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Social networks

Engineering networksUseful model
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What does “huge” 
mean?
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Sunway TaihuLight

TaihuLight Top500 ranking:  #3 (2018 Nov),  #1 (2016, 2017)

• PageRank iteration on 12 trillion edges in 8.5s (1.4 TPEPS)
• On 70 trillion edges, nearly 2 TPEPS for PageRank and WCC

• 774 GPEPS for BFS
(PEPS = processes edges per second as opposed to TEPS)

7Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
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Log(Graph): effective compression with 
low-overhead decompression!

How about 
compression?
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We show that 
they are in practice
both small and fast!
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PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
#Substreams = 64, #Threads = 4

Hybrid

CPU

Even > 4x over 
parallel CPU 
baselines!

State-of-the-art MWM 
algorithm, space-optimal, 

time-optimal (O(m)), 
(2+ε)-approximation
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Graph Coloring
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Check out the paper 
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We predict that:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

Transaction startup 
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dominate

Transactions’ cost 
grows slower
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𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

Indeed:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

Yes, we 
can!

Yes, we can!
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The sweetspot! 
(144 vertices)
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