
spcl.inf.ethz.ch

@spcl_eth

M. BESTA, T. HOEFLER

Towards High-Performance Processing, Storage, and Analytics
of Extreme-Scale Graphs

With contributions from Dimitri Stanojevic, Simon Weber, Lukas Gianinazzi, Andrey Ivanov, Marc Fischer,
Robert Gerstenberger, Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang Chen,
Lufei Zhang, Xiaosong Ma, Xin Liu, Weimin Zheng, and Jingfang Xu and others.

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

Why do we care?

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

Why do we care?

Useful model

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

Why do we care?

Social networks

Useful model

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

Why do we care?

Social networks

Engineering networksUseful model

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry

Communication networks

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry

Communication networks

Machine learning

2

spcl.inf.ethz.ch

@spcl_eth

[Extreme-Scale] Graphs

Why do we care?

Social networks

Engineering networksUseful model

Biological networks
Physics, chemistry

Communication networks

...even philosophy 

Machine learning

2

spcl.inf.ethz.ch

@spcl_eth

Problems!

3

spcl.inf.ethz.ch

@spcl_eth

Problems!

3

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

3

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

3

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

3

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

3

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

3

spcl.inf.ethz.ch

@spcl_eth

Problems!

4

spcl.inf.ethz.ch

@spcl_eth

Problems!

4

What does “huge”
mean?

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist 5

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist 5

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Memory limited

LigraGalois

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist 5

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist 5

spcl.inf.ethz.ch

@spcl_eth

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Giraph

PowerGraph

PowerLyraGraM

Gemini

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist 5

spcl.inf.ethz.ch

@spcl_eth

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Bigger

Fa
st

e
r

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Giraph

PowerGraph

PowerLyraGraM

Gemini

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist 5

spcl.inf.ethz.ch

@spcl_eth

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Bigger

Fa
st

e
r

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Giraph

PowerGraph

PowerLyraGraM

Gemini

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

ShenTu [1]

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Fa
st

e
r

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist 5

spcl.inf.ethz.ch

@spcl_eth

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Bigger

Fa
st

e
r

Practice of Extreme-Scale Graph Processing

Out-of-core

In-memory

Single-node Multi-node

Giraph

PowerGraph

PowerLyraGraM

Gemini

Memory limited

LigraGalois

Chaos

Graphene

MosaicG-Store

Too slow
(> 20 mins per PageRank iteration on 1-trillion-edge graph)

ShenTu [1]

Giraph, 2015, Real-world

GraM, 2015, Synthetic

Chaos, 2015, Synthetic

G-Store, 2016, Synthetic

Graphene, 2017, Synthetic

Mosaic, 2017, Synthetic

ShenTu, Real-world

ShenTu, Synthetic

1

10

100

1000

10000

100000

1 4 16 64

Ti
m

e
fo

r
o

n
e

Pa
ge

R
an

k
It

er
at

io
n

Number of graph edges (trillion)

Fa
st

e
r

largest published
graph processing run

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist 5

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

6

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

6

KONECT graph datasets

Webgraph datasets

Web data commons datasets

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

6

KONECT graph datasets

Webgraph datasets

Web data commons datasets

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?
Largest Published Graph Computation [1]

Gordon Bell Finalist 2018
ShenTu on Sunway TaihuLight

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist6

KONECT graph datasets

Webgraph datasets

Web data commons datasets

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

271 billion vertices,
12 trillion edges

Kronecker graph: 4.4 trillion vertices, 70 trillion edges

Largest Published Graph Computation [1]
Gordon Bell Finalist 2018

ShenTu on Sunway TaihuLight

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist6

KONECT graph datasets

Webgraph datasets

Web data commons datasets

spcl.inf.ethz.ch

@spcl_eth

How large are extreme-scale graphs today?

271 billion vertices,
12 trillion edges

Kronecker graph: 4.4 trillion vertices, 70 trillion edges

Largest Published Graph Computation [1]
Gordon Bell Finalist 2018

ShenTu on Sunway TaihuLight

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist6

KONECT graph datasets

Webgraph datasets

Web data commons datasets

spcl.inf.ethz.ch

@spcl_eth

Sunway TaihuLight

7Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

spcl.inf.ethz.ch

@spcl_eth

Sunway TaihuLight

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

7Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

spcl.inf.ethz.ch

@spcl_eth

Sunway TaihuLight

TaihuLight Top500 ranking: #3 (2018 Nov), #1 (2016, 2017)

• PageRank iteration on 12 trillion edges in 8.5s (1.4 TPEPS)
• On 70 trillion edges, nearly 2 TPEPS for PageRank and WCC

• 774 GPEPS for BFS
(PEPS = processes edges per second as opposed to TEPS)

7Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

spcl.inf.ethz.ch

@spcl_eth

Problems!

9

spcl.inf.ethz.ch

@spcl_eth

Problems!

9

spcl.inf.ethz.ch

@spcl_eth

Problems!

9

spcl.inf.ethz.ch

@spcl_eth

Problems!

9

How about
compression?

spcl.inf.ethz.ch

@spcl_eth

Problems!

9

How about
compression?

spcl.inf.ethz.ch

@spcl_eth

Problems!

9

How about
compression?

spcl.inf.ethz.ch

@spcl_eth

Problems!

9

Log(Graph): effective compression with
low-overhead decompression!

How about
compression?

spcl.inf.ethz.ch

@spcl_eth

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Edge
weights

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Edge
weights

Log ()

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Log ()

Edge
weights

Log ()

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Key idea
Encode different parts of a graph
representation using (logarithmic)

storage lower bounds
Vertex
labels

Adjacency arrays
(edges adjacent
to each vertex)

Offsets (locations)
of adj. arrays

Log ()

Log ()

Log ()

Edge
weights

Log ()

What is the lowest storage we can
(hope to) use to store a graph?

The storage
lower bound Ω

Shannon’s approach
logarithmic

(one needs at least log|S|
bits to store an object

from an arbitrary set S)

𝑆 = {𝑥1, 𝑥2, 𝑥3, … }
𝑥1 → 0…01
𝑥2 → 0…10
𝑥3 → 0…11

…

Which one? 

10M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

Adjacency arrays (one
contiguous array)

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)

......

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)

Log ()

Log ()

...

......

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

......

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

......

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

......

log 𝑛
Global
bound

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

......

log 𝑛
Global
bound

2 3 4 5

𝑛 = 1M

𝑣

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

......

log 𝑛
Global
bound

2 3 4 5

𝑛 = 1M
Local bounds

log(max(𝑣𝑖))

𝑣

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

......

log 𝑛
Global
bound

2 3 4 5

𝑛 = 1M
Local bounds

log(max(𝑣𝑖))

2 3 4 5 1M

𝑛 = 1M

𝑣 𝑣

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

ADJACENCY ARRAY

GRAPH REPRESENTATION

M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Physical realization

1 2 40 3 0 3 1 2 3 5 4

40 2 6 9 11

Offsets (another contiguous array)

Adjacency arrays (one
contiguous array)...

......

log 𝑛
Global
bound

2 3 4 5

𝑛 = 1M
Local bounds

log(max(𝑣𝑖))

2 3 4 5 1M

𝑛 = 1M

Permute vertex labels
to reduce such

maximum labels in as
many neighborhoods

as possible

𝑣 𝑣

Vertex
labels

Log (),1 Edge
weights

Log ()

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

12M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Adjacency
structureLog ()3

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

12M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Adjacency
structureLog ()3

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

12M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Adjacency
structureLog ()3

Succinct data structures [1]

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

12M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Adjacency
structureLog ()3

Succinct data structures [1]

They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

12M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Adjacency
structureLog ()3

Succinct data structures [1]

They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

Compact data structures [1]

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

12M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Adjacency
structureLog ()3

Succinct data structures [1]

They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

Compact data structures [1]

They use O(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

spcl.inf.ethz.ch

@spcl_eth

Offset structureLog ()2

12M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

Adjacency
structureLog ()3

Succinct data structures [1]

They use ⌈Q⌉ + o(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

[1] G. J. Jacobson. Succinct Static Data Structures. 1988

Compact data structures [1]

They use O(Q) bits (⌈Q⌉ - lower bound),
they answer various queries in o(Q) time.

We show that
they are in practice
both small and fast!

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can
be arbitrarily

combined.

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can
be arbitrarily

combined.

How to ensure fast, manageable,
and extensible implementation

of all these schemes?

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can
be arbitrarily

combined.

How to ensure fast, manageable,
and extensible implementation

of all these schemes?

We use C++ templates to develop
a platform that facilitates implementation,
benchmarking, analysis, and extending the

discussed and many other schemes

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OVERVIEW OF FULL LOG(GRAPH) DESIGN

Looks complex 

We analyzed / implemented (in total):
- 6 schemes for compressing fine elements,
- 10+ schemes for compressing offset structures,
- 4+ schemes for compressing adjacency structures

... they all can
be arbitrarily

combined.

How to ensure fast, manageable,
and extensible implementation

of all these schemes?

We use C++ templates to develop
a platform that facilitates implementation,
benchmarking, analysis, and extending the

discussed and many other schemes

13M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

14M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

14M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

Log(Graph) consistently
reduces storage overhead

(by 20-35%)

14M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

Log(Graph)
accelerates GAPBS

Log(Graph) consistently
reduces storage overhead

(by 20-35%)

14M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

SSSP

Number of vertices: 4M
Kronecker graphs

Vertex
labels

Log (),1 Edge
weights

Log () Storage, Performance

Log(Graph)
accelerates GAPBS

Both storage and performance
are improved simultaneously

Log(Graph) consistently
reduces storage overhead

(by 20-35%)

14M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OTHER RESULTS

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

OTHER RESULTS

15
M. Besta et al.: “Log(Graph): A Near-Optimal High-Performance Graph Representation”, PACT’18

spcl.inf.ethz.ch

@spcl_eth

Problems!

16

Log(Graph): effective compression with
low-overhead decompression!

How about
compression?

spcl.inf.ethz.ch

@spcl_eth

Problems!

16

Log(Graph): effective compression with
low-overhead decompression!

How about
compression?

What if we don’t
need full precision?

spcl.inf.ethz.ch

@spcl_eth

Problems!

16

How about
compression?

What if we don’t
need full precision?

spcl.inf.ethz.ch

@spcl_eth

Problems!

16

How about
compression?

What if we don’t
need full precision?

spcl.inf.ethz.ch

@spcl_eth0%JPEG compression level:

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth0%50%JPEG compression level:

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth0%50%90%JPEG compression level:

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth0%50%90%99%JPEG compression level:

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth0%50%90%99%JPEG compression level:

Can we apply a
similar reasoning
to graphs? How?

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth0%50%90%99%JPEG compression level:

Can we apply a
similar reasoning
to graphs? How?

What should we
pay attention to?

(there is no “visual
similarity” measure

in this case…)

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth0%50%90%99%JPEG compression level:

Can we apply a
similar reasoning
to graphs? How?

What should we
pay attention to?

(there is no “visual
similarity” measure

in this case…)

There are many theoretical works into
sparsifying graphs (spanners, spectral
sparsifiers, cut sparsifiers, …). How to
efficiently develop, use, and compare

them, and which ones to select?

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth0%50%90%99%JPEG compression level:

Can we apply a
similar reasoning
to graphs? How?

What should we
pay attention to?

(there is no “visual
similarity” measure

in this case…)

There are many theoretical works into
sparsifying graphs (spanners, spectral
sparsifiers, cut sparsifiers, …). How to
efficiently develop, use, and compare

them, and which ones to select?

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth

18

Slim Graph Overview

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth

18

Slim Graph Overview

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth

18

Slim Graph Overview

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth

18

Slim Graph Overview

M. Besta et al.: “Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics”, ACM/IEEE SC’19

spcl.inf.ethz.ch

@spcl_eth

Example Compression Kernel: Triangle Reduction

19

spcl.inf.ethz.ch

@spcl_eth

Example Compression Kernel: Triangle Reduction

19

spcl.inf.ethz.ch

@spcl_eth

Example Compression Kernel: Triangle Reduction

19

spcl.inf.ethz.ch

@spcl_eth

Example Compression Kernel: Triangle Reduction

19

spcl.inf.ethz.ch

@spcl_eth

20

spcl.inf.ethz.ch

@spcl_eth

20

spcl.inf.ethz.ch

@spcl_eth

20

spcl.inf.ethz.ch

@spcl_eth

20

spcl.inf.ethz.ch

@spcl_eth

20

spcl.inf.ethz.ch

@spcl_eth

20

spcl.inf.ethz.ch

@spcl_eth

20

spcl.inf.ethz.ch

@spcl_eth

21

Various real-
world graphs

are used

Storage Reductions vs. Speedups vs. Accuracy Loss [vs. Compression Overhead]

spcl.inf.ethz.ch

@spcl_eth

21

Various real-
world graphs

are used

Storage Reductions vs. Speedups vs. Accuracy Loss [vs. Compression Overhead]

spcl.inf.ethz.ch

@spcl_eth

21

Various real-
world graphs

are used

Storage Reductions vs. Speedups vs. Accuracy Loss [vs. Compression Overhead]

spcl.inf.ethz.ch

@spcl_eth

21

Various real-
world graphs

are used

Storage Reductions vs. Speedups vs. Accuracy Loss [vs. Compression Overhead]

spcl.inf.ethz.ch

@spcl_eth

21

Various real-
world graphs

are used

Storage Reductions vs. Speedups vs. Accuracy Loss [vs. Compression Overhead]

spcl.inf.ethz.ch

@spcl_eth

21

Various real-
world graphs

are used

Storage Reductions vs. Speedups vs. Accuracy Loss [vs. Compression Overhead]

spcl.inf.ethz.ch

@spcl_eth

Problems!

22

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

22

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

22

spcl.inf.ethz.ch

@spcl_eth

What graph
programming

paradigm for FPGAs
and why?

23M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

What graph
programming

paradigm for FPGAs
and why?

23M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

What graph
programming

paradigm for FPGAs
and why?

To be able to utilize pipelining well,
we really want to use edge streaming

23M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

DRAM

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

DRAM

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit
(CPU, GPU, FPGA, …, for

a moment we don’t care)

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit
(CPU, GPU, FPGA, …, for

a moment we don’t care)

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit
(CPU, GPU, FPGA, …, for

a moment we don’t care)

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit
(CPU, GPU, FPGA, …, for

a moment we don’t care)

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

DRAM

Some processing unit
(CPU, GPU, FPGA, …, for

a moment we don’t care)

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

Streaming all edges in and out is one
“pass”. Repeat it a certain (algorithm-

dependent) number of times

DRAM

Some processing unit
(CPU, GPU, FPGA, …, for

a moment we don’t care)

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

Streaming all edges in and out is one
“pass”. Repeat it a certain (algorithm-

dependent) number of times

DRAM

Some processing unit
(CPU, GPU, FPGA, …, for

a moment we don’t care)

Issues…

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

Streaming all edges in and out is one
“pass”. Repeat it a certain (algorithm-

dependent) number of times

…How to minimize the number of “passes” over edges? This can get
really bad in the “traditional” edge-centric approach (e.g., BFS needs

D passes; D = diameter [1]).

[1] A. Roy et al. X-stream: Edge-
Centric Graph Processing using
Streaming Partitions. SOSP. 2013.

DRAM

Some processing unit
(CPU, GPU, FPGA, …, for

a moment we don’t care)

…Processing edges
is sequential – how

to incorporate
parallelism?

Issues…

What graph
programming

paradigm for FPGAs
and why?

24M. Besta et al.: “Substream-Centric Maximum Matchings on FPGA”, ACM FPGA’19

spcl.inf.ethz.ch

@spcl_eth

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

25

What graph
programming

paradigm for FPGAs
and why?

spcl.inf.ethz.ch

@spcl_eth

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

25

What graph
programming

paradigm for FPGAs
and why?

Substream-Centric: A new paradigm for
processing graphs

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches
What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches
What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

Divide the input stream of
edges according to some

(algorithm-specific) pattern

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

…

Divide the input stream of
edges according to some

(algorithm-specific) pattern

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

…

Divide the input stream of
edges according to some

(algorithm-specific) pattern

Process “substreams”
independently

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

…

Divide the input stream of
edges according to some

(algorithm-specific) pattern

Process “substreams”
independently

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

…

Divide the input stream of
edges according to some

(algorithm-specific) pattern

Process “substreams”
independently

Merge
substreams

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

…

Divide the input stream of
edges according to some

(algorithm-specific) pattern

Process “substreams”
independently

Merge
substreams

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

…

Divide the input stream of
edges according to some

(algorithm-specific) pattern

Process “substreams”
independently

Merge
substreams

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

…

Divide the input stream of
edges according to some

(algorithm-specific) pattern

Process “substreams”
independently

Merge
substreams

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

Use case: expressing
maximum matchings

in this paradigm?
25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

…

Divide the input stream of
edges according to some

(algorithm-specific) pattern

Process “substreams”
independently

Merge
substreams

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

Use case: expressing
maximum matchings

in this paradigm?

Matching: A set of edges such that no
two edges share a common vertex

25

spcl.inf.ethz.ch

@spcl_eth

A new paradigm for processing graphs

Substream-Centric Graph Processing
It enhances edge-
centric streaming

approaches

…

Divide the input stream of
edges according to some

(algorithm-specific) pattern

Process “substreams”
independently

Merge
substreams

What programming
paradigm and why?

DRAM

…Processing edges
is sequential – how

to incorporate
parallelism?

Weighted
edges

Use case: expressing
maximum matchings

in this paradigm?

Matching: A set of edges such that no
two edges share a common vertex

Maximum Weighted Matching (MWM): A matching
such that the sum of the edge weights is maximized

25

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

DRAM

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…
[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

Select edges
with weights:

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 𝑖

Select edges
with weights:

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

A parameter
that controls

accuracy

DRAM

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

Select edges
with weights:

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

A parameter
that controls

accuracy

DRAM

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges
with weights:

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

A parameter
that controls

accuracy

DRAM

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges
with weights:

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

A parameter
that controls

accuracy

DRAM

L: Number of
substreams

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges
with weights:

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

A parameter
that controls

accuracy

DRAM

L: Number of
substreams

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges
with weights:

Greedy merge of
matchings into
the final MWM

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

A parameter
that controls

accuracy

DRAM

L: Number of
substreams

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges
with weights:

Greedy merge of
matchings into
the final MWM

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

A parameter
that controls

accuracy

DRAM

L: Number of
substreams

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges
with weights:

Greedy merge of
matchings into
the final MWM

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

A parameter
that controls

accuracy

DRAM

L: Number of
substreams

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

≥ 1 + 𝜖 0

≥ 1 + 𝜖 𝑖

≥ 1 + 𝜖 𝐿−1

Select edges
with weights:

Greedy merge of
matchings into
the final MWM

Substream 0

Substream L-1

Substream i

Compute unweighted
matchings separately

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

A parameter
that controls

accuracy

DRAM

L: Number of
substreams

26

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

27

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

Mapping the algorithm to the „right”
hardware configuration

27

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

27

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

27

spcl.inf.ethz.ch

@spcl_eth

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

27

spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

27

spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

CPU
Time: O(Ln)
Work: O(Ln)

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

27

spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

CPU
Time: O(Ln)
Work: O(Ln)

Use a hybrid
CPU-FPGA

setting!

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

27

spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

CPU
Time: O(Ln)
Work: O(Ln)

Use a hybrid
CPU-FPGA

setting!

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

27

spcl.inf.ethz.ch

@spcl_eth

FPGA
Time: O(m)

Work: O(Lm)

CPU
Time: O(Ln)
Work: O(Ln)

Use a hybrid
CPU-FPGA

setting!

Substream-Centric Graph Processing

…

How to minimize the
number of “passes”?

Substream 0

Substream L-1

Substream i

[1] M. Crouch and D. M. Stubbs. Improved streaming Algorithms for weighted Matching, via unweighted Matching. LIPIcs-Leibniz Informatics. 2014.

+ Crouch and Stubbs Matchings [1]

DRAM

27

spcl.inf.ethz.ch

@spcl_eth

SC-OPT secures
highest performance

PERFORMANCE ANALYSIS

VARIOUS GRAPHS

Parameters:
#Substreams = 64, #Threads = 4

Hybrid

CPU

Even > 4x over
parallel CPU
baselines!

State-of-the-art MWM
algorithm, space-optimal,

time-optimal (O(m)),
(2+ε)-approximation

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

29

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

29

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

29

spcl.inf.ethz.ch

@spcl_eth

Problems!

250
Watts

120
Watts

29

How about
others?

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Theory and Practice of Streaming Graph
Processing” – soon on arXiv

• Overview of streaming algorithms,
approximations, research gaps

• Way forward for FPGA?

Streaming Graphs Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Theory and Practice of Streaming Graph
Processing” – soon on arXiv

• Overview of streaming algorithms,
approximations, research gaps

• Way forward for FPGA?

Streaming Graphs Survey

• “Graph Processing on FPGAs: Taxonomy,
Survey, Challenges” – arXiv

• Relatively young field of graph processing
on FPGAs / in hardware

• Identify research opportunities

Graphs on FPGA Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Theory and Practice of Streaming Graph
Processing” – soon on arXiv

• Overview of streaming algorithms,
approximations, research gaps

• Way forward for FPGA?

Streaming Graphs Survey

• “Graph Processing on FPGAs: Taxonomy,
Survey, Challenges” – arXiv

• Relatively young field of graph processing
on FPGAs / in hardware

• Identify research opportunities

Graphs on FPGA Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

• “Accelerating Irregular Computations
with Hardware Transactional Memory
and Active Messages” – ACM HPDC’15

Hardware Transactions for Graphs

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Theory and Practice of Streaming Graph
Processing” – soon on arXiv

• Overview of streaming algorithms,
approximations, research gaps

• Way forward for FPGA?

Streaming Graphs Survey

• “Graph Processing on FPGAs: Taxonomy,
Survey, Challenges” – arXiv

• Relatively young field of graph processing
on FPGAs / in hardware

• Identify research opportunities

Graphs on FPGA Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

• “Accelerating Irregular Computations
with Hardware Transactional Memory
and Active Messages” – ACM HPDC’15

Hardware Transactions for Graphs
• “Slim Graph: Practical Lossy Graph

Compression for Approximate Graph
Processing, Storage, and Analytics” –
ACM/IEEE SC’19

Slim Graph

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Theory and Practice of Streaming Graph
Processing” – soon on arXiv

• Overview of streaming algorithms,
approximations, research gaps

• Way forward for FPGA?

Streaming Graphs Survey

• “Graph Processing on FPGAs: Taxonomy,
Survey, Challenges” – arXiv

• Relatively young field of graph processing
on FPGAs / in hardware

• Identify research opportunities

Graphs on FPGA Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

• “Accelerating Irregular Computations
with Hardware Transactional Memory
and Active Messages” – ACM HPDC’15

Hardware Transactions for Graphs
• “Slim Graph: Practical Lossy Graph

Compression for Approximate Graph
Processing, Storage, and Analytics” –
ACM/IEEE SC’19

Slim Graph

…and others 

spcl.inf.ethz.ch

@spcl_eth

Summary and outlook

30

• “Survey and Taxonomy of Lossless Graph
Compression and Space-Efficient Graph
Representations” – arXiv

• Comprehensive overview
• 54 pages, 465 references

Graph Compression Survey

• “Substream-Centric Maximum Matchings
on FPGA” – FPGA’19

• New paradigm for parallelizing across
substreams

• Integrates with pipelining in HW/FPGA
• Blueprint for efficient processing in HW

Streaming Graphs on FPGA

• “Theory and Practice of Streaming Graph
Processing” – soon on arXiv

• Overview of streaming algorithms,
approximations, research gaps

• Way forward for FPGA?

Streaming Graphs Survey

• “Graph Processing on FPGAs: Taxonomy,
Survey, Challenges” – arXiv

• Relatively young field of graph processing
on FPGAs / in hardware

• Identify research opportunities

Graphs on FPGA Survey

• “Communication-Avoiding Parallel
Minimum Cuts and Connected
Components” – ACM PPoPP’18

• Uses randomization to achieve O(1)
global alltoall steps

Comm-avoiding Graph Processing

• “Scaling Betweenness Centrality using
Communication-Efficient Sparse Matrix
Multiplication” – ACM SC’17

• More on the algebraic view – complex
example, large-scale sparse matrices

Algebraic Betweenness Centrality

• “Log(Graph): A Near-Optimal High-
Performance Graph Representation” –
ACM PACT’18

• Minimal storage bounds for graphs
during processing

Log(Graph)

• “To Push or To Pull: On Reducing
Communication and Synchronization in
Graph Computations” – ACM HPDC’17

• Fundamental principles of parallel graph
processing

Push vs. Pull

• “SlimSell: A Vectorized Graph
Representation for Breadth-First Search”
– IEEE IPDPS’17

• Vectorization schemes for parallel graph
processing

Vectorization of Graph Computations

A big challenges ahead: develop a
framework to integrate all techniques!

SPCL’s approach: stateful dataflow graphs

We’re always hiring excellent PhD students and postdocs
at SPCL/ETH at spcl.inf.ethz.ch/Jobs

• “Accelerating Irregular Computations
with Hardware Transactional Memory
and Active Messages” – ACM HPDC’15

Hardware Transactions for Graphs
• “Slim Graph: Practical Lossy Graph

Compression for Approximate Graph
Processing, Storage, and Analytics” –
ACM/IEEE SC’19

Slim Graph

…and others 

spcl.inf.ethz.ch

@spcl_eth

Backup

31

spcl.inf.ethz.ch

@spcl_eth

Problems!

32

spcl.inf.ethz.ch

@spcl_eth

Problems!

32

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK
𝑃 threads are

used

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pushing

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

Write conflicts

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pulling

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pulling

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

33

spcl.inf.ethz.ch

@spcl_eth

PAGERANK

Pulling

[1] J. J. Whang et al. Scalable Data-Driven PageRank: Algorithms, System Issues, and Lessons Learned. Euro-Par 2015.

𝑃 threads are
used

33

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pushing

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

BFS
TOP-DOWN VS. BOTTOM-UP [1]

BFS frontier
Root r

Pulling

[1] S. Beamer, K. Asanović, and D. Patterson. Direction-optimizing breadth-first search. SC12.

Pushing or pulling
when expanding a

frontier

34

spcl.inf.ethz.ch

@spcl_eth

OTHER ALGORITHMS & FORMULATIONS

35
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

Triangle Counting

BFS

∆-Stepping

OTHER ALGORITHMS & FORMULATIONS

BC (algebraic notation)

Betweenness Centrality (BC)

Graph Coloring

PageRank
Boruvka MST

35
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

Triangle Counting

BFS

∆-Stepping

OTHER ALGORITHMS & FORMULATIONS

BC (algebraic notation)

Betweenness Centrality (BC)

Graph Coloring

PageRank
Boruvka MST

Check out the paper 

35
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PUSHING VS. PULLING

GENERIC DIFFERENCES

36
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PUSHING VS. PULLING

GENERIC DIFFERENCES

What pushing vs.
pulling really is?

36
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PUSHING VS. PULLING

GENERIC DIFFERENCES
• Vertices:
• modifies
• : a thread that owns

𝑣 ∈ 𝑉

What pushing vs.
pulling really is?

𝑡[𝑣]
𝑡 ↝ 𝑣 ⇔ 𝑡 𝑣

𝑣

36
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PUSHING VS. PULLING

GENERIC DIFFERENCES
• Vertices:
• modifies
• : a thread that owns

𝑣 ∈ 𝑉

What pushing vs.
pulling really is?

𝑡[𝑣]
𝑡 ↝ 𝑣 ⇔ 𝑡

Algorithm uses pushing ⇔

(∃𝑡 ∃𝑣 ∈ 𝑉: 𝑡 ↝ 𝑣 ∧ 𝑡 ≠ 𝑡[𝑣])

𝑣
𝑣

36
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PUSHING VS. PULLING

GENERIC DIFFERENCES
• Vertices:
• modifies
• : a thread that owns

𝑣 ∈ 𝑉

What pushing vs.
pulling really is?

𝑡[𝑣]
𝑡 ↝ 𝑣 ⇔ 𝑡

Algorithm uses pushing ⇔

(∃𝑡 ∃𝑣 ∈ 𝑉: 𝑡 ↝ 𝑣 ∧ 𝑡 ≠ 𝑡[𝑣])

Algorithm uses pulling ⇔

(∀𝑡 ∀𝑣 ∈ 𝑉: 𝑡 ↝ 𝑣 ⇒ 𝑡 = 𝑡[𝑣])

𝑣
𝑣

36
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PUSHING VS. PULLING

GENERIC DIFFERENCES
• Vertices:
• modifies
• : a thread that owns

𝑣 ∈ 𝑉

What pushing vs.
pulling really is?

𝑡[𝑣]
𝑡 ↝ 𝑣 ⇔ 𝑡

Algorithm uses pushing ⇔

(∃𝑡 ∃𝑣 ∈ 𝑉: 𝑡 ↝ 𝑣 ∧ 𝑡 ≠ 𝑡[𝑣])

Algorithm uses pulling ⇔

(∀𝑡 ∀𝑣 ∈ 𝑉: 𝑡 ↝ 𝑣 ⇒ 𝑡 = 𝑡[𝑣])

𝑣
𝑣

This is the actual
dichotomy

36
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PUSHING VS. PULLING

GENERIC DIFFERENCES
• Vertices:
• modifies
• : a thread that owns

𝑣 ∈ 𝑉

What pushing vs.
pulling really is?

𝑡[𝑣]
𝑡 ↝ 𝑣 ⇔ 𝑡

Algorithm uses pushing ⇔

(∃𝑡 ∃𝑣 ∈ 𝑉: 𝑡 ↝ 𝑣 ∧ 𝑡 ≠ 𝑡[𝑣])

Algorithm uses pulling ⇔

(∀𝑡 ∀𝑣 ∈ 𝑉: 𝑡 ↝ 𝑣 ⇒ 𝑡 = 𝑡[𝑣])

𝑣
𝑣

This is the actual
dichotomy~[]

36
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PUSHING VS. PULLING

GENERIC DIFFERENCES
• Vertices:
• modifies
• : a thread that owns

𝑣 ∈ 𝑉

What pushing vs.
pulling really is?

𝑡[𝑣]
𝑡 ↝ 𝑣 ⇔ 𝑡

Algorithm uses pushing ⇔

(∃𝑡 ∃𝑣 ∈ 𝑉: 𝑡 ↝ 𝑣 ∧ 𝑡 ≠ 𝑡[𝑣])

Algorithm uses pulling ⇔

(∀𝑡 ∀𝑣 ∈ 𝑉: 𝑡 ↝ 𝑣 ⇒ 𝑡 = 𝑡[𝑣])

𝑣
𝑣

This is the actual
dichotomy~[]=

36
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

Distributed-
Memory

37
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

𝑛 = 225, 𝑚 = 227 𝑛 = 227, 𝑚 = 229

Distributed-
Memory

37
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

𝑛 = 225, 𝑚 = 227 𝑛 = 227, 𝑚 = 229

Distributed-
MemoryMsg-Passing fastest

37
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

𝑛 = 225, 𝑚 = 227 𝑛 = 227, 𝑚 = 229

Distributed-
Memory

Pulling incurs
more

communication
while pushing

expensive
underlying locking

Msg-Passing fastest

37
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

PAGERANK

Kronecker graphs

𝑛 = 225, 𝑚 = 227 𝑛 = 227, 𝑚 = 229

Distributed-
Memory

Collectives: combines
pushing and pulling

Pulling incurs
more

communication
while pushing

expensive
underlying locking

Msg-Passing fastest

37
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

To Push or To Pull?

38
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

To Push or To Pull?
If the complexities

match: pull

38
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

To Push or To Pull?
If the complexities

match: pull

Otherwise: push

38
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

To Push or To Pull?
If the complexities

match: pull

Otherwise: push

+ check your
hardware 

38
M. Besta et al.: “To Push or To Pull: On Reducing Communication and Synchronization in Graph Computations”, HPDC’17

spcl.inf.ethz.ch

@spcl_eth

Moving on …

39

spcl.inf.ethz.ch

@spcl_eth

Moving on …

39

spcl.inf.ethz.ch

@spcl_eth

Moving on …

39

spcl.inf.ethz.ch

@spcl_eth

VECTORIZATION

40

spcl.inf.ethz.ch

@spcl_eth

 Deployed in various hardware

VECTORIZATION

40

spcl.inf.ethz.ch

@spcl_eth

 Deployed in various hardware
 Becoming more popular

VECTORIZATION

40

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

 Deployed in various hardware
 Becoming more popular

VECTORIZATION

40

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

 Deployed in various hardware
 Becoming more popular

VECTORIZATION

𝐶 = 16 (SIMD width)

40

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

 Deployed in various hardware
 Becoming more popular

VECTORIZATION

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

40

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

 Deployed in various hardware
 Becoming more popular
 Offers a lot of „regular” compute power

VECTORIZATION

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

40

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

 Deployed in various hardware
 Becoming more popular
 Offers a lot of „regular” compute power

VECTORIZATION

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

40

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

 Deployed in various hardware
 Becoming more popular
 Offers a lot of „regular” compute power

VECTORIZATION

Regular

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

40

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

 Deployed in various hardware
 Becoming more popular
 Offers a lot of „regular” compute power

VECTORIZATION

Regular

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

40

spcl.inf.ethz.ch

@spcl_eth

𝐶 = 8 (SIMD width)

AVX

AVX

warps

„Chunk” size: SIMD width (CPUs, KNLs), warp size (GPUs)𝐶:

 Deployed in various hardware
 Becoming more popular
 Offers a lot of „regular” compute power

VECTORIZATION

Regular

𝐶 = 16 (SIMD width)

𝐶 = 32
(warp size)

+

40

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

Distances from
the root

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

0

1

1
2

2

Distances from
the root

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

0

1

1
2

2

Distances from
the root

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

1) F = {}
2) F = {2}
3) F = {0,3}
4) F = {1,4}

BREADTH-FIRST SEARCH

TRADITIONAL FORMULATION

 BFS is based on primitives such as queues

0

1

1
2

2

Distances from
the root

Parents
(predecessors) in
the traversal tree

41
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

42
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

 BFS is a series of matrix-vector products

42
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

 BFS is a series of matrix-vector products
 Graph is modeled by an adjacency matrix

42
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

 BFS is a series of matrix-vector products
 Graph is modeled by an adjacency matrix

42
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

 BFS is a series of matrix-vector products
 Graph is modeled by an adjacency matrix
 Multiplication is done over a semiring

42
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

Semiring:

(ℝ , 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

 BFS is a series of matrix-vector products
 Graph is modeled by an adjacency matrix
 Multiplication is done over a semiring

42
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

Semiring:

(ℝ , 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

 BFS is a series of matrix-vector products
 Graph is modeled by an adjacency matrix
 Multiplication is done over a semiring

1 2
3 1

0
2

=
4
2

42
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

Semiring:

(ℝ , 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

Adjacency Matrix:

 BFS is a series of matrix-vector products
 Graph is modeled by an adjacency matrix
 Multiplication is done over a semiring

1 2
3 1

0
2

=
4
2

(ℝ,+,∙, 0,1)

42
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

𝑓2 =

1
2
0
1
2

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

𝐴 =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

𝑓0 =

∞
∞
0
∞
∞

𝐴′ =

0 1 1 ∞ ∞
1 0 ∞ 1 ∞
1 ∞ 0 1 ∞
∞ 1 1 0 1
∞ ∞ ∞ 1 0

𝑓1 = 𝐴′𝑇 ⊗𝑇 𝑓0 =

1
∞
0
1
∞

𝑓2 =

1
2
0
1
2

BREADTH-FIRST SEARCH

ALGEBRAIC FORMULATION

Tropical Semiring

(ℝ ∪ ∞ ,𝑚𝑖𝑛, +,∞, 0)

Usually stored using a
sparse format

Stored with a dense or a
sparse format

How to do this in
practice?

43
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

44
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

44
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

44
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros

44
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros are stored in
the val array

...

size: 2m cells

Non-zeros n: number of vertices
m: number of edges 44

M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros are stored in
the val array

Column indices stored
in the col array

...

size: 2m cells

...

size: 2m cells

Non-zeros n: number of vertices
m: number of edges 44

M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros are stored in
the val array

Column indices stored
in the col array

...

size: 2m cells

...

size: 2m cells

...

size: n cells

Row indices are stored
in the row array

Non-zeros n: number of vertices
m: number of edges 44

M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

COMPRESSED SPARSE ROW (CSR)

Non-zeros are stored in
the val array

Column indices stored
in the col array

...

size: 2m cells

...

size: 2m cells

...

size: n cells

Row indices are stored
in the row array

Non-zeros

?

n: number of vertices
m: number of edges 44

M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

45
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

chunk size

45
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

chunk size

45
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

chunk size

padding

45
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

𝜎 ∈ [1. . 𝑛]

chunk size
sorting scope

padding

45
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

𝜎 ∈ [1. . 𝑛]

chunk size
sorting scope

padding

45
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

𝜎 ∈ [1. . 𝑛]

chunk size
sorting scope

Reductions
fast with

SIMD
operations

padding

45
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

GRAPH REPRESENTATIONS

SELL-C-SIGMA

𝜎 ∈ [1. . 𝑛]

chunk size
sorting scope

Portable

Reductions
fast with

SIMD
operations

padding

45
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS

46
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

46
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

46
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

Detailed
formulations are
in the paper 

46
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

What vector
operations are

required for each
semiring when using

Sell-C-sigma

Detailed
formulations are
in the paper 

46
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

SELL-C-SIGMA + SEMIRINGS + (…) = SLIMSELL

FORMULATIONS +
(𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2)

(ℝ ∪ {∞},𝑚𝑖𝑛, +,∞, 0)

(ℝ,+,∙, 0,1)

({0,1}, |, &, 0,1)

(ℝ,𝑚𝑎𝑥,⋅, −∞,1)

What vector
operations are

required for each
semiring when using

Sell-C-sigma

Detailed
formulations are
in the paper 

46
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE ANALYSIS

COMPARISON TO GRAPH500

Kronecker power-law graphs

Intel KNL, 𝐶 = 16

Dynamic scheduling

log 𝜎 ∈ {20,21,22}

47
M. Besta et al.: “SlimSell: A Vectorized Graph Representation for Breadth-First Search”, IPDPS’17

spcl.inf.ethz.ch

@spcl_ethWebsite & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric

48

spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING PARADIGM:
EXPOSES PARALLELISM, ENABLES EASY PIPELINING, SUPPORTS APPROXIMATION

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric

48

spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING PARADIGM:
EXPOSES PARALLELISM, ENABLES EASY PIPELINING, SUPPORTS APPROXIMATION

THEORY-INSPIRED MWM
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric

48

spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING PARADIGM:
EXPOSES PARALLELISM, ENABLES EASY PIPELINING, SUPPORTS APPROXIMATION

THEORY-INSPIRED MWM
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric

48

spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING PARADIGM:
EXPOSES PARALLELISM, ENABLES EASY PIPELINING, SUPPORTS APPROXIMATION

GENERIC FPGA DESIGN, CODE AVAILABLE

THEORY-INSPIRED MWM
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric

48

spcl.inf.ethz.ch

@spcl_eth

SUBSTREAM-CENTRIC GRAPH PROCESSING PARADIGM:
EXPOSES PARALLELISM, ENABLES EASY PIPELINING, SUPPORTS APPROXIMATION

GENERIC FPGA DESIGN, CODE AVAILABLE

THEORY-INSPIRED MWM
APPROXIMATE ALGORITHM

ON A HYBRID CPU-FPGA SETTING

GENERALIZABILITY TO OTHER

GRAPH PROBLEMS AND SETTINGS

Website & code: http://spcl.inf.ethz.ch/Research/Parallel_Programming/Substream_Centric

48

spcl.inf.ethz.ch

@spcl_eth

Problems!

49

spcl.inf.ethz.ch

@spcl_eth

Problems!

49

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Non-conflicting
accesses

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Non-conflicting
accesses

C
o

m
m

it

C
o

m
m

it

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Non-conflicting
accesses

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicting
accesses

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with
rollbacks and/or

serialization.

Conflicting
accesses

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with
rollbacks and/or

serialization.

Conflicting
accesses

R
o

llb
ac

k

R
o

llb
ac

k

50

spcl.inf.ethz.ch

@spcl_eth

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with
rollbacks and/or

serialization.

Conflicting
accesses

50

spcl.inf.ethz.ch

@spcl_eth

Simple
protocols

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with
rollbacks and/or

serialization.

Conflicting
accesses

50

spcl.inf.ethz.ch

@spcl_eth

Software
overheads

Simple
protocols

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with
rollbacks and/or

serialization.

Conflicting
accesses

50

spcl.inf.ethz.ch

@spcl_eth

Software
overheads

Simple
protocols

TRANSACTIONAL MEMORY [1]

[1] N. Shavit and D. Touitou. Software transactional memory. PODC’95.

Proc qProc p

Conflicts solved with
rollbacks and/or

serialization.

Conflicting
accesses

High
performance?

For graphs?

50

spcl.inf.ethz.ch

@spcl_eth

SHARED- & DISTRIBUTED-MEMORY MACHINES

Proc qProc p

51

spcl.inf.ethz.ch

@spcl_eth

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

Proc qProc p

51

spcl.inf.ethz.ch

@spcl_eth

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

[1] Y. Perez et al. Ringo: Interactive Graph Analytics on
Big-Memory Machines. SIGCOMM’14.

Proc qProc p

51

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

[1] Y. Perez et al. Ringo: Interactive Graph Analytics on
Big-Memory Machines. SIGCOMM’14.

Proc qProc p

51

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

[1] Y. Perez et al. Ringo: Interactive Graph Analytics on
Big-Memory Machines. SIGCOMM’14.

Proc qProc p

51

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

 Very large instances

[1] Y. Perez et al. Ringo: Interactive Graph Analytics on
Big-Memory Machines. SIGCOMM’14.

Proc qProc p

51

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

 Very large instances

 Rich vertex/edge data

[1] Y. Perez et al. Ringo: Interactive Graph Analytics on
Big-Memory Machines. SIGCOMM’14.

Proc qProc p

51

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

 Very large instances

 Rich vertex/edge data

 Fat nodes with lots of RAM still expensive ($35K for a machine
with 1TB of RAM [1])

[1] Y. Perez et al. Ringo: Interactive Graph Analytics on
Big-Memory Machines. SIGCOMM’14.

Proc qProc p

51

spcl.inf.ethz.ch

@spcl_eth

Node A Node B

SHARED- & DISTRIBUTED-MEMORY MACHINES

 HTM works fine for single shared-memory domains

 Most graphs fit in such machines [1]

 However, some do not:

 Very large instances

 Rich vertex/edge data

 Fat nodes with lots of RAM still expensive ($35K for a machine
with 1TB of RAM [1])

[1] Y. Perez et al. Ringo: Interactive Graph Analytics on
Big-Memory Machines. SIGCOMM’14.

Proc qProc p
How to apply
HTM in such a

setting?

51

spcl.inf.ethz.ch

@spcl_eth

AM + HTM = ...

Node A Node B

Proc qProc p

52

spcl.inf.ethz.ch

@spcl_eth

AM + HTM = ...

Node A Node B

Proc qProc p

52

spcl.inf.ethz.ch

@spcl_eth

AM + HTM = ...

Node A Node B

Proc qProc p

AM handlers run as
HTM transactions

52

spcl.inf.ethz.ch

@spcl_eth

AM + HTM = ...

Node A Node B

Proc qProc p

AM handlers run as
HTM transactions

AM + HTM = ATOMIC ACTIVE MESSAGES

52

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS

53

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS

53

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS

53

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS

BFS frontier

53

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction
by thread A

53

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction
by thread A

Transaction
by thread B

53

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction
by thread A

Transaction
by thread B

53

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction
by thread A

Transaction
by thread B

53

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction
by thread A

Transaction
by thread B

53

spcl.inf.ethz.ch

@spcl_eth

Node A

ACCESSING MULTIPLE VERTICES ATOMICALLY

Example: BFS
Transaction
by thread A

Transaction
by thread B

Size (the number of vertices) must be
appropriate to minimize overheads from

both commits and rollbacks
53

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Node B

54

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Node B

54

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Node B

54

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Node B

54

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Vertices must be appropriately relocated
to enable execution of a hardware

transaction

Node B

54

spcl.inf.ethz.ch

@spcl_eth

Node A

EXECUTING TRANSACTIONS ON MULTIPLE NODES

Vertices must be appropriately relocated
to enable execution of a hardware

transaction

Node B

54

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

55

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇

Time to modify N
vertices with atomics:

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

55

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇

Time to modify N
vertices with atomics:

Startup
overheads

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

55

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇

Time to modify N
vertices with atomics:

Startup
overheads

Overhead
per vertex

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

55

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N
vertices with atomics:

Time to modify N vertices
with a transaction

Startup
overheads

Overhead
per vertex

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

55

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N
vertices with atomics:

Time to modify N vertices
with a transaction

Startup
overheads

Overhead
per vertex

Startup
overheads

Overhead
per vertex

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

55

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N
vertices with atomics:

Time to modify N vertices
with a transaction

Startup
overheads

Overhead
per vertex

Startup
overheads

Overhead
per vertex

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

We predict that:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

55

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N
vertices with atomics:

Time to modify N vertices
with a transaction

Startup
overheads

Overhead
per vertex

Startup
overheads

Overhead
per vertex

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

We predict that:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

Transaction startup
overheads
dominate

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

55

spcl.inf.ethz.ch

@spcl_eth

𝑇𝐴𝑇 𝑁 = 𝐴𝐴𝑇𝑁 + 𝐵𝐴𝑇 𝑇𝐻𝑇𝑀 𝑁 = 𝐴𝐻𝑇𝑀𝑁 + 𝐵𝐻𝑇𝑀

Time to modify N
vertices with atomics:

Time to modify N vertices
with a transaction

Startup
overheads

Overhead
per vertex

Startup
overheads

Overhead
per vertex

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

We predict that:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

Transaction startup
overheads
dominate

Transactions’ cost
grows slower

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

55

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

56

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

56

spcl.inf.ethz.ch

@spcl_eth

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

Indeed:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

56

spcl.inf.ethz.ch

@spcl_eth

 Can we amortize HTM startup/commit
overheads with larger transaction sizes?

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

Indeed:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

56

spcl.inf.ethz.ch

@spcl_eth

 Can we amortize HTM startup/commit
overheads with larger transaction sizes?

PERFORMANCE MODEL

ATOMICS VS TRANSACTIONS

𝐴𝐴𝑇 > 𝐴𝐻𝑇𝑀

Indeed:

𝐵𝐴𝑇 < 𝐵𝐻𝑇𝑀

Yes, we
can!

Yes, we can!

56

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

57

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

57

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and
commit

overheads

57

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and
commit

overheads

Abort and
rollback

overheads

57

spcl.inf.ethz.ch

@spcl_eth

MULTI-VERTEX TRANSACTIONS

MARKING VERTICES AS VISITED

Startup and
commit

overheads

Abort and
rollback

overheads

The sweetspot!
(144 vertices)

57

