for double-precision values. On

modern architectures, such arithmetic intensity values put the mentioned algorithm clearly on
the memory-bound region, where the memory bandwidth is the limiting factor. All methods
used in this article exhibit similar low values of arithmetic intensity, making all of them memory-
bound. The performance model used in this work predicts the runtime as follows:

T = n ·

[
1

β
·

S∑
s=1

(ms,in +ms,out) + S · α

]
, (8)

where n is the total number of time steps, S is the number of stages in the Runge-Kutta
integration method, ms,in and ms,out [bytes] are the number of bytes consumed and produced,
respectively, by the s-th stage, α [s] is the constant cost associated to the launch of a kernel
(if any) and β [bytes/s] is the hardware memory bandwidth. The result is the runtime T [s].
In order to assess the expected bandwidth β, the STREAM benchmark [27] is used, while the
cost α is estimated by performing simple experiments.

4 Our methodology
We make use of the accuracy and performance models introduced in the previous sections
to solve the the global optimization problem. Both models take as input the description of
the solver, i.e., the integration scheme (Integrator) and the spatial derivative discretization
(Stencil). We show a diagram of the work performed by the methodology in Figure 3.

The accuracy model produces expressions representing the amplitude and phase modifica-
tions applied by the solver on the relevant waves. This step is performed symbolically using

Arch

Amplitude

Phase

Integrator

Stencil

Array accesses
per timestep

∆x
∆t

Predicted
solution

Runtime prediction

Initial
condition Error prediction

Maximum
∆t

∆x

Figure 3: Workflow to the optimization of a solver. Circles represent the inputs, while boxes
show the internal values used by the methodology and hexagonals denote the products of the
models. Solid arrows represent symbolic manipulations and exact computations, while dashed
arrows represent numerical approximations.
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the SymPy library [28]. The amplitude expression is then used to perform a numerical analysis
to obtain the maximum supported time step size due to stability constraints. On the other
side, the amplitude and phase expressions are used to perform a prediction on the L2 error
norm of the solution produced by the solver after a certain integration time (also provided as
configuration parameter — not shown in the picture). This numerical mapping from amplitude
and phase expressions to error predictions requires the analysis presented in Section 2.

The performance model needs additionally some information about the architecture on which
the application is to be run and the floating point type (these are indicated by the ”Arch” label
in Figure 3). Architecture data include the maximum achievable bandwidth and constant costs,
such as the cost to execute a computational kernel. With this information, the performance
model is able to provide an estimate of the total runtime by counting the total amount of
accessed memory. No training is necessary for this model to be effective, besides the need to
know the result of the STREAM benchmark as was explained in Section 3.

The optimization task is applied on both products of the models: the error prediction and
the runtime estimate. The optimizer will return the solver configuration which minimizes the
runtime as estimated by the performance model under the constraint given by the maximum
error as requested by the user and predicted by the accuracy model. The dotted lines to the
right of Figure 3 represent the core of the optimization machinery: the values ∆x and ∆t can
be varied under the constraint given by the stability expression (Maximum ∆t

∆x ), and the error
and runtime predictions are the optimization constraint and target respectively.

The procedure depicted thus far drives to the optimization of a single solver. When the
described methodology is applied on a set of solvers, it will deliver, for each of them, the
optimal configuration to reach the requested level of accuracy and the expected runtime. By
comparing these runtimes one can easily choose the solver that minimizes the runtime, which
represents the solution to the global optimization problem.

5 Experiments
In order to validate our methodology, we performed experiments on the linear advection equa-
tion with constant (positive) velocity, as defined in equation (1). The initial conditions were set
to a superposition of waves with wavenumbers in the range

[
1
2 , 4

)
as depicted in the first panel

of Figure 2. We implemented high-performance versions of multiple FD schemes for both CPU
and GPU architectures. We performed a large number of simulations with varying grid spacing
and Courant number for each of the chosen method. The goal of these runs was to isolate,
for each required accuracy ε (as defined in Section 2), the method, grid spacing and Courant
number which produces a solution within the accuracy constraint in the shortest runtime. This
exhaustive search approach was very expensive, requiring multiple tens of node hours.

The same task can be performed using our methodology, with the advantage that the meth-
ods do not need to be implemented in a high-performance context, but only as a prototype
Python version. The target architecture is not used for the optimization problem: the only
relevant architecture property is the maximum achievable bandwidth, as explained in Sec-
tion 3. No actual simulations have to be completed. The optimization problem is solved by our
methodology on a consumer desktop computer in approximately 15 minutes.

Figures 4 and 5 show the result of the optimization task on a CPU (Xeon E5-2690 v3) and
a GPU (Nvidia Tesla P100) of the Piz Daint computer at the Swiss National Supercomputing
Center CSCS2. The best solver configuration (i.e., the grid spacing and Courant number which
deliver an acceptable accuracy within the shortest runtime) is found by the exhaustive search
(orange squares) and by our methodology (blue circles). Very similar results are obtained.

2See http://www.cscs.ch

7

Model-Driven Choice of PDEs Solvers Arteaga, Fuhrer, Hoefler, Schulthess

10−2

10−1

∆
x

P3Q3

10−4 10−3 10−2 10−1

Required accuracy
0.0

0.5

1.0

1.5

2.0

C
ou

ra
nt

P5Q3

10−4 10−3 10−2 10−1

Required accuracy

P5Q4

10−4 10−3 10−2 10−1

Required accuracy

P7Q4

10−4 10−3 10−2 10−1

Required accuracy

Figure 4: Optimization results on CPU: the orange squares represent the results of the exhaus-
tive search, while the blue circles are the results given by our methodology. The thick green
horizontal bar shows the highest stable Courant number for each solver.

Figures 4 and 5 show that the optimal Courant number for most schemes is considerably
lower than the one allowed by the stability constraint represented by the green lines. This
simple consideration is contrary to the common intuition and represents a highly interesting
remark: a smaller time step on a coarser grid can be more beneficial than large time steps.
However, this trade-off depends on the chosen discretization. For instance large time steps
proved to be very efficient with the low-order P3Q3 scheme, while small steps performed much
better on higher order schemes, like P7Q4. The comparison of P5Q3 and P5Q4 shows that, in this
case, increasing the time discretization order made larger steps more efficient. One can come
to the same conclusions when analyzing the experimental results and when using the modeling.

We conclude this experiment with the global optimization solution. When the optimal grid
spacing and time step sizes are found for each solver and each requested error, we can easily
search for the best tuple (architecture, solver, ∆x, ∆t) which minimizes the runtime. We
again perform this task with both the exhaustive search and our methodology, with the results
schematized in Figure 6. In all cases, the GPU architecture performed better, and the models
captured this phenomenon, thus the diagram does not take into consideration this dimension.
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Figure 5: Optimization results on GPU
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the SymPy library [28]. The amplitude expression is then used to perform a numerical analysis
to obtain the maximum supported time step size due to stability constraints. On the other
side, the amplitude and phase expressions are used to perform a prediction on the L2 error
norm of the solution produced by the solver after a certain integration time (also provided as
configuration parameter — not shown in the picture). This numerical mapping from amplitude
and phase expressions to error predictions requires the analysis presented in Section 2.

The performance model needs additionally some information about the architecture on which
the application is to be run and the floating point type (these are indicated by the ”Arch” label
in Figure 3). Architecture data include the maximum achievable bandwidth and constant costs,
such as the cost to execute a computational kernel. With this information, the performance
model is able to provide an estimate of the total runtime by counting the total amount of
accessed memory. No training is necessary for this model to be effective, besides the need to
know the result of the STREAM benchmark as was explained in Section 3.

The optimization task is applied on both products of the models: the error prediction and
the runtime estimate. The optimizer will return the solver configuration which minimizes the
runtime as estimated by the performance model under the constraint given by the maximum
error as requested by the user and predicted by the accuracy model. The dotted lines to the
right of Figure 3 represent the core of the optimization machinery: the values ∆x and ∆t can
be varied under the constraint given by the stability expression (Maximum ∆t

∆x ), and the error
and runtime predictions are the optimization constraint and target respectively.

The procedure depicted thus far drives to the optimization of a single solver. When the
described methodology is applied on a set of solvers, it will deliver, for each of them, the
optimal configuration to reach the requested level of accuracy and the expected runtime. By
comparing these runtimes one can easily choose the solver that minimizes the runtime, which
represents the solution to the global optimization problem.

5 Experiments
In order to validate our methodology, we performed experiments on the linear advection equa-
tion with constant (positive) velocity, as defined in equation (1). The initial conditions were set
to a superposition of waves with wavenumbers in the range

[
1
2 , 4

)
as depicted in the first panel

of Figure 2. We implemented high-performance versions of multiple FD schemes for both CPU
and GPU architectures. We performed a large number of simulations with varying grid spacing
and Courant number for each of the chosen method. The goal of these runs was to isolate,
for each required accuracy ε (as defined in Section 2), the method, grid spacing and Courant
number which produces a solution within the accuracy constraint in the shortest runtime. This
exhaustive search approach was very expensive, requiring multiple tens of node hours.

The same task can be performed using our methodology, with the advantage that the meth-
ods do not need to be implemented in a high-performance context, but only as a prototype
Python version. The target architecture is not used for the optimization problem: the only
relevant architecture property is the maximum achievable bandwidth, as explained in Sec-
tion 3. No actual simulations have to be completed. The optimization problem is solved by our
methodology on a consumer desktop computer in approximately 15 minutes.

Figures 4 and 5 show the result of the optimization task on a CPU (Xeon E5-2690 v3) and
a GPU (Nvidia Tesla P100) of the Piz Daint computer at the Swiss National Supercomputing
Center CSCS2. The best solver configuration (i.e., the grid spacing and Courant number which
deliver an acceptable accuracy within the shortest runtime) is found by the exhaustive search
(orange squares) and by our methodology (blue circles). Very similar results are obtained.

2See http://www.cscs.ch

7

Model-Driven Choice of PDEs Solvers Arteaga, Fuhrer, Hoefler, Schulthess

10−2

10−1

∆
x

P3Q3

10−4 10−3 10−2 10−1

Required accuracy
0.0

0.5

1.0

1.5

2.0

C
ou

ra
nt

P5Q3

10−4 10−3 10−2 10−1

Required accuracy

P5Q4

10−4 10−3 10−2 10−1

Required accuracy

P7Q4

10−4 10−3 10−2 10−1

Required accuracy

Figure 4: Optimization results on CPU: the orange squares represent the results of the exhaus-
tive search, while the blue circles are the results given by our methodology. The thick green
horizontal bar shows the highest stable Courant number for each solver.

Figures 4 and 5 show that the optimal Courant number for most schemes is considerably
lower than the one allowed by the stability constraint represented by the green lines. This
simple consideration is contrary to the common intuition and represents a highly interesting
remark: a smaller time step on a coarser grid can be more beneficial than large time steps.
However, this trade-off depends on the chosen discretization. For instance large time steps
proved to be very efficient with the low-order P3Q3 scheme, while small steps performed much
better on higher order schemes, like P7Q4. The comparison of P5Q3 and P5Q4 shows that, in this
case, increasing the time discretization order made larger steps more efficient. One can come
to the same conclusions when analyzing the experimental results and when using the modeling.

We conclude this experiment with the global optimization solution. When the optimal grid
spacing and time step sizes are found for each solver and each requested error, we can easily
search for the best tuple (architecture, solver, ∆x, ∆t) which minimizes the runtime. We
again perform this task with both the exhaustive search and our methodology, with the results
schematized in Figure 6. In all cases, the GPU architecture performed better, and the models
captured this phenomenon, thus the diagram does not take into consideration this dimension.
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Figure 6: Results of the global optimization problem

6 Conclusions
In this work we formulate and solve an optimization problem to choose the best algorithm and
its best configuration for the solution of a linear advection PDE. The algorithm that delivers a
solution of acceptable accuracy within the shortest runtime is the optimization target.

We showed two approaches to solve this problem. The exhaustive search approach scans the
entire space by performing a large number of simulations with the high-performance application
on the target architecture, collects the results and compares them. Our new methodology
does not require the development of a high-performance application, nor its execution on the
target machine: It predicts the performance of the high-performance application by using a
performance model, and estimates the error based on numerical analysis. A very important
fact we want to highlight here is that such a methodology based upon modeling can guide the
developer towards a rational and unbiased choice of the solver. This guidance should replace
the need to guess the best choice for algorithms, time step sizes and other parameters.

We presented an experiment where the two approaches were used to perform the same task.
While the exhaustive search required more than 32 node hours on the Piz Daint supercomputer,
our methodology gave very similar results in approximately 15 minutes on a desktop computer.

We recognize the limitations of our methodology in its current form: It can just address linear
equations, and the framework has been currently validated only on one-dimensional problems.
Nevertheless, the promising results are encouraging our research towards the extension of this
approach to more general problems and solution algorithms.
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