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ABSTRACT
Remote Memory Access (RMA) is an emerging mechanism
for programming high-performance computers and datacen-
ters. However, little work exists on resilience schemes for
RMA-based applications and systems. In this paper we
analyze fault tolerance for RMA and show that it is fun-
damentally different from resilience mechanisms targeting
the message passing (MP) model. We design a model for
reasoning about fault tolerance for RMA, addressing both
flat and hierarchical hardware. We use this model to con-
struct several highly-scalable mechanisms that provide ef-
ficient low-overhead in-memory checkpointing, transparent
logging of remote memory accesses, and a scheme for trans-
parent recovery of failed processes. Our protocols take into
account diminishing amounts of memory per core, one of
the major features of future exascale machines. The im-
plementation of our fault-tolerance scheme entails negligible
additional overheads. Our reliability model shows that in-
memory checkpointing and logging provide high resilience.
This study enables highly-scalable resilience mechanisms for
RMA and fills a research gap between fault tolerance and
emerging RMA programming models.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
systems—Fault tolerance

General Terms
Reliability, Performance, Algorithms

1. INTRODUCTION
Partitioned Global Address Space (PGAS), and the wider

class of Remote Memory Access (RMA) programming mod-
els enable high-performance communications that often out-
perform Message Passing [19, 34]. RMA utilizes remote di-
rect memory access (RDMA) hardware features to access
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memories at remote processes without involving the OS or
the remote CPU.

RDMA is offered by most modern HPC networks (Infini-
Band, Myrinet, Cray’s Gemini and Aries, IBM’s Blue Gene,
and PERCS) and many Ethernet interconnects that use the
RoCE or iWARP protocols. RMA languages and libraries
include Unified Parallel C (UPC), Fortran 2008 (formerly
known as CAF), MPI-3 One Sided, Cray’s SHMEM inter-
face, or Open Fabrics (OFED). Thus, we observe that RMA
is quickly emerging to be the programming model of choice
for cluster systems, HPC computers, and large datacenters.

Fault tolerance of such systems is important because hard-
ware and software faults are ubiquitous [38]. Two pop-
ular resilience schemes used in today’s computing envi-
ronments are coordinated checkpointing (CC) and unco-
ordinated checkpointing augmented with message logging
(UC) [17]. In CC applications regularly synchronize to save
their state to memory, local disks, or parallel file system
(PFS) [38]; this data is used to restart after a crash. In UC
processes take checkpoints independently and use message
logging to avoid rollbacks caused by the domino effect [37].
There has been considerable research on CC and UC for the
message passing (MP) model [6,17]. Still, no work addresses
the exact design of these schemes for RMA-based systems.

In this work we develop a generic model for reasoning
about resilience in RMA. Then, using this model, we show
that CC and UC for RMA fundamentally differ from analo-
gous schemes for MP. We also construct protocols that en-
able simple checkpointing and logging of remote memory ac-
cesses. We only use in-memory mechanisms to avoid costly
I/O flushes and frequent disk and PFS failures [24, 38]. We
then extend our model to cover two features of today’s petas-
cale and future exascale machines: (1) the growing complex-
ity of hardware components and (2) decreasing amounts of
memory per core. With this, our study fills an important
knowledge gap between fault-tolerance and emerging RMA
programming in large-scale computing systems.

In detail, we provide the following major contributions:

● We design a model for reasoning about the reliability of
RMA systems running on flat and hierarchical hardware
with limited memory per core. To our knowledge, this is
the first work that addresses these issues.

● We construct schemes for in-memory checkpointing, log-
ging, and recovering RMA-based applications.

● We unify these concepts in a topology-aware diskless pro-
tocol and we use real data and an analytic model to show
that the protocol can endure concurrent hardware failures.
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. MPI Put, MPI Accumulate, MPI Get accumulate,

MPI Fetch and op, MPI Compare and swap
upc memput, upc memcpy, upc memset,
assignment (=), all UPC collectives assignment (=) put

MPI Get, MPI Compare and swap,
MPI Get accumulate, MPI Fetch and op

upc memget, upc memcpy, upc memset,
assignment (=), all UPC collectives assignment (=) get
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MPI Win lock, MPI Win lock all upc lock lock lock

MPI Win unlock, MPI Win unlock all upc unlock unlock unlock

MPI Win fence upc barrier sync all, sync team, sync images gsync

MPI Win flush, MPI Win flush all, MPI Win sync upc fence sync memory flush

Table 1: Categorization of MPI One Sided/UPC/Fortran 2008 operations in our model. Some atomic functions are considered as both puts and
gets. In UPC, the collectives, assignments and upc memset/upc memcpy behave similarly depending on the values of pointers to shared objects;
the same applies to Fortran 2008. We omit MPI’s post-start-complete-wait synchronization and request-based RMA operations for simplicity.

● We present the implementation of our protocol, analyze
its performance, show it entails negligible overheads, and
compare it to other schemes.

2. RMA PROGRAMMING
We now discuss concepts of RMA programming and

present a formalization that covers existing RMA/PGAS
models with strict or relaxed memory consistency (e.g., UPC
or MPI-3 One Sided). In RMA, each process explicitly ex-
poses an area of its local memory as shared. Memory can be
shared in different ways (e.g., MPI windows, UPC shared ar-
rays, or Co-Arrays in Fortran 2008); details are outside the
scope of this work. Once shared, memory can be accessed
with various language-specific operations.

2.1 RMA Operations
We identify two fundamental types of RMA operations:

communication actions (often called accesses; they transfer
data between processes), and synchronization actions (syn-
chronize processes and guarantee memory consistency). A
process p that issues an RMA action targeted at q is called
the active source, and q is called the passive target. We
assume p is active and q is passive (unless stated otherwise).

2.1.1 Communication Actions
We denote an action that transfers data from p to q and

from q to p as put(p⇒→ q) and get(p⇐→ q), respectively. We
use double-arrows to emphasize the asymmetry of the two
operations: the upper arrow indicates the direction of data
flow and the lower arrow indicates the direction of control
flow. The upper part of Table 1 categorizes communication
operations in various RMA languages. Some actions (e.g.,
atomic compare and swap) transfer data in both directions
and thus fall into the family of puts and gets.

We also distinguish between puts that “blindly” replace a
targeted memory region at q with a new value (e.g., UPC as-
signment), and puts that combine the data moved to q with
the data that already resides at q (e.g., MPI Accumulate).
When necessary, we refer to the former type as the replac-
ing put, and to the latter as the combining put.

2.1.2 Memory Synchronization Actions
We identify four major categories of memory synchroniza-

tion actions: lock(p → q, str) (locks a structure str in q’s
memory to provide exclusive access), unlock(p → q, str)
(unlocks str in q’s memory and enforces consistency of str),
flush(p → q, str) (enforces consistency of str in p’s and q’s
memories), and gsync(p → ◇, str) (enforces consistency of
str); ◇ indicates that the call targets all processes. Arrows
indicate the flow of control (synchronization). When we re-
fer to the whole process memory (and not a single structure),

we omit str (e.g., lock(p → q)). The lower part of Table 1
categorizes synchronization calls in various RMA languages.

2.2 Epochs and Consistency Order
RMA’s relaxed memory consistency enables non-blocking

puts and gets. Issued operations are completed by memory
consistency actions (flush, unlock, gsync). The period
between any two such actions issued by p and targeting the
same process q is called an epoch. Every unlock(p → q) or
flush(p→ q) closes p’s current epoch and opens a new one
(i.e., increments p’s epoch number denoted as E(p → q)). p
can be in several independent epochs related to each process
that it communicates with. As gsync is a collective call, it
increases epochs at every process.

An important concept related to epochs is the consistency

order (denoted as
coÐ→).

coÐ→ orders the visibility of actions:

x
coÐ→ y means that memory effects of action x are globally

visible before action y. Actions issued in different epochs by
process p targeting the same process q are always ordered

with
coÐ→. Epochs and

coÐ→ are illustrated in Figure 1. x ∣∣co y
means that actions x and y are not ordered with

coÐ→.

Figure 1: Epochs and the consistency order
coÐ→ (§ 2.2). White circles

symbolize synchronization calls (in this case flush). Grey squares
show when calls’ results become globally visible in q’s or p’s memory.

2.3 Program, Synchronization, and Hap-
pened Before Orders

In addition to
coÐ→ we require three more orders to spec-

ify an RMA execution [22]: The program order (
poÐ→) spec-

ifies the order of actions of a single thread, similarly to the

program order in Java [29] (x
poÐ→ y means that x is called

before y by some thread). The synchronization order (
soÐ→)

orders lock and unlock and other synchronizing opera-

tions. Happened-before (HB,
hbÐ→), a relation well-known in

message passing [27], is the transitive closure of the union

of
poÐ→ and

soÐ→. We abbreviate a consistent happen-before as
cohbÐÐ→: a

cohbÐÐ→ b ≡ a coÐ→ b ∧ a hbÐ→ b. To state that actions are
parallel in an order, we use the symbols ∣∣po, ∣∣so, ∣∣hb. We
show the orders in Fig. 2; more details can be found in [22].



Figure 2: Example RMA orderings
poÐ→,

soÐ→,
hbÐ→ (§ 2.3).

2.4 Formal Model
We now combine the various RMA concepts and fault

tolerance into a single formal model. We assume fail-stop
faults (processes can disappear nondeterministically but be-
have correctly while being a part of the program). The data
communication may happen out of order as specified for
most RMA models. Communication channels between non-
failed processes are asynchronous, reliable, and error-free.
The user code can only communicate and synchronize using
RMA functions specified in Section 2.1. Finally, checkpoints
and logs are stored in volatile memories.

We define a communication action a as a tuple

a = ⟨type, src, trg, combine,EC,GC,SC,GNC,data⟩ (1)

where type is either a put or a get, src and trg spec-
ify the source and the target, and data is the data car-
ried by a. Combine determines if a is a replacing put
(combine = false) or a combining put (combine = true).
EC (Epoch Counter) is the epoch number in which a was
issued. GC, SC, and GNC are counters required for correct
recovery; we discuss them in more detail in Section 4. We
combine the notation from Section 2.1 with this definition
and write put(p⇒→ q).EC to refer to the epoch in which the
put happens. We also define a determinant of a (denoted as
#a, cf. [6]) to be tuple a without data:

#a = ⟨type, src, trg, combine,EC,GC,SC,GNC⟩. (2)

Similarly, a synchronization action b is defined as

b = ⟨type, src, trg,EC,GC,SC,GNC, str⟩. (3)

Finally, a trace of an RMA program running on a distributed
system can be written as the tuple

D = ⟨P,E,S,
po
Ð→,

so
Ð→,

hb
Ð→,

co
Ð→⟩, (4)

where

P is the set of all Processes in D (∣P ∣ = N),

E = A ∪ I is the set of all Events:

A is the set of RMA Actions,

I is the set of Internal actions (reads, writes, check-
point actions). read(x, p) loads local variable x and
write(x ∶= val, p) assigns val to x (in p’s memory). Cip
is the ith checkpoint action taken by p. Internal events

are partially ordered with actions using
poÐ→,

coÐ→, and
hbÐ→.

S is the set of all data Structures used by the program.

3. FAULT-TOLERANCE FOR RMA
We now present schemes that make RMA codes fault tol-

erant. We start with the simpler CC and then present the
protocols for UC.

3.1 Coordinated Checkpointing (CC)
In many CC schemes, the user explicitly calls a func-

tion to take a checkpoint. Such protocols may leverage
RMA’s features (e.g., direct memory access) to improve the
performance. However, these schemes have several draw-
backs: they complicate the code because they can only be
called when the network is quiet [21] and they do not al-
ways fit the optimality criteria such as Daly’s checkpointing
interval [15]. In this section, we first identify how CC in
RMA differs from CC in MP and then describe a scheme
for RMA codes that performs CC transparently to the ap-
plication. We model a coordinated checkpoint as a set
C = {Ci1p1 ,C

i2
p2 , ...,C

iN
pN } ⊆ I, pm ≠ pn for any m,n.

3.1.1 RMA vs. MP: Coordinated Checkpointing
In MP, every C has to satisfy a consistency condition [21]:

∀Cip,Cjq ∈ C ∶ Cip ∣∣hb Cjq . This condition ensures that C
does not reflect a system state in which one process received
a message that was not sent by any other process. We adopt
this condition and extend it to cover all RMA semantics:

Definition 1. C is RMA-consistent iff ∀Cip,Cjq ∈ C ∶
Cip ∣∣cohb Cjq .

We extend ∣∣hb to ∣∣cohb to guarantee that the system state
saved in C does not contain a process affected by a memory
access that was not issued by any other process. In RMA,
unlike in MP, this condition can be easily satisfied because
each process can drain the network with a local flush (en-
forcing consistency at any point is legal [22])

3.1.2 Taking a Coordinated Checkpoint
We now propose two diskless schemes that obey the RMA-

consistency condition and target MPI-3 RMA codes. The
first (“Gsync”) scheme can be used in programs that only
synchronize with gsyncs. The other (“Locks”) scheme tar-
gets codes that only synchronize with locks and unlocks.
Note that in correct MPI-3 RMA programs gsyncs and
locks/unlocks cannot be mixed [31]. All our schemes as-

sume that a gsync may also introduce an additional
hbÐ→

order, which is true in some implementations [31].
The “Gsync” Scheme Every process may take a co-

ordinated checkpoint right after the user calls a gsync and
before any further RMA calls by: (1) optionally enforcing

the global
hbÐ→ order with an operation such as MPI Barrier

(denoted as bar), and taking the checkpoint. Depending on
the application needs, not every gsync has to be followed
by a checkpoint. We use Daly’s formula [15] to compute the
best interval between such checkpoints and we take check-
points after the right gsync calls.

Theorem 3.1. The Gsync scheme satisfies the RMA-
consistency condition and does not deadlock.

Proof. We assume correct MPI-3 RMA programs rep-
resented by their trace D [22, 31]. For all p, q ∈ P, each
gsync(p → ◇) has a matching gsync(q → ◇) such that
[gsync(p → ◇) ∣∣hb gsync(q → ◇)]. Thus, if every process
calls bar right after gsync then bar matching is guaranteed
and the program cannot deadlock. In addition, the gsync

calls introduce a global consistency order
coÐ→ such that the

checkpoint is coordinated and consistent.



The “Locks” Scheme Every process p maintains a local
Lock Counter LCp that starts with zero and is incremented
after each lock and decremented after each unlock. When
LCp = 0, process p can perform a checkpoint in three phases:
(1) enforce consistency with a flush(p→ ◇), (2) call a bar

to provides the global
hbÐ→ order, and (3) take a checkpoint

Cip. The last phase, the actual checkpoint stage, is per-
formed collectively thus all processes can take the checkpoint
C in coordination.

Theorem 3.2. The Locks scheme satisfies the RMA-
consistency condition and does not deadlock.

Proof. The call to flush(p → ◇) in phase 1 guarantees
global consistency at each process. The bar in phase 2 guar-
antees that all processes are globally consistent before the
checkpoint taken in phase 3.

It remains to proof deadlock-freedom. We assume correct
MPI-3 RMA programs [22, 31]. A lock(p → q) can only
block waiting for an active lock lock(z → q) and no bar can
be started at z while the lock is held. In addition, for every
lock(z → q), there is a matching unlock(z → q) in the

execution such that lock(z → q) poÐ→ unlock(z → q) (for
any z, p, q ∈ P). Thus, all locks must be released eventually,

i.e., ∃a ∈ E ∶ a poÐ→ write(LCp ∶= 0, p) for any p ∈ P.

The above schemes show that the transparent CC can be
achieved much simpler in RMA than in MP. In MP, such
protocols usually have to analyze inter-process dependen-
cies due to sent/received messages, and add protocol-specific
data to messages [11, 17], which reduces the bandwidth. In
RMA this is not necessary.

3.2 Uncoordinated Checkpointing (UC)
Uncoordinated checkpointing augmented with message

logging reduces energy consumption and synchronization
costs because a single process crash does not force all other
processes to revert to the previous checkpoint and recom-
pute [17, 37]. Instead, a failed process fetches its last
checkpoint and replays messages logged beyond this check-
point. However, UC schemes are usually more complex than
CC [17]. We now analyze how UC in RMA differs from UC
in MP, followed by a discussion of our UC protocols. Data
structures for the protocols are shown in Table 2.

3.2.1 RMA vs. MP: Uncoordinated Checkpointing
The first and obvious difference is that we now log not

messages but accesses. Other differences are as follows:
Storing Access Logs In MP, processes exchange mes-

sages that always flow from the sender (process p) to the re-
ceiver (process q). Messages can be recorded at the sender’s
side [17,37]. During a recovery, the restored process interacts
with other processes to get and reply the logged messages
(see Figure 3 (part (1)).

Figure 3: The logging of messages vs. RMA puts and gets (§ 3.1.1).

In RMA, a put(p ⇒→ q) changes the state of q, but a
get(p⇐→ q) modifies the state of p. Thus, put(p⇒→ q) can
be logged in p’s memory, but get(p⇐→ q) cannot because a
failure of p would prevent a successful recovery (see Figure 3,
part 2 and 3).

Transparency of Schemes In MP, both p and q actively
participate in communication. In RMA, q is oblivious to
accesses to its memory and thus any recovery or logging
performed by p can be transparent to (i.e., does not obstruct)
q (which is usually not the case in MP, cf. [37]).

No Piggybacking Adding some protocol-specific data
to messages (e.g., piggybacking) is a popular concept in
MP [17]. Still, it cannot be used in RMA because puts
and gets are accesses, not messages. Yet, issuing additional
accesses is cheap in RMA.

Access Determinism Recent works in MP (e.g., [20])
explore send determinism: the output of an application run
is oblivious to the order of received messages. In our work
we identify a similar concept in RMA that we call access
determinism. For example, in race-free MPI-3 programs the
application output does not depend on the order in which
two accesses a and b committed to memory if a ∣∣co b.

Orphan Processes In some MP schemes (called opti-
mistic), senders postpone logging messages for performance
reasons [17]. Assume q received a message m from p and
then sent a message m′ to r. If q crashes and m is not
logged by p at that time, then q may follow a run in that it
does not send m′. Thus, r becomes an orphan: its state de-
pends on a message m′ that was not sent [17] (see Figure 4,
part 1).

In RMA, a process may also become an orphan. Consider
Figure 4 (part 2). First, p modifies a variable x at q. Then,
q reads x and conditionally issues a put(q⇒→ r). If q crashes
and p postponed logging put(p⇒→ q), then q (while recover-
ing) may follow a run in which it does not issue put(q⇒→ r);
thus r becomes an orphan.

Figure 4: Illustration of orphans in MP and RMA (§ 3.1.1).

3.2.2 Taking an Uncoordinated Checkpoint
We denote the ith uncoordinated checkpoint taken by pro-

cess p as Cip. Taking Cip is simple and entails: (1) locking
local application data, (2) sending the copy of the data to
some remote volatile storage, and (3) unlocking the appli-
cation data (we defer the discussion on the implementation
details until Section 6). After p takes Cip, any process q
can delete the logs of every put(q ⇒→ p) (from LPq[p]) and
get(p ⇐→ q) (from LGq[p]) that committed in p’s memory

before Cip (i.e., put(q⇒→ p) coÐ→ Cip and get(p⇐→ q) coÐ→ Cip).

We demand that every Cip is taken immediately after clos-
ing/opening an epoch and before issuing any new commu-
nication operations (we call this the epoch condition). This
condition is required because, if p issues a get(p⇐→ q), the
application data is guaranteed to be consistent only after
closing the epoch.



Figure 5: Logging orders
soÐ→,

coÐ→, and
hbÐ→ (§ 4.1). In each figure we illustrate example orderings.

Structure Description

LPp[q] ∈ S Logs of puts issued by p and targeted at q.

LGq[p] ∈ S Logs of gets targeted at q and issued by p.

LPp ∈ S
Logs of puts issued and stored by p and targeted
at any other process; LPp ≡ ⋃r∈P∧r≠p LPp[r].

LGq ∈ S
Logs of gets targeted and stored at q, issued by
any other process; LGq ≡ ⋃r∈P∧r≠q LGq[r].

Qp ∈ S
A helper container stored at p, used to
temporarily log #gets issued by p.

Nq[p] ∈ S
A structure (stored at q) that determines
whether or not p issued a non-blocking
get(p⇒→ q) (Nq[p] = true or false, respectively)

Table 2: Data structures used in RMA logging (§ 3.2.3). LPp[q] and
LPp are stored at p. LGq[p] and LGq are stored at q.

3.2.3 Transparent Logging of RMA Accesses
We now describe the logging of puts and gets.
Logging Puts To log a put(p ⇒→ q), p first calls

lock(p → p,LPp). Self-locking is necessary because there
may be other processes being recovered that may try to read
LPp. Then, the put is logged (LPp[q] ∶= LPp[q] ∪ {put(p⇒→
q)}; “:=”denotes the assignment of a new value to a variable
or a structure). Finally, p unlocks LPp. Atomicity between
logging and putting is not required because, in the weak
consistency memory model, the source memory of the put
operation may not be modified until the current epoch ends.
If the program modifies it nevertheless, RMA implementa-
tions are allowed to return any value, thus the logged value
is irrelevant. We log put(p ⇒→ q) before closing the epoch
put(p⇒→ q).EC. If the put is blocking then we log it before
issuing, analogously to the pessimistic message logging [17].

Logging Gets We log a get(p ⇐→ q) in two phases to
retain its asynchronous behavior (see Algorithm 1). First,
we record the determinant #get(p ⇐→ q) in Qp (lines 2-3).
We cannot access get(p⇐→ q).data as the local memory will
only be valid after the epoch ends. We avoid issuing an
additional blocking flush(p → q), instead we rely on the
user’s call to end the epoch. Second, when the user ends the
epoch, we lock the remote log LGq, record get(p⇐→ q), and
unlock LGq (lines 4-7).

Note that if p fails between issuing get(p⇐→ q) and closing
the epoch, it will not be able to replay it consistently. To
address this problem, p sets Nq[p] at process q to true right
before issuing the first get(p ⇒→ q) (line 1), and to false
after closing the epoch get(p⇒→ q).EC (line 8). During the
recovery, if p notices that any Nq[p] = true, it falls back
to another resilience mechanism (i.e., the last coordinated
checkpoint). If the get is blocking then we set Nq[p] = false
after returning from the call.

Algorithm 1: Logging gets (§ 3.2.3)

Input: get ∶= get(p⇐→ q)
/* Phase 1: starts right before issuing the get */

1 Nq[p] ∶= true
/* Now we issue the get and log the #get */

2 issue get(p⇐→ q)
3 Qp ← Qp ∪#get

/* Phase 2: begins after ending the epoch get.EC */
4 lock(p→ q,LGq)
5 LGq[p] ∶= LGq[p] ∪ get
6 Qp ∶= Qp / #get
7 unlock(p→ q,LGq)
8 Nq[p] ∶= false

4. CAUSAL RECOVERY FOR UC
We now show how to causally recover a failed process

(causally means preserving
coÐ→,

soÐ→, and
hbÐ→). This section

describes technical details on how to guarantee all orders to
ensure a correct access replay. If the reader is not interested
in all details, she may proceed to Section 5 without disrupt-
ing the flow. A causal process recovery has three phases: (1)
fetching uncoordinated checkpoint data, (2) replaying ac-
cesses from remote logs, and (3) in case of a problem during
the replay, falling back to the last coordinated checkpoint.
We first show how we log the respective orderings between
accesses (Section 4.1) and how we prevent replaying some
accesses twice (Section 4.2). We finish with our recovery
scheme (Section 4.3) and a discussion (Section 4.4). Due to
space constraints, we include full proofs in the techreport
version of the paper1.

4.1 Logging Order Information
We now show how to record

soÐ→,
hbÐ→, and

coÐ→. For clar-
ity, but without loss of generality, we separately present
several scenarios that exhaust possible communication/syn-
chronization patterns in our model. We consider three pro-
cesses (p, q, r) and we analyze what data is required to
replay q. We show each pattern in Figure 5.

A. Puts and Flushes First, p and r issue puts and
flushes at q. At both p and r, puts separated by flushes

are ordered with
coÐ→. This order is preserved by recording

epoch counters (.EC) with every logged put(p⇒→ q). Note
that, however, RMA semantics do not order calls issued by
p and r: [put(p ⇒→ q) ∣∣co put(r ⇒→ q)] without additional
process synchronization. Here, we assume access determin-
ism: the recovery output does not depend on the order in
which such puts committed in q’s memory.

B. Gets and Flushes Next, q issues gets and flushes

targeted at p and r. Again,
coÐ→ has to be logged. However,

this time gets targeted at different processes are ordered
(because they are issued by the same process). To log this

1
http://spcl.inf.ethz.ch/Research/Parallel Programming/ftRMA



ordering, q maintains a local Get Counter GCq that is in-
cremented each time q issues a flush(q → ◇) to any other
process. The value of this counter is logged with each get
using the field .GC (cf. Section 2.4).

C. Puts and Locks In this scenario p and r issue puts at
q and synchronize their accesses with locks and unlocks.

This pattern requires logging the
soÐ→ order. We achieve this

with a Synchronization Counter SCq stored at q. After issu-
ing a lock(p→ q), p (the same refers to r) fetches the value
of SCq, increments it, updates remote SCq, and records it
with every put using the field .SC (cf. Section 2.4). In

addition, this scenario requires recording
coÐ→ that we solve

with .EC, analogously as in the “Puts and Flushes” pattern.
D. Gets and Locks Next, q issues gets and uses locks

targeted at p and r. This pattern is solved analogously to
the “Gets and Flushes” pattern.

E. Gsyncs The final pattern are gsyncs (that may

again introduce
hbÐ→) combined with any communication ac-

tion. Upon a gsync, each process q increments its GsyNc
Counter GNCq that is logged in an actions’ .GNC field (cf.
Section 2.4).

Algorithm 2: The causal recovery scheme (§ 4.3, § 4.4).

1 Function recovery()
2 fetch checkpoint data()
3 put logs := {}; get logs := {}
4 forall the q ∈ P ∶ q ≠ pnew do
5 lock(pnew → q)
6 if Nq[pf ] = 1 ∨Mq[pf ] = true then

/* Stop the recovery and fall back to the
last coordinated checkpoint */

7 end
8 put logs := put logs ∪LPq[pf ]
9 get logs := get logs ∪LGq[pf ]

10 unlock(pnew → q)
11 end
12 while |put logs| > 0 ∨ |get logs| > 0 do
13 gnc logs := logsWithMinCnt(GNC, put logs ∪ get logs)
14 while |gnc logs| > 0 do
15 gnc put logs := gnc logs ∩ put logs
16 gnc get logs := gnc logs ∩ get logs
17 ec logs := logsWithMinCnt(EC, gnc put logs)
18 gc logs := logsWithMinCnt(GC, gnc get logs)
19 replayEachAction(ec logs)
20 replayEachAction(gc logs)
21 gnc logs := gnc logs \ (ec logs ∪ gc logs)

22 end
23 put logs := put logs \ gnc logs
24 get logs := get logs \ gnc logs

25 end
26 return

27 Function logsWithMinCnt(Counter, Logs)
/* Return a set with logs from Logs that have the

smallest value of the specified counter (one
of:GNC,EC,GC,SC). */

28 Function replayEachAction(Logs)
/* Reply each log from set Logs in any order. */

29 Function fetchCheckpointData()
/* Fetch the last checkpoint and load into the

memory. */

4.2 Preventing Replaying Accesses Twice
Assume that process p issues a put(p⇒→ q) (immediately

logged by p in LPp[q]) such that put(p ⇒→ q) coÐ→ Cjq . It

means that the state of q recorded in checkpoint Cjq is af-
fected by put(p ⇒→ q). Now assume that q fails and be-
gins to replay the logs. If p did not delete the log of
put(p ⇒→ q) from LPp[q] (it was allowed to do it after q
took Cjq ), then q replays put(p ⇒→ q) and this put affects
its memory for the second time. This is not a problem if

put(p ⇒→ q).combine = false, because such a put always
overwrites the memory region with the same value. How-
ever, if put(p ⇒→ q).combine = true, then q ends up in an
inconsistent state (e.g., if this put increments a memory cell,
this cell will be incremented twice).

To solve this problem, every process p maintains a local
structure Mp[q] ∈ S. When p issues and logs a put(p⇒→ q)
such that put(p⇒→ q).combine = true, it sets Mp[q] ∶= true.
When p deletes put(p ⇒→ q) from its logs, it sets Mp[q] ∶=
false. If q fails, starts to recover, and sees that any Mp[q] =
true, it stops the recovery and falls back to the coordinated
checkpoint. This scheme is valid if access determinism is
assumed. Otherwise we set Mp[q] ∶= true regardless of the
value of put(p ⇒→ q).combine; we use the same approach
if q can issue writes to the memory regions accessed with
remote puts parallel in ∣∣co to these writes.

4.3 Recovering a Failed Process
We now describe a protocol for codes that synchronize

with gsyncs; consult the technical report for other schemes.
Let us denote the failed process as pf . We assume an under-
lying batch system that provides a new process pnew in the
place of pf , and that other processes resume their commu-
nication with pnew after it fully recovers. We illustrate the
scheme in Algorithm 2. First, pnew fetches the checkpointed
data. Second, pnew gets the logs of puts (put logs) and
gets (get logs) related to pf (lines 3-11). It also checks if
any Nq[pf ] = true (see § 3.2.3) or Mq[pf ] = true (see § 4.2),
if yes it instructs all processes to roll back to the last co-
ordinated checkpoint. The protocol uses locks (lines 5,10)
to prevent data races due to, e.g., concurrent recoveries and
log cleanups by q.

The main part (lines 12-26) replays accesses causally. The
recovery ends when there are no logs left (line 12; ∣logs∣ is
the size of the set “logs”). We first get the logs with the

smallest .GNC (line 13) to maintain
cohbÐÐ→ introduced by

gsyncs (see § 4.1 E). Then, within this step, we find the

logs with minimum .EC and .GC to preserve
coÐ→ in issued

puts and gets, respectively (lines 17-18, see § 4.1 A, B). We
replay them in lines 19-20.

4.4 Discussion
Our recovery scheme presents a trade-off between memory

efficiency and time to recover. Process pnew fetches all re-
lated logs and only then begins to replay accesses. Thus, we
assume that its memory has capacity to contain put logs and
get logs; a reasonable assumption if the user program has
regular communication patterns (true for most of today’s
RMA applications [19]). A more memory-efficient scheme
fetches logs while recovering. This incurs performance is-
sues as pnew has to access remote logs multiple times.

5. EXTENDING THE MODEL FOR MORE
RESILIENCE

Our model and in-memory resilience schemes are oblivi-
ous to the underlying hardware. However, virtually all of
today’s systems have a hierarchical hardware layout (e.g.,
cores reside on a single chip, chips reside in a single node,
nodes form a rack, and racks form a cabinet). Multiple ele-
ments may be affected by a single failure at a higher level,
jeopardizing the safety of our protocols. We now extend our
model to cover arbitrary hierarchies and propose topology-



aware mechanisms to make our schemes handle concurrent
hardware failures. Specifically, we propose three following
extensions:

The Hierarchy of Failure Domains A failure domain
(FD) is an element of a hardware hierarchy that can fail
(e.g., a node or a cabinet). FDs constitute an FD hierarchy
(FDH) with h levels. An example FDH is shown in Figure 6,
h = 4. We skip the level of single cores because in practice
the smallest FD is a node (e.g., in the TSUBAME2.0 sys-
tem failure history, there are no core failures [3]). Then, we
define H = ⋃1≤j≤h (⋃1≤i≤Hj

Hi,j) to be the set of all the FD
elements in an FDH. Hi,j and Hj are element i of hierarchy
level j and the number of such elements at level j, respec-
tively. For example, in Figure 6 H3,2 is the third blade (level
2) and H2 = 96.

Figure 6: An example hardware layout (Cray XT/XE) and the cor-
responding FDH (§ 5). In this example, h = 4.

Groups of Processes To improve resilience, we split
the process set P into g equally-sized groups Gi and add
m checksum processes to each group to store checksums
of checkpoints taken in each group (using, e.g., the Reed-
Solomon [36] coding scheme). Thus, every group can resist

m concurrent process crashes. The group size is ∣G∣ = ∣P ∣
g
+m.

New System Definition We now extend the definition
of a distributed system D to cover the additional concepts:

⟨P,E ,S,H,G, poÐ→, soÐ→, hbÐ→, coÐ→,M ⟩. (5)

G = {G1, ...,Gg} is a set of Groups of processes and M ∶
P ×N → H is a function that M aps process p to the FD at
hierarchy level k where p runs: M (p, k) = Hj,k. M defines
how processes are distributed over FDH. For example, if p
runs on blade H1,2 from Figure 6, then M (p,2) =H1,2.

5.1 Handling Multiple Hardware Failures
More than m process crashes in any group Gi result in

a catastrophic failure (CF; we use the name from [8]) that
incurs restarting the whole computation. Depending on how
M distributes processes, such a CF may be caused by several
(or even one) crashed FDs. To minimize the risk of CFs, M
has to be topology-aware (t-aware): for a given level n (called
a t-awareness level), no more than m processes from the
same group can run on the same Hi,k at any level k, k ≤ n:

∀p1, p2, ..., pm ∈ P ∀G ∈ G ∀1 ≤ k ≤ n ∶

(p1 ∈ G ∧ ... ∧ pm ∈ G)⇒ (M (p1, k) ≠ ... ≠ M (pm, k)) (6)

Figure 7 shows an example t-aware process distribution.

Figure 7: T-aware distribution at the node and rack level (§ 5.1).

5.2 Calculating Probability of a CF
We now calculate the probability of a catastrophic fail-

ure (Pcf ) in our model. We later (§ 7.1) use Pcf to show
that our protocols are resilient on a concrete machine (the
TSUMABE2.0 supercomputer [3]). If a reader is not inter-
ested in the derivation details, she may proceed to Section 6
where we present the results. We set m = 1 and thus use
the XOR erasure code, similar to an additional disk in a
RAID5 [12]. We assume that failures at different hierarchy
levels are independent and that any number xj of elements
from any hierarchy level j (1 ≤ xj ≤ Hj , 1 ≤ j ≤ h) can fail.
Thus,

Pcf =
h

∑
j=1

Hj

∑
xj=1

P (xj ∩ xj,cf ) =
h

∑
j=1

Hj

∑
xj=1

Pj(xj)Pj(xj,cf ∣xj). (7)

P (xj ∩ xj,cf) is the probability that xj elements of the j
hierarchy level will fail and result in a catastrophic failure.
Pj(xj) is the probability of the failure of xj elements from
level j of the hierarchy. Pj(xj,cf ∣xj) is the probability that
xj given concurrent failures at hierarchy level j are catas-
trophic to the system. It is difficult to analytically derive
Pj(xj) as it is specific for every machine. For our exam-
ple study (see Section 7.1) we use the failure rates from the
TSUBAME2 failure history [3].

In contrast, Pj(xj,cf ∣xj) can be calculated using combi-
natorial theory. Assume that M distributes processes in a
t-aware way at levels 1 to n of the FDH (1 ≤ n ≤ h). First,
we derive Pj(xj,cf ∣xj) for any level j such that 1 ≤ j ≤ n:

Pj(xj,cf ∣xj) =
Dj ⋅ (∣G∣2 ) ⋅ (Hj−2

xj−2
)

(Hj
xj

)
. (8)

(∣G∣
2
) is the number of the possible catastrophic failure sce-

narios in a single group (m = 1 thus any two process crashes
in one group are catastrophic). Dj is the number of such
single-group scenarios at the whole level j and is equal to

⌈Hj

∣G∣ ⌉ (see Figure 8 for intuitive explanation). (Hj−2
xj−2) is the

number of the remaining possible failure scenarios and (Hj
xj

)
is the total number of the possible failure scenarios. Second,
for remaining levels j (n + 1 ≤ j ≤ h) M is not t-aware and
thus in the worst-case scenario any element crash is catas-
trophic: Pj(xj,cf ∣xj) = 1. The final formula for Pcf is thus

Pcf =
n

∑
j=1

Hj

∑
xj=1

Pj(xj)
D ⋅ (∣G∣2 ) ⋅ (Hj−2

xj−2
)

(Hj
xj

)
+

h

∑
j=n+1

Nj

∑
xj=1

Pj(xj). (9)

6. HOLISTIC RESILIENCE PROTOCOL
We now describe an example conceptual implementation

of holistic fault tolerance for RMA that we developed to
understand the tradeoffs between the resilience and per-
formance in RMA-based systems. We implement it as a



Figure 8: (§ 5.2) Consider three process distribution scenarios by
M (each is t-aware). Optimistically, processes can be distributed
contiguously (scenario A) or partially fragmented (scenario B). To
get the upper bound for Pcf we use the worst-case pattern (scenario
C). Now, to get the number of single-group CF scenarios at the whole
level j (Dj), we need to obtain the number of the groups of hardware
elements at j that hold process groups: ⌈Hj/∣G∣⌉.

portable library (based on C and MPI) called ftRMA. We
utilize MPI-3’s one sided interface, but any other RMA
model enabling relaxed memory consistency could be used
instead (e.g., UPC or Fortran 2008). We use the publicly
available foMPI implementation of MPI-3 one sided as MPI
library [1] but any other MPI-3 compliant library would be
suitable. For simplicity we assume that the user application
uses one contiguous region of shared memory of the same
size at each process. Still, all the conclusions drawn are
valid for any other application pattern based on RMA. Fol-
lowing the MPI-3 specification, we call this shared region of
memory at every process a window. Finally, we divide user
processes (referred to as CoMputing processes, CMs) into
groups (as described in Section 5) and add one CHecksum
process (denoted as CH) per group (m = 1). For any com-
puting process p, we denote the CH in its group as CH(p).
CHs store and update XOR checksums of their CMs.

6.1 Protocol Overview
In this section we provide a general overview of the lay-

ered protocol implementation (see Figure 9). The first part
(layer 1) logs accesses. The second layer takes uncoordinated
checkpoints (called demand checkpoints) to trim the logs.
Layer 3 performs regular coordinated checkpoints. All lay-
ers are diskless. Causal recovery replays memory accesses.
Finally, our FDH increases resilience of the whole protocol.

Figure 9: The overview of the protocol (§ 6.1). Layer 1 and 2 con-
stitute the uncoordinated part of the protocol that falls back to the
coordinated checkpointing if logging fails or if its overhead is too high.

Daly’s Interval Layer 3 uses Daly’s formula [15] as the
optimum interval between coordinated checkpoints:

√

2δM ⋅

[1 + 1/3
√

δ/(2M) + (1/9)(δ/(2M))] − δ (for δ < 2M), or M (for
δ ≥ 2M). M is the MTBF (mean time between failures
that ftRMA handles with coordinated checkpointing) for
the target machine and δ is the time to take a checkpoint.
The user provides M while δ is estimated by our protocol.

Interfacing with User Programs and Runtime
ftRMA routines are called after each RMA action. This
would entail runtime system calls in compiled languages and
we use the PMPI profiling interface [31] in our implementa-
tion. During window creation the user can specify: (1) the
number of CHs, (2) MTBF, (3) whether to use topology-

awareness. After window creation, the protocol divides pro-
cesses into CMs and CHs. If the user enables t-awareness,
groups of processes running on the same FDs are also cre-
ated. In the current version ftRMA takes into account
computing nodes when applying t-awareness.

6.2 Demand Checkpointing
Demand checkpoints address the problem of diminishing

amounts of memory per core in today’s and future comput-
ing centers. If free memory at CM process p is scarce, p se-
lects the process q with the largest LPp[q] or LGp[q] and re-
quests a demand checkpoint. First, p sends a checkpoint re-
quest to CH(q) which, in turn, forces q to checkpoint. This
can be done by: closing all the epochs, locking all the rel-
evant data structures, calculating the XOR checksum, and:
(1) streaming the result to CH(q) piece by piece or (2) send-
ing the result in one bulk. CH(q) integrates the received
checkpoint data into the existing XOR checksum. Vari-
ant (1) is memory-efficient, and (2) is less time-consuming.
Next, q unlocks all the data structures. Finally, CH(q)
sends a confirmation with the epoch number E(p → q)
and respective counters (GNCq, GCq, SCq) to p. Pro-
cess p can delete logs of actions a where a.EC < E(p → q),
a.GNC < GNCq, a.GC < GCq, a.SC < SCq.

7. TESTING AND EVALUATION
In this section we first analyze the resilience of our proto-

col using real data from TSUBAME2.0 [3] failure history.
Then, we test the performance of ftRMA with a NAS
benchmark [14] that computes 3D Fast Fourier Transfor-
mation and a distributed key-value store. We denote the
number of CHs and CMs as ∣CH ∣ and ∣CM ∣, respectively.

7.1 Analysis of Protocol Resilience
Our protocol stores all data in volatile memories to avoid

I/O performance penalties and frequent disk and parallel
file system failures [24,38]. This brings several questions on
whether the scheme is resilient in practical environments.
To answer this question, we calculate the probability of a
catastrophic failure Pcf (using Equations (7) and (9)) of our
protocol, applying t-awareness at different levels of FDH.

We first fix model parameters (Hj , h) to reflect the hi-
erarchy of TSUBAME2.0. TSUBAME2.0 FDH has 4 lev-
els [38]: nodes, power supply units (PSUs), edge switches,
and racks (h = 4) [38]. Then, to get Pcf , we calculate
distributions Pj(xj) that determine the probability of xj
concurrent crashes at level j of the TSUBAME FDH. To
obtain Pj(xj) we analyzed 1962 crashes in the history of
TSUBAME2.0 failures [3]. Following [8] we decided to use
exponential probability distributions, where the argument
is the number of concurrent failures xj . We derived four
probability density functions (PDFs) that approximate the
failure distributions of nodes (0.30142 ⋅ 10−2e−1.3567x1), PSUs
(1.1836 ⋅10−4e−1.4831x2), switches (3.9249 ⋅10−5e−1.5902x3), and
racks (3.2257 ⋅ 10−5e−1.5488x4). The unit is failures per day.
Figures 10a and 10b illustrate two PDF plots with his-
tograms. The distributions for PSUs, switches, and racks are
based on real data only. For nodes it was not always possi-
ble to determine the exact correlation of failures. Thus, we
pessimistically assumed (basing on [8]) that single crashes
constitute 75% of all node failures, two concurrent crashes
constitute 20%, and other values decrease exponentially.
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Figure 10: Distribution of PSU & node failures, Pcf in TSUBAME2.0 running 4,000 processes, and the performance of NAS 3D FFT.

7.1.1 Comparison of Resilience
Figure 10c shows the resilience of our protocol when us-

ing five t-awareness strategies. The number of processes N
is 4,000. Pcf is normalized to one day period. Without
t-awareness (no-topo) a single crash of any FD of TSUB-
AME2.0 is catastrophic, thus Pcf does not depend on ∣CH ∣.
In other scenarios every process from every group runs
on a different node (nodes), PSU (PSUs), switch enclosure
(switches) and rack (racks). In all cases Pcf decreases pro-
portionally to the increasing ∣CH ∣, however at some point
the exponential distributions (Pj(xj)) begin to dominate the
results. Topology-awareness at higher hierarchy levels signif-
icantly improves the resilience of our protocol. For example,
if CH = 5%N , Pcf in the switches scenario is ≈4 times
lower than in nodes. Furthermore, all t-aware schemes are
1-3 orders of magnitude more resilient than no-topo.

The results show that even a simple scheme (nodes) signif-
icantly improves the resilience of our protocol that performs
only in-memory checkpointing and logging. We conclude
that costly I/O flushes to the parallel file system (PFS) are
not required for obtaining a high level of resilience. On the
contrary, such flushes may even increase the risk of failures.
They usually entail stressing the I/O system for significant
amounts of time [38], and stable storage is often the element
most susceptible to crashes. For example, a Blue Gene/P
supercomputer had 4,164 disk fail events in 2011 (for 10,400
total disks) [24], and its PFS failed 77 times, almost two
times more often than other hardware [24].

7.2 Analysis of Protocol Performance
We now discuss the performance of our fault tolerance

protocol after the integration with two applications: NAS
3D FFT and a distributed key-value store. Both of these
applications are characterized by intensive communication
patterns, thus they demonstrate worst-case scenarios for our
protocol. Integrating ftRMA with the application code was
trivial and required minimal code changes resulting in the
same code complexity.

Comparison to Scalable Checkpoint/Restart We
compare ftRMA to Scalable Checkpoint-Restart (SCR) [2],
a popular open-source message passing library that provides
checkpoint and restart capability for MPI codes but does
not enable logging. We turn on the XOR scheme in SCR
and we fix the size of SCR groups [2] so that they match
the analogous parameter in ftRMA (∣G∣). To make the
comparison fair, we configure SCR to save checkpoints to
both in-memory tmpfs (SCR-RAM) and to the PFS (SCR-PFS).

Comparison to Message Logging To compare the log-
ging overheads in MP and RMA we also developed a sim-
ple message logging (ML) scheme (basing on the protocol

from [37]) that records accesses. Similarly to [37] we use ad-
ditional processes to store protocol-specific access logs; the
data is stored at the sender’s or receiver’s side depending on
the type of operation.

We execute all benchmarks on the Monte Rosa system
and we use Cray XE6 computing nodes. Each node contains
four 8-core 2.3 GHz AMD Opterons 6276 (Interlagos) and is
connected to a 3D-Torus Gemini network. We use the Cray
Programming Environment 4.1.46 to compile the code.

7.2.1 NAS 3D Fast Fourier Transformation
Our version of the NAS 3D FFT [14] benchmark is based

on MPI-3 nonblocking puts (we exploit the overlap of com-
putation and communication). The benchmark calculates
3D FFT using a 2D decomposition.

Performance of Coordinated Checkpointing We
begin with evaluating our checkpointing “Gsync” scheme.
Figure 10d illustrates the performance of NAS FFT fault-
free runs. We compare: the original application code with-
out any fault-tolerance (no-FT), ftRMA, SCR-RAM, and
SCR-PFS. We fix ∣CH ∣ = 12.5%∣CM ∣. We include two
ftRMA scenarios: f-daly (use Daly’s formula for co-
ordinated checkpoints), and f-no-daly (fixed frequency
of checkpoints without Daly’s formula, ≈2.7s for 1024
processes). We use the same t-awareness policy in all
codes (nodes). The tested schemes have the respective
fault-tolerance overheads over the baseline no-FT: 1-5%
(f-daly), 1-15% (f-no-daly), 21-37% (SCR-RAM) and 46-
67% (SCR-PFS). The performance of SCR-RAM is lower
than f-daly and f-no-daly because ftRMA is based on
the Gsync scheme that incurs less synchronization. SCR-PFS
entails the highest overheads due to costly I/O flushes.

Performance of Demand Checkpointing We now
analyze how the size of the log impacts the number of de-
mand checkpoints and the performance of fault-free runs
(see Figure 11a). Dedicating less than 44 MiB of memory
for storing logs (per process) triggers demand checkpoint re-
quests to clear the log; checkpoints are taken every ≈0.25s
on average (when the size of the log is 36 MiB). This results
in performance penalties but leaves more memory available
to the the user.

Performance of Access Logging As the next step we
evaluate our logging scheme. Figure 11b illustrates the per-
formance of fault-free runs. We compare no-FT, ftRMA,
and our ML protocol (ML). ftRMA adds only ≈8-9% of over-
head to the baseline (no-FT) and consistently outperforms
ML by ≈9% due to the smaller amount of protocol-specific
interaction between processes.

Varying |CH| and T-Awareness Policies Here, we
analyze how ∣CH ∣ and t-awareness impact the performance
of NAS FFT fault-free runs. We set ∣CH ∣ = 12.5%∣CM ∣ and
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Figure 11: Performance of the NAS FFT code (§ 7.2.1) and the key-value store (§ 7.2.2).

∣CH ∣ = 6.25%∣CM ∣, and we use the no-topo and nodes t-
awareness policies. The results show that all these schemes
differ negligibly from no-FT by 1-5%.

7.2.2 Key-Value Store
Our key-value store is based on a simple distributed

hashtable (DHT) that stores 8–Byte integers. The DHT
consists of parts called local volumes constructed with fixed-
sized arrays. Every local volume is managed by a different
process. Inserts are based on MPI-3 atomic Compare-And-
Swap and Fetch-And-Op functions. Elements after hash col-
lisions are inserted in the overflow heap that is the part of
each local volume. To insert an element, a thread atomi-
cally updates the pointers to the next free cell and the last
element in the local volume. Memory consistency is ensured
with flushes. One get and one put are logged if there is no
hash collision, otherwise 6 puts and 4 gets are recorded.

Performance of Access Logging We now measure the
relative performance penalty of logging puts and gets. Dur-
ing the benchmark, processes insert random elements with
random keys. We focus on inserts only as they are perfectly
representative for the logging evaluation. To simulate real-
istic requests, every process waits for a random time after
every insert. The function that we use to calculate this in-
terval is based on the exponential probability distribution:
fδe−δx, where f is a scaling factor, δ is a rate parameter and
x ∈ [0; b) is a random number. The selected parameter values
ensure that every process spends ≈5-10% of the total run-
time on inserting elements. For many computation-intense
applications this is already a high amount of communication.
We again compare no-FT, ML, and two ftRMA scenarios:
f-puts (logging only puts) and f-puts-gets (logging puts
and gets). We fix ∣CH ∣ = 12.5%∣CM ∣ and use the nodes

t-awareness. We skip SCR as it does not enable logging.
We present the results in Figure 11c. For N = 256, the log-

ging overhead over the baseline (no-FT) is: ≈12% (f-puts),
33% (f-gets), and 40% (ML). The overhead of logging puts
is due to the fact that every operation is recorded directly
after issuing. Traditional message passing protocols suffer
from a similar effect [17]. The overhead generated by log-
ging gets in f-puts-gets and ML is more significant be-
cause, due to RMA’s one-sided semantics, every get has
to be recorded remotely. In addition, f-puts-gets suffers
from synchronization overheads (caused by concurrent ac-
cesses to LG), while ML from inter-process protocol-specific
communication. Discussed overheads heavily depend on the
application type. Our key-value store constitutes a worst-
case scenario because it does not allow for long epochs that

could enable, e.g., sending the logs of multiple gets in a
bulk. The performance penalties would be smaller in appli-
cations that overlap computation with communication and
use non blocking gets.

8. RELATED WORK
In this section we discuss existing checkpointing and log-

ging schemes (see Figure 12). For excellent surveys, see
[6, 17, 40]. Existing work on fault tolerance in RMA/PGAS
is scarce, an example scheme that uses PGAS for data repli-
cation can be found in [5].

8.1 Checkpointing Protocols
These schemes are traditionally divided into uncoordi-

nated, coordinated, and communication induced, depending
on process coordination scale [17]. There are also complete
and incremental protocols that differ in checkpoint sizes [40].

Uncoordinated Schemes Uncoordinated schemes do
not synchronize while checkpointing, but may suffer from the
domino effect or complex recoveries [17]. Example protocols
are based on dependency [9] or checkpoint graphs [17]. A
recent scheme targeting large-scale systems is Ken [41].

Coordinated Schemes Here, processes synchronize to
produce consistent global checkpoints. There is no domino
effect and recovery is simple but synchronization may incur
severe overheads. Coordinated schemes can be blocking [17]
or non-blocking [11]. There are also schemes based on loosely
synchronized clocks [39] and minimal coordination [26].

Communication Induced Schemes Here, senders add
scheme-specific data to application messages that receivers
use to, e.g., avoid taking useless checkpoints. These schemes
can be index-based [21] or model-based [17, 32].

Incremental Checkpointing An incremental check-
point updates only the data that changed since the previous
checkpoint. These protocols are divided into page-based [40]
and hash-based [4]. They can reside at the level of an ap-
plication, a library, an OS, or hardware [40]. Other schemes
can be compiler-enhanced [10] or adaptive [4].

Others Recently, multi-level checkpointing was intro-
duced [8, 30, 38]. Adaptive checkpointing based on failure
prediction is discussed in [28]. [35] presents diskless check-
pointing. Other interesting schemes are based on: Reed-
Solomon coding [8], cutoff and compression to reduce check-
point sizes [23], checkpointing on clouds [33], reducing I/O
bottlenecks [25], and performant checkpoints to PFS [7].

8.2 Logging Protocols
Logging enables restored processes to replay their execu-

tion beyond the most recent checkpoint. Log-based pro-



Incremental Complete
Optimistic [37]

Scale of
coordination

Checkpoint-based protocols

Other schemes

Logging-based protocols

Pessimistic [18]

Causal [16]

Receiver-based [17] Non-blocking [11]

Uncoordinated [18,20,20,41]

Coordinated [25]

Comm.-induced

Dep. graph [9]

Checkp. graph [17]
Blocking [17]

Way of detecting
changes in data

Other inc.
schemes

Size of checkpoints

Multi-level
[8, 30,38]

Page-based [40]

Hash-based [4]

Diskless [35]

Library level

OS level

Stable storage
[7, 25]

Adaptive [4]

Compiler
enhanced [10]

Application level

Hardware level

Way of coordination

Way of recoveryMoment of checkp.

Other coordinated schemes

Model-based [32]

Clock-based [39] Min.-coordination [26]

Index-based [17]

Moment of logging

Place of logs

Addressed comm.
model

Sender-based [20,37]

RMA [this paper]

Message-passing
[16,18,20,37]

Place of residence [40]

Checkpointing
on clouds. [33]

Figure 12: An overview of existing checkpointing and logging schemes (§ 8). A dashed rectangle illustrates a new sub-hierarchy introduced in
the paper: dividing the logging protocols with respect to the communication model that they address.

tocols are traditionally categorized into: pessimistic, opti-
mistic, causal [17]; they can also be sender-based [20,37] and
receiver-based [17] depending on which side logs messages.

Pessimistic Schemes Such protocols log events before
they influence the system. This ensures no orphan processes
and simpler recovery, but may incur severe overheads during
fault-free runs. An example protocol is V-MPICH [18].

Optimistic Schemes Here, processes postpone log-
ging messages to achieve, e.g., better computation-
communication overlap. However, the algorithms for recov-
ery are usually more complicated and crashed processes may
become orphans [17]. A recent scheme can be found in [37].

Causal Schemes In such schemes processes log and ex-
change (by piggybacking to messages) dependencies needed
for recovery. This ensures no orphans but may reduce band-
width [17]. An example protocol is discussed in [16].

8.3 Other Important Studies & Discussion
Deriving an optimum checkpointing interval is presented

in [15]. Formalizations targeting resilience can be found
in [17, 32]. Containment domains for encapsulating failures
within a hierarchical scope are discussed in [13]. Modeling
and prediction of failures is addressed in [8, 13]. Work on
send determinism in MP can be found in [20].

Our study goes beyond the existing research scope pre-
sented in this section. First, we develop a fault toler-
ance model that covers virtually whole rich RMA seman-
tics. Other existing formalizations (e.g., [6, 17, 32]) target
MP only. We then use the model to formally analyze why re-
silience for RMA differs from MP and to design checkpoint-
ing, logging, and recovery protocols for RMA. We identify
and propose solutions to several challenges in resilience for
RMA that do not exist in MP, e.g.: consistency problems
caused by the relaxed RMA memory model (§ 3.1, § 3.2.2,
§ 3.2.3), access non-determinism (§ 4.2), issues due to one-
sided RMA communication (§ 3.2.1), logging multiple RMA-
specific orders (§ 4.1), etc. Our model enables proving cor-
rectness of proposed schemes; all proofs omitted due to space
constraints can be found in the technical report. Extend-
ing our model for arbitrary hardware hierarchies generalizes
the approach from [8] and enables formal reasoning about
crashes of hardware elements and process distribution. Fi-
nally, our protocol leverages and combines several important
concepts and mechanisms (Daly’s interval [15], multi-level
design [30], etc.) to improve the resilience of RMA systems
even further and is the first implementation of holistic fault
tolerance for RMA.

9. CONCLUSION
RMA programming models are growing in popularity and

importance as they allow for the best utilization of hardware

features such as OS-bypass or zero-copy data transfer. Still,
little work addresses fault tolerance for RMA.

We established, described, and explored a complete formal
model of fault tolerance for RMA and illustrated how to use
it to design and reason about resilience protocols running
on flat and hierarchical machines. It will play an important
role in making emerging RMA programming fault tolerant
and can be easily extended to cover, e.g., stable storage.

Our study does not resort to traditional less scalable
mechanisms that often rely on costly I/O flushes. The imple-
mentation of our holistic protocol adds negligible overheads
to the applications runtime, for example 1-5% for in-memory
checkpointing and 8% for fully transparent logging of remote
memory accesses in the NAS 3D FFT code. Our probabil-
ity study shows that the protocol offers high resilience. The
idea of demand checkpoints will help alleviate the problem
of limited memory amounts in today’s petascale and future
exascale computing centers.

Finally, our work provides the basis for further reasoning
about fault-tolerance not only for RMA, but also for all the
other models that can be constructed upon it, such as task-
based programming models. This will play an important
role in complex heterogeneous large-scale systems.
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