
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 1

Cache Line Aware Algorithm Design for
Cache-Coherent Architectures

Sabela Ramos, and Torsten Hoefler, Member IEEE

Abstract—The increase in the number of cores per processor and the complexity of memory hierarchies make cache coherence key

for programmability of current shared memory systems. However, ignoring its detailed architectural characteristics can harm

performance significantly. In order to assist performance-centric programming, we propose a methodology to allow semi-automatic

performance tuning with the systematic translation from an algorithm to an analytic performance model for cache line transfers. For

this, we design a simple interface for cache line aware optimization, a translation methodology, and a full performance model that

exposes the block-based design of caches to middleware designers. We investigate two different architectures to show the applicability

of our techniques and methods: the many-core accelerator Intel Xeon Phi and a multi-core processor with a NUMA configuration (Intel

Sandy Bridge). We use mathematical optimization techniques to tune synchronization algorithms to the microarchitectures, identifying

three techniques to design and optimize data transfers in our model: single-use, single-step broadcast, and private cache lines.

Index Terms—Cache coherence, shared memory, communication algorithms, performance modeling, Xeon Phi, Sandy Bridge.

✦

1 MOTIVATION

COHERENT shared memory simplifies the initial design
of parallel programs in current multi- and many-core

architectures, but the complexity of the coherence protocols
often leads to poorly-scalable solutions. Even tuned vari-
ants can usually be improved significantly. This is mainly
because the complex interactions are hidden from program-
mers, who need to design highly-scalable parallel algo-
rithms to utilize the exponentially growing number of cores.
In order to enable the consideration of cache coherence
hardware during algorithm-design, we propose a Cache
Line aware (CLa) design methodology. In CLa, middleware
programmers assume minimal structure, the existence of
cache lines, while designing and analyzing algorithms and
implementations. We provide a simple interface that enables
reasoning about algorithm structure and that eases the
translation to performance models. While it may seem complex
to expose the existence of (typically hidden) cache lines, we propose
to virtualize their allocation in the interface and only expose the
minimal assumption of the fixed-size design.

In this work, we focus on two basic types of directives
needed to design parallel shared memory algorithms: thread
synchronization and data transport. For synchronization, we
identify four modes depending on the number of threads
involved. Each mode has non-trivial performance trade-offs
for different implementations. For example, many threads
writing to a single cache line may lead to high coherence
traffic, while a thread that reads multiple lines written by
others may observe high local polling overheads. We use
a parametrized analytical performance model of the cache
coherence protocol to determine the best synchronization

• Scalable Parallel Computing Lab, Computer Science Department, ETH
Zürich, Switzerland. E-mail: sramos@udc.es

• S. Ramos was with the Computer Architecture Group, University of A
Coruña, Spain when developing part of this work.

mechanism. We also model data movement using cache line
transfers, potentially involving multiple cache lines.

To guide performance-centric development in CLa, we
identify three basic principles: (1) Single-use synchronization
lines: Many synchronization patterns benefit from utilizing
each cache line only once when synchronizing different
groups of threads. These groups can refer to different
sockets or different stages of an algorithm. This technique
reduces the variability caused by having multiple threads
reading and writing the same line. (2) Single-step broadcast:
Most cache coherence protocols provide fast mechanisms to
push a cache line to a large set of cores. (3) Line privatization:
Some algorithms benefit from assigning a private cache line
to each core to perform data movement.

In summary, the specific contributions of our work are:

1) We propose Cache Line aware (CLa) optimization, a
method for performance-centric programming of cache
coherent systems. We show how CLa can be used to
optimize shared-memory data movement and synchro-
nization algorithms in tandem.

2) We identify three basic principles: single-use synchro-
nization, single-step broadcast, and line privatization
to design high-performance algorithms.

3) We show how to systematically model the performance
of algorithms analytically and find close-to-optimal
design trade-offs using established mathematical opti-
mization tools.

4) We design a methodology to translate shared memory
communication algorithms directly into an analytical
performance model.

5) We conduct a practical study with a 5110P Intel Xeon
Phi and a dual-socket Intel Xeon E5-2660 architecture
yielding speedups between 1.3x and 44.6x over opti-
mized libraries.

The rest of the paper is organized as follows: We describe
the cache coherence model and CLa methodology in Sec-

10.1109/TPDS.2016.2516540 c© 2016 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 2

tion 2, and we exemplify its application to the development
of shared memory algorithms in Sections 3, 4, and 5. We
summarize the related work in Section 6, and present our
conclusions in Section 7.

2 CLA PERFORMANCE MODEL

In order to analyze algorithms in terms of (cache) line
transfers, we propose a basic performance model based on
a set of building blocks. We identify two main primitives
which we parametrize through benchmarking considering
thread location and coherence state: single-line and multi-
line transfers. Moreover, the interaction between threads
may introduce additional overheads. Some interactions,
such as contention (several threads accessing the same cache
lines) and congestion (several threads accessing different
lines) can be quantified. Other interactions depend on the
real-time order in which operations are performed and are
not predictable (see Section 2.3). Nondeterministic inter-
action prevents us from obtaining a precise performance
prediction and forces us to work with lower and upper
time bounds. Nevertheless, our model is accurate enough to
perform algorithm design and even performance prediction.

From now on, and given that we want to analyze the
effect of having threads in different cores, we will assume a
one-to-one mapping of threads to cores.

2.1 Hardware Description

Our conclusions and methods are not limited to a specific
architecture and we now briefly describe two different
systems on which we exemplify our techniques: a Sandy
Bridge-based ccNUMA system and the many-core accelera-
tor Xeon Phi KNC.

(a) Dual-socket Sandy Bridge Xeon
E5-2660 multi-core processor

(b) Intel Xeon Phi KNC
coprocessor

Fig. 1. Sandy Bridge and Xeon Phi KNC architectures

2.1.1 Sandy Bridge

Our first testbed is a dual-socket eight-core processor Intel
Sandy Bridge [1] Xeon E5-2660, at 2.20GHz (see Figure 1a)
with Hyper Threading activated and Quick Path Intercon-
nect (QPI, 8 GT/s). Each socket has three levels of cache. L1
(32 KB data and 32 KB instructions) and L2 (256 KB unified)
caches are private to each core. An L3 cache (or LLC) of
20 MB is shared by all cores within a socket and divided in
eight slices. The internal components of the chip, including
the LLC slices, are connected via a ring bus and all cores can
use any LLC’s cache slices, thus having access to data stored
in all of them.

The chip uses the MESIF cache coherence protocol [2],
based on the classic MESI (Modified-Exclusive-Shared-
Invalid) protocol [3]. It adds a Forward state to optimize
the management of shared states. When a line is shared

among several cores, one of them (the forwarder) has it in
F state, and it is in charge of answering when another core
requests this line, preventing multiple answers. The last core
requesting this line becomes the new forwarder, and the
previous forwarder becomes a sharer (S).

Although it globally behaves like a snooping protocol,
cache coherence within each socket is kept by the LLC, an
inclusive cache that holds a set of bits indicating the state
of the line and which cores have a copy. Among sockets,
the Quick Path Interconnect (QPI) is used to implement the
cache coherence protocol. It is in this scenario when the
F state is useful to avoid multiple answers from different
sockets to a snooping request.

2.1.2 Xeon Phi (KNC)

The Intel Xeon Phi coprocessor is a many-core system based
on the Intel MIC (Many Integrated Core) architecture (Fig-
ure 1b). Its cores are arranged on a bidirectional ring bus
that provides high scalability. We use a KNC-5110P Xeon Phi
with 60 simplified Intel CPU cores running at 1056 MHz. It
supports 4 threads per core with multithreading (thus, 240
threads in the die). The cores have a vector unit with 64 byte
registers featuring a new vector instruction set known as
Intel Initial Many Core Instructions (IMCI). Each core has
a 32 KB L1 data cache, 32 KB L1 instruction cache, and a
private 512 KB L2 unified cache which is kept coherent by
a distributed tag directory system (DTDs) with up to 64 tag
directories connected to the ring. The memory controllers,
also connected to the ring, provide access to the GDDR5
memory (8 GB of global memory). The coprocessor runs a
simplified Linux-based OS in one of the cores.

The cache coherence on Intel Xeon Phi chips is imple-
mented using an extended MESI protocol [4, §2.1.3] that
allows to share modified as well as unmodified lines using
a directory-based cache coherence protocol called GOLS
(Globally Owned, Locally Shared). The global coherence is
maintained via Distributed Tag Directories (DTDs) that hold
the GOLS coherence state of each line. Lines are assigned to
each DTD using a hash function based on the address of the
line [5]. This results in an even load distribution (assuming
an even distribution of memory addresses) but does not
take advantage of locality in the network. This means that
the DTD which is responsible for a line held by a specific
core is often not local to the core, in fact, on average, it
will be at a distance of 15 cores due to the ring topology. A
direct consequence is that there are high differences in access
latencies that are not dependent on the distance among
cores but on the DTD that is holding the line. Since we
cannot control the address mapping onto DTDs, we use
randomized accesses and work with averages and standard
deviations to avoid DTDs bias in the benchmarking results
and, thus, in the modeling. In fact, we observed up to a 5x
variation in latency when not using randomization.

2.2 Model Parameters

The necessary building blocks to construct and parametrize
our performance model are obtained by benchmarking
cache line transfers and thread interactions. There are differ-
ences in the building blocks for the different architectures.
Nevertheless, the methodology is applicable to characterize
these blocks for a large number of cache coherent systems.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 3

2.2.1 Single-line Transfers

The basic block in our model is the transfer of a cache
line between two cores. Line transfers are caused by two
operations: read, and RFO (Read For Ownership). Both in-
volve fetching lines, but the latter indicates the intention to
write. We estimate the cost of both as a read (R), although
there could be some differences, e.g., an RFO of a shared
line means that all copies must be invalidated. But we first
analyze transfers between two threads, where this difference
is not significant. We use Ri,j to represent the cost of reading
a line from location i with cache state j. A location can be L
(local), R (remote, core in the same socket), and Q (remote,
core accessed through QPI). The cache state is any MESIF
state and ∗ indicates any location or state.

We implemented a simple ping-pong data exchange to
analyze the impact of thread location and coherence state. In
this operation, there are only transfers of one line involved
and we can model the RTT1 using Ri,j parameters, as
shown in Equation (1). Thread t0 copies its send buffer
(initially, the data is either local, RL,∗, or invalid, R∗,I) into
a receive buffer owned by t1 (RR,∗ or RQ,∗ depending on
t1’s location), while t1 is polling the last byte to check if the
transfer has finished [6] (charging RR,M or RQ,M). Then,
both threads switch roles and t1 copies while t0 polls. Both
transactions use different send and receive buffers.

RTT

2
=

{

RL,∗

R∗,I

}

+

{

RR,∗+RR,M if t1 is in the same socket
RQ,∗+RQ,M if t1 is in another socket (1)

On Sandy Bridge [7] we observe significant differences
when varying the location of threads and lines, but only
minor variations for different cached states. On Xeon Phi [8],
on average, communication with the DTD makes the dis-
tance between the two cores nearly irrelevant. Hence, we
cluster the costs for line transfers in the five classes shown
in Table 1. We parametrize the cost of a line transfer for each
class with the memory benchmark from BenchIT [2]. It esti-
mates the cost of transferring one line between two threads
depending on its coherence state and thread location.

TABLE 1
One Line Transfers

Cost (ns)

State Location Sandy Bridge Xeon Phi

RL Cached Same core 2.3 8.6
RR Cached Other core, same socket 35.0 235.8
RQ Cached Other core, other socket 94.0 -
RI Invalid Same NUMA region 70.0 277.7
RQI Invalid Other NUMA region 107.0 -

Sandy Bridge supports loading half lines [9, §2.2.5.1]
which is cheaper than always loading full lines. However,
other architectures always transfer entire lines, thus, we will
work with full lines for generality and clarity.

2.2.2 Contention and Congestion

We evaluate contention (threads accessing the same CL)
and congestion (threads accessing different lines) with two
benchmarks in which threads read an external send buffer
and copy it into a local receive buffer. The measurements for
each size were repeated 5,000 times and timed separately
using x86 RDTSC.

1. Round Trip Time

Intra-socket results on Sandy Bridge show very low
contention. When there are readers in both sockets, the
requested line is transferred once through QPI and the
LLCs are in charge of distributing it to all cores. Figure 2a
shows results for congestion on Sandy Bridge when copying
cache lines from one socket to another. We did not observe
significant congestion for intra-socket transfers (less than
10% difference) and thus omit the results from the figure for
clarity. The x-axis represents the number of threads copying
from one socket to another. The figure also shows the model
described in the following section, where we further analyze
QPI congestion together with multi-line cache transfers.

On Xeon Phi, the DTDs may cause delays when they are
contended [5]. However, there is no congestion when sev-
eral pairs of threads communicate simultaneously if they ac-
cess different memory addresses. The observed differences
were not related to the number of running threads and the
most feasible reason is the assignment of the requested lines
to DTDs. The contention on Xeon Phi for cached lines can
be estimated with the linear model from Equation (2),where
nth is the number of threads, and c represents the slope and
the overhead imposed when adding a new thread.

TC(nth) = RL +RR + c · (nth − 1) = b+ c · nth (2)

However, if the global line is in memory, the performance is
limited by the access to memory, as shown in Equation (3).
The parameters of the model are in Table 2. Figure 2b shows
the results of the benchmark for varying numbers of threads
and buffers in E state.

TC(nth) = c · nth + b− a

nth
(3)

TABLE 2
Parametrization of the contention model for Xeon Phi KNC.

sendbuf recvbuf b [ns] c [ns
thread

] a [ns · thread]

E E 320.5 56.2 0
E I 604.4 57.6 0
I E 863.6 23.9 667.4
I I 1202.0 23.4 695.8

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

1 2 3 4 5 6 7 8

L
a
te

n
c
y
 (

u
s
)

Size (Bytes)

0
2

0
4

0
6

0
8

0
1

0
0

R
e
la

ti
ve

 E
rr

o
r

(%
)

average

model

rel. error

(a) QPI congestion on
Sandy Bridge when
copying one line.

0
2

4
6

8
1

0

1 3 7 15 31 59

L
a
te

n
c
y
 (

u
s
)

Number of Threads

0
2

0
4

0
6

0
8

0
1

0
0

R
e
la

ti
ve

 E
rr

o
r

(%
)

average

model

rel. error

(b) Contention on
Xeon Phi KNC when
copying one line.

0
5

1
0

1
5

64 256 1024 4096

L
a
te

n
c
y
 (

u
s
)

Size (Bytes)

0
2

0
4

0
6

0
8

0
1

0
0

R
e
la

ti
ve

 E
rr

o
r

(%
)

average

model

rel. error

(c) Multi-line pingpong
on Xeon Phi KNC.

Fig. 2. Latency and performance models for contention, congestion, and
multi-line transfers. Sender and receiver buffers are in Exclusive state.

2.2.3 Multi-line Transfers

We evaluate multi-line transfers with two benchmark stra-
tegies: ping-pong and one-directional transfers (similar to
those used for contention and congestion).

2.2.3.1 Sandy Bridge: On Sandy Bridge, ping-pong
times exhibit significant variability when using invalid lines.
This variability stems from the use of DRAM and different
NUMA regions and we developed approximate models
to mitigate it. These models are not aimed to provide an

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 4

exact prediction, rather, they allow us to simplify algorithm
optimization and comparison. Without loss of generality,
we work with cached multi-line transfers from now on.
For cached lines, we empirically parametrize the model in
Equation (4). N is the number of lines and n is the number of
simultaneously accessing threads. The architecture parame-
ters are summarized in Table 3: o is the latency increase per
line, and the term cnN corresponds to congestion in the QPI
link, hence, it is zero in intra-socket scenarios.

Tm(p,N) = q + oN + cnN (4)

TABLE 3
Parameters for multi-line transfer of cached lines on Sandy Bridge.

q [ns] o [ns
line

] c [ns
line·thread

]

Intra socket 63.4 11.1 0

Inter socket 180.65 7.5 3.0

2.2.3.2 Xeon Phi: The model for Xeon Phi in Equa-
tion (5) is slightly different given the architectural differ-
ences between both systems: o is the asymptotic fetch la-
tency for each cache line (including hardware prefetch, etc.),
and p, q model the startup overhead using a fixed part q that
is amortized partially by the number of fetched lines with
the factor p. The parametrization is shown in Table 4.

TN = q + o ·N − p

N
(5)

TABLE 4
Parameters for multi-line transfers on the Xeon Phi KNC.

sendbuf recvbuf q [ns] o [ns
line

] p [ns · line]

E E 1521.0 76.0 1096.0
E I 1778.4 73.2 1276.9
I E 2698.5 94.4 1868.5
I I 2750.0 94.9 2017.5

The results of our measurements and the model fits are
shown in Figure 2c. The analysis of different cache states
is limited to 8 KB buffers due to the use of four buffers
per pair of threads and the L1 cache size (32 KB). In our
previous work [8], we analyze how contention affects multi-
line transfers. Our experience is that the o parameter from
the multi-line model can be combined with the c, b, and a
terms from the contention model.

2.2.4 DTD impact on Xeon Phi

Some authors [10], [11] demonstrate significant variations
in cache line transfer latencies related to the use of ar-
bitrary DTDs. In order to measure this effect, we use a
benchmark with two running threads: a writer that owns
a send buffer and a receiver with a recv buffer. Each buffer
consists of a different cache line per iteration, forced to the
desired cache state. Running threads are synchronized and
we measure the cost of writing the send buffer into the
recv buffer (performed by the writer thread). We explore
different configurations, but the only variable that seems to
have significant impact in the result is the randomization of
the address line, as shown in Figure 3.

The y-axis represents the latency and the x-axis is the
distance between cores (note that the ring is bidirectional,
i.e., distance increases and then decreases). The writer al-
ways runs in core 1. The blue area is the frequency of the

results (darker areas represent more frequent latencies). The
main observation is that the average does not vary with
core distance. However, the closer the cores, the higher the
standard deviation. The cause is that, for closer cores, the
DTD might be very close to both, but also very distant.
When the cores are in opposite sides of the ring, any DTD
is going to be either in the middle or close to one of them.
Moreover, the plot is not symmetric, suggesting that some
messages were not getting through the shortest path. Finally,
for randomized accesses, the frequency plot has a light
duplicate at a higher latency. A possible explanation is the
existence of collisions and the need to recover data from
memory. Since the average is the same in all cases, we will
use the values provided by the model.

0
.0

0
.2

0
.4

0
.6

0
.8

Core distance

L
a
te

n
c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1 5 9 13 17 21 25 29 27 23 19 15 11 7 3

(a) Consecutive addresses.

0
.0

0
.2

0
.4

0
.6

0
.8

Core distance

L
a
te

n
c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1 5 9 13 17 21 25 29 27 23 19 15 11 7 3

(b) Randomized addresses

Fig. 3. DTD effect using consecutive and randomized addresses.

2.3 Invalidation and Cache Line Stealing

The described building blocks can be used to model algo-
rithms in terms of line transfers but we need to consider two
additional sources of overhead due to interactions between
threads or cores: The first one is on RFO of a shared line
which involves invalidation at its n owners. On Xeon Phi,
the cost is the same since it is arbitrated by the DTD.
However, on Sandy Bridge, it costs nRR instead of RR.
The second interaction, cache line stealing, is inherent to
concurrency and it appears in multiple situations:

n-writers: n threads write the same line, one thread (t0)
polls until it gets the desired value (e.g., all writes
have been performed). In the best case t0 fetches the
line after all writes have been performed. The cost is
RI+(n−1)RR+RR assuming that the line is originally
not cached. However, t0 may read the line first, so the
first writer invalidates t0’s copy. In fact, t0 may steal
the line between every two writes, increasing the cost
dramatically to RI + n(2RR).

n-readers: n threads poll a line and t0 writes a notification
value. The best scenario is when t0 writes first and
the n readers get the line at the same time (there is
no contention). If we again assume that the line is
not cached initially, the operation costs RI + RR or
RI + TC(n). However, readers can steal the line before
t0. Writing the line then is an RFO of a shared line,
requiring the invalidation in all n cores. To estimate
this worst case within a socket on Sandy Bridge, we use
RI+nRR. On Xeon Phi we have to consider that several
readers stealing the same line may cause contention.

Both scenarios get more complex with more than one
reader or writer, respectively. To capture all these varia-
tions, we use min-max models [8] that provide performance
bounds by estimating the best and worst stealing sce-
nario. The parametrized building blocks of our performance

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 5

model, together with the analysis of thread interaction, en-
ables to derive the minimum (Tmin) and maximum (Tmax)
bounds. For a given algorithm, we construct an optimization
problem to minimize Tmin because Tmax is usually too
pessimistic, although it enables the analysis of the impact
of thread interactions such as stealing.

In order to expose cache coherence interactions and ap-
ply our performance model, we propose a simple method-
ology that starts by expressing algorithms in a cache line
centric manner using primitives that represent cache line
transfers. Then, we use graphs to translate the algorithm
into performance bounds, analyze thread interactions and
construct the optimization problem.

2.4 A Candidate CLa Interface

We propose a simple set of cache line transfer primitives
that can be implemented in various ways in most languages.
While we do not prescribe a certain interface, we define
an illustrative C API without loss of generality. In the
remainder of this paper, we assume that the used language
provides the facilities to allocate fixed-size blocks of aligned
memory. This view does not only avoid false sharing [12]
but it also allows us to tune the algorithm to the microarchi-
tecture of cache-coherent systems.

We implement these primitives with direct load/store
ISA instructions. When they are used for synchronization,
we implement them with atomic instructions for writing,
but not for reading and polling, because atomics often force
the eviction of lines from other caches. The cost of each
operation can be expressed in terms of location and state
of the given lines. We define the following operations:

1) cl_copy(cl_t* src,cl_t* dest,int N) copies
N lines from src to dest. It involves a load and a
store.

2) cl_wait(cl_t* line,clv_t val,op_t comp=eq)

polls until comp(*(line),val) is true. We omit the
parameter comp if it has the default value eq (equal).

3) cl_write(cl_t* line,clv_t value) copies
value into line.

4) cl_add(cl_t* line,clv_t value) adds value

to line. If the value is read from a line, it is equivalent
to a load plus a store.

Once we have the CLa pseudo-code, we construct a graph
in which nodes are the CLa operations performed by each
thread, linked by four types of edges2:

E1 The sequence of operations performed by one thread,
represented by dotted directed edges.

E2 Logical dependencies between threads (i.e., reading or
polling a line that has been written by others), repre-
sented by directed edges.

E3 Sequential restriction between threads that operate on
the same data sequentially (the order is not defined),
while another thread is waiting for the result of these
operations. It is represented by non-directed edges.

E4 Line stealing caused in non-related operations (e.g., one
thread polls the same line in two different stages of

2. We show examples of CLa graphs with different edges in Sec-
tions 3-5

an algorithm), represented by dotted edges. It is only
relevant for Tmax and not considered for Tmin.

Next, we assign costs to the nodes with these rules:

1) Flags are initially in memory, i.e., the first access to a
flag costs RI .

2) Access to data already accessed by the same thread (no
incoming edges from other threads) costs RL.

3) The access to the same line by the same thread in
consecutive operations is counted once. E.g., a thread
that adds values to the same line consecutively.

4) If the operation has an incoming edge from another
thread, the cost is RR or RQ depending on the location
of threads (same or different socket).

5) On Sandy Bridge, read operations with incoming edges
from the same node can execute simultaneously with-
out contention. E.g., threads copying a line that has
been written by another thread. On Xeon Phi, we need
to apply the contention model.

In order to derive the Tmin (cost of the critical path), we
define a path as a sequence of nodes linked by E1, E2, and E3
edges, starting in a node with no incoming E1 and E2 edges,
and finishing in a node with no outgoing edges. Special
consideration has to be given to E3 edges. They link all
sequential writes that have outgoing E2s towards the same
wait. For example, multiple threads incrementing one flag
that other thread is polling. When searching for the critical
path, we analyze reorderings of these writes, ensuring that
the path visits each one before going towards the wait.
In the example, all increments are performed in any order
before the polling finishes. When some E3s represent inter-
socket communications, we select the reordering with less
QPI transfers.

To identify QPI congestion, we need to identify trans-
fers performed simultaneously. Thus, we look for directed
arrows between sockets that have: (1) different start and
end points (accesses to different addresses performed by
different threads), and (2) previous paths of similar cost (the
transfers are performed at the same time).

Finally, Tmax is calculated by analyzing line stealing. The
main cause of line stealing is the wait operation, that may
steal lines from every incoming edge from other threads. We
can refine Tmax by considering which operations might not
overlap and not cause line stealing.

This set of rules is enough to derive graphs and per-
formance models for the thread interaction algorithms ex-
plained in this paper (besides, we have successfully applied
our methodology to several lock algorithms). It is easily
extensible to cover other interactions.

We assume that the algorithm uses a given thread
topology or communication structure. In some scenarios,
like data movement primitives, we propose algorithms that
receive a tree structure as parameter. In those cases, we
construct the graph (and the model) for multiple commu-
nication structures to obtain the best one.

2.5 Benchmarking Methodology

The following sections present how we used the CLa
methodology to derive and optimize communication al-
gorithms. We benchmark all algorithms against OpenMP

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 6

as well as MPI implementations that use shared memory
directly to ensure a fair comparison. When available, we
include a comparison with the HMPI NUMA-aware collec-
tives [13]. We use a thread-based implementation to avoid
inter-process communications and compare algorithms di-
rectly. We analyze performance in terms of speedup S =
Tref/T , where T is the latency of our algorithm and Tref the
latency of the library that we are comparing with. We use
RDTSC intervals [14] to make the threads start iterations at
the same time and we force synchronization data-structures
and user-data in the desired cache states. Without loss of
generality, we assume that user-data is cached in M state
at the beginning of our algorithms. For synchronization
structures, we assume that they are evicted (I state) during
each computation phase. To support the NUMA memory,
we use Linux’ first-touch policy and assume that data is
located in the NUMA region of the first reading thread
(we charge RI in the model). We ensure that threads are
statically assigned to cores during the program execution.
In all benchmarks, we measure the finishing times of all
threads but only report the latency of the slowest thread per
iteration (modeling bulk synchronous computations).

The systems used are a dual-socket eight-core processor
Intel Sandy Bridge Xeon E5-2660, described in Section 2.1,
with an Intel Xeon Phi 5110P with 60 cores at 1052 MHz. The
OS is CentOS 6.4, the Intel MIC software stack is the MPSS
3.4.1. Compilers are Intel icc/ifort v.13.1.1 (for our algo-
rithms, Intel MPI and Intel OpenMP) and GNU gcc/gfortran
v.4.4.7 (for Open MPI and OpenMP), and MPI libraries Intel
MPI v.4.1.4 and Open MPI 1.7.2. On Sandy Bridge, we use
packing to schedule threads in the experiments: up to eight
threads in one socket and the rest of them in the second
one. This simplifies the comparison of intra- and inter-socket
performance. In the result graphs we use a shaded area for
the min-max model, and the results of our algorithms are
shown with boxplots to represent the statistical variation of
the measurements.

3 SYNCHRONIZATION PRIMITIVES

We use our methodology to model and design synchro-
nization mechanisms. Depending on the number of threads
involved, we identify four communication modes : one-to-
one, many-to one, one-to-many, and many-to-many.

The simplest scenario is one-to-one: one thread, t0,
writes a line that the other thread, t1 reads. It can be
treated as a particular case of one-to-many or many-to-one
synchronizations, thus, we will not analyze it separately.

3.1 Many-to-one

In many-to-one synchronizations, n threads notify one
thread t0. We analyze two basic implementations: (1) all
n threads write the same line (Figure 4a) resembling the
n-writers case with stealing (cf. Section 2.3), and (2) all n
threads write different lines (one per notifier) where writes
happen at the same time but t0 needs to check n flags. The
best case without stealing is when all lines are set before
t0 checks them. The worst stealing case depends on how t0
checks lines, for which we differentiate two scenarios with
the same cost: In the first one, t0 iterates continuously over

all lines until all are set. In the second scenario, t0 checks
each line only once, waiting until the current line is set
before checking the next one (shown in Figure 4b).

Algorithm 1: Many-to-one

if me==t0 then
[S1] cl_wait(&flag,n);

else
[S2] cl_add(&flag,1);

end

(a) Many-to-one (same line)

Algorithm 2: Many-to-one

if me==t0 then
for i=0...n, i 6=t0 do

[S1] cl_wait(flag[i],1);
end

else
[S2] cl_write(flag[me],1);

end

(b) Many-to-one (different lines)

Fig. 4. Pseudo-code for many-to-one synchronization patterns.

We use the CLa graphs from Figure 5 to construct the
performance models. Each operation is a white node, la-
beled with the line number from the pseudo-code (Figure 4).
Operations performed by the same thread are grouped in
light-grey rectangles. The graphs have three types of edges:

• (E1) The dotted arrows indicate that t0 reads n flags
sequentially (cf. Figure 5b).

• (E2) The wait operations have a logical dependence
from at least one write (or add) operation performed
by other thread(s).

• (E3) In Figure 5a, n threads write (cl_add in the
pseudo-code) the same line sequentially (in any order).

In order to derive the Tmin, we assign costs to the nodes
considering that fetching a flag costs RI and the following
uses of this flag in other threads cost RR (RQ if threads
are in different sockets). Next, we search the critical path
(thicker red edges and nodes with dotted lines) taking into
account the peculiarities of E3 edges. E.g., in Figure 5a, we
start in any of the S2 nodes, but we have to visit once
all other S2 nodes before reaching the S1 (wait). Figure 5
shows the cost of the nodes in the critical path of an intra-
socket (or Xeon Phi) scenario. For Tmax, we include the cost
of line stealing caused by wait operations. Table 5 presents
the derived cost models for both architectures. For inter-
socket synchronizations, we consider which transfers are
carried out through QPI.

RR

RR

...

t0

RR RI

S2

S1

S2S2

(a) Many-to-one (same line)

RR

RI

RR RR

S2 S2 S2

S1 S1
t0

S1
...

...

(b) Many-to-one (different lines)

Fig. 5. CLa graphs for many-to-one patterns.

Figure 6a shows the results on Sandy Bridge. When us-
ing multiple lines, the real cost is lower than the prediction
from Table 5 because threads arrive to the synchronization
at the same time and t0 is able to read the flags as a series of
consecutive lines using prefetching. Hence, we used Equa-
tion (4), Tm(1, n), to represent how t0 reads lines. When
there are processes in both sockets, we use the parameter
for inter-socket transfers using two different o’s: one to
multiply the number of intra-socket threads and another
one for the inter-socket threads. However, we recommend
the analysis based on equations from Table 5 when threads
are not expected to be already synchronized.

It is also interesting to point out that the single-line ap-
proach is faster for intra-socket transfers, and the different-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 7

TABLE 5
Models for many-to-one synchronization patterns.

Intra-socket/ Inter-socket
Xeon Phi

Same Line
Tmin(n) RI + nRR (6) RI + sRR + qRQ (7)
Tmax(n) RI + 2nRR (8) RI + 2(s+ q)RQ (9)

Different Lines
Tmin(n) RI + nRR (10) RI + sRR + qRQ (11)
Tmax(n) nRI + 2nRR (12) (s+ q)RI + 2(sRR + qRQ) (13)

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Number of threads

L
a

te
n

c
y
 (

u
s
)

2 4 6 8 10 12 14 16

One line
Model
Multiple lines
Model

(a) Many-to-one

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Number of threads

L
a

te
n

c
y
 (

u
s
)

2 4 6 8 10 12 14 16

One line
Model
Multiple lines
Model

(b) One-to-many

Fig. 6. Synchronizations on Sandy Bridge.

lines approach is the best for inter-socket transfers. This
made us consider the use of one line per socket to isolate
polling from separate sockets, identifying the technique
Single-use synchronization lines.

Given the high number of cores of the Xeon Phi and
the serialization involved in both approaches (writes to the
same flag, or reads of multiple lines), we explore a notifica-
tion tree in which each group of children and parent behaves
like the single-line synchronization. In order to find the best
tree, the analysis of all possible trees becomes prohibitive
with more than 20 threads. Hence, we apply the following
heuristic: for a given number of threads, we analyze (1)
the number of sons of the root, and (2) the organization
of the remaining threads in groups. For each group, we
use the tree obtained previously for this number of threads.
Each first level of a subtree is equivalent to the CLa graph
of Figure 5a. Different subtrees use different flags (single-
use synchronization lines), hence there is not line stealing
between subtrees. Figure 7b shows the results and the model
of this algorithm. Latency and variability are lower than in
the basic versions (Figure 7a).

3.2 One-to-many

In one-to-many synchronizations, t0 notifies n threads. We
analyze two options: (1) n threads read the same line that
thread t0 writes (Figure 8a) resembling the n-readers case
with stealing, and (2) t0 writes n different lines and each
thread reads its own (Figure 8b). We construct the CLa
graphs in Figure 9 to derive the models. The figure shows
the cost of the model for Sandy Bridge (intra socket). For
Xeon Phi, we need to take into account the contention of
all threads reading a single line. Table 6 shows the models
derived for Sandy Bridge and Xeon Phi. Regarding the inter-
socket scenario, we consider n = s + q threads, where s is
the number of readers within t0’s socket and q is the number
of readers from the other socket.

The results for Sandy Bridge in Figure 6b show that the
use of one line is faster due to the multiple writes required
by the different lines scenario. The same happens for Xeon
Phi in Figure 7c. To mitigate Xeon Phi’s contention, we

Algorithm 3: One-to-many

if me==t0 then
[S1] cl_write(&flag,1);

else
[S2] cl_wait(&flag,1);

end

(a) One-to-many (same line)

Algorithm 4: One-to-many

if me==t0 then
for i=0...n, i 6=t0 do

[S1] cl_write(flag[i],1);
end

else
[S2] cl_wait(flag[me],1);

end

(b) One-to-many (different lines)

Fig. 8. Pseudo-code for one-to-many synchronization patterns.

RI

RR

t0
S1

S2 S2...

(a) One-to-many (same line)

RR

RI RI RI

S2 S2 S2

S1 S1
t0

S1
...

...

(b) One-to-many (different lines)

Fig. 9. CLa graphs for basic synchronization patterns.

explore the use of a notification tree. In this tree, each parent
writes i flags and each flag is read by a different group
of threads (single-use synchronization lines). Once a thread
reads the flag it becomes a notifier and generates its own
subtree. The first level of each subtree corresponds to a CLa
graph similar to the one in Figure 9a.

In order to generate the best tree, we need to analyze
not only all possible trees, but also all forms of grouping
the descendants of each parent. Hence, we work with a
simplification that considers that the root writes a flag that
is read by a set of descendants. Then, the remaining threads
are split evenly among the available parents. The cost is:

Tmin = RR + TC(k) + max
i

(Tmin,streei)

Tmax = RR + 2kRR + max
i

(Tmax,streei)

k = number of threads that read the first flag

(26)

Figure 7d shows the results and the model of this al-
gorithm. Although latency is almost 3 times smaller than
in previous examples, the peak for less than 20 threads
appears because we optimize for Tmin and our estimation
is conservative in the generation of new stages, which may
increase contention.

3.3 Many-to-many

A many-to-many synchronization is a barrier in which
every thread blocks until every other thread has reached
the barrier function call. We discuss how to optimize a
dissemination barrier, which is optimal for single-port LogP
systems [15]. We phrase the algorithm with CLa primitives
and apply our model to obtain the best configuration for a
multi-core system.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 8

0
1

0
2

0
3

0
4

0

Number of Threads

L
a
te

n
c
y
 (

u
s
)

0
1

0
2

0
3

0
4

0
0

1
0

2
0

3
0

4
0

2 7 13 19 25 31 37 43 49 55

(a) Many-to-one.

0
1

0
2

0
3

0
4

0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

0
1

0
2

0
3

0
4

0

2 7 13 19 25 31 37 43 49 55

Tree
Model

(b) Many-to-one, tree-based.

0
5

1
0

1
5

2
0

2
5

3
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

0
5

1
0

1
5

2
0

2
5

3
0

0
5

1
0

1
5

2
0

2
5

3
0

2 7 13 19 25 31 37 43 49 55

One line
Model

Mult. lines
Model

(c) One-to-many.

0
5

1
0

1
5

2
0

2
5

3
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

0
5

1
0

1
5

2
0

2
5

3
0

2 7 13 19 25 31 37 43 49 55

Tree
Model

(d) One-to-many, tree-based.

Fig. 7. Synchronization on Xeon Phi KNC.
TABLE 6

Models for one-to-many synchronization patterns.

Intra-socket Inter-socket Xeon Phi

Same line
Tmin(n) RI +RR (14) RI + RQ (15) RI + TC(nth) (16)
Tmax(n) RI + nRR (17) RI + nRR + RQ (18) RI + nthRR (19)

Different lines
Tmin(n) nRI +RR (20) (s+ q)RI + RQ (21) nthRI + RR (22)
Tmax(n) RI + 2sRR (23) (s+ q)RI + 2(sRR + qRQ) (24) RI + 2nthRR (25)

3.3.1 Intra-socket and Xeon Phi Dissemination

The m-way dissemination algorithm for n threads uses
r = ⌈logm+1(n)⌉ rounds. In every round, each thread sends
a notification to m threads (i.e., writes its own flag) and
receives m other notifications (i.e., reads m other flags),
with cost RI + mRR. Assuming that flag[n] is an array
of lines holding one flag per thread, and that each thread
has m peers per round, each flag is written r times and
read mr times. And each wait may interfere with other
rounds in which the same flag is written (E4 edges). To
minimize line stealing, each thread could use a different flag
per peer and round (flag[n][r][m]), writing m new flags per
round. However, single-use synchronization lines form the best
tradeoff between stealing and memory overhead at each
stage of the algorithm. Each thread writes a different flag per
round read by m peers (flag[n][r]), as shown in Figure 10a.
Here, stealing is limited to the m readers of each round,
which is always bounded by ⌈ r

√
n⌉ (since r = ⌈logm+1(n)⌉).

Although every thread has to read m lines, they are not
contiguous and exposed to be prefetched, thus we will not
apply the multi-line model.

The full CLa graph is homogeneous (as it happens in
Figure 10b with three threads and m = 2): all threads
perform the same operations per round but with different
peers, hence, we just multiply the number of rounds by the
cost of each round. The optimization problem to obtain the
best m is shown in Equation (27).

Algorithm 5: Dissemination

for r=0..⌈logm+1 n⌉-1 do
[S1] cl_write(flag[me][r],r);

for i=1..m do
p=(me-i(m+1)r);
p=p mod n;

[S2] cl_wait(flag[p][r],r,≥);
end

end

(a) Pseudo-code

RR

t0 t1

RI

RR

S1

S2

S2

S1

S2

S2

t2

S1

S2

S2

(b) CLa graph with n = 3
and m = 2

Fig. 10. Dissemination barrier.

minimize
r,m

Tdiss,min(r,m) = r(RI +mRR)

subject to r = ⌈logm+1(n)⌉ (m+ 1)r ≥ n
(27)

In the worst case, m readers cause line stealing with every
flag. However, this is a too pessimistic scenario and we re-
fine the Tmax by considering one interference per operation,
as shown in Equation (28).

Tdiss,max(r,m) = r(RI + 2RR)(m+ 1) (28)

Regarding Xeon Phi, we can use the same model if we do not
consider contention: although m threads are accessing each
line, threads read different combinations of m lines and in
different order. However, since delays in communications
may cause several threads to read the same flag at the same
time, we also consider the equations with contention in
Tmin, as shown in Equation (29). For Tmax, we consider
interferences that cause threads not to read flags simultane-
ously, avoiding contention.

minimize
r,m

Tdiss,min(r,m) = r(RI +mTC(m))

subject to r = ⌈logm+1(n)⌉ (m+ 1)r ≥ n
(29)

For Xeon Phi we design and evaluate a generalization of
dissemination barrier that uses multiple m values: thread
t writes a flag (read by mt,j threads) and reads mt,i flags
(with cost RI +mt,iRR). This reduces communications be-
cause in an m-way dissemination the information collected
at the end of the algorithm (and, thus, the communications
performed) is (m + 1)r, while ideally we only need n. In
this multi-m dissemination we can obtain a more accurate
estimation using

∏r

i=1
(mi+1). The implementation and the

model in CLa are very close to an m-way dissemination.

3.3.2 Inter-socket Dissemination

We compare three variants for inter-socket dissemination,
with different trade-offs between line stealing and con-
gestion. First, we use an optimized dissemination barrier,
estimating the number of QPI transfers per round with the
average of QPI communications per thread. For the worst
case, we assume that all lines are stolen through QPI.

A second approach is one barrier per socket with a final
exchange of flags using pair-wise communications: each
thread selects a peer from the other socket to exchange
final flags. Equation (30) shows an estimation for best and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 9

worst case, using the cost of the slowest socket plus the
final exchange. Parameters ri and mi represent the values
of r and m per socket, n is the total number of threads
and ni the number of threads in socket i. It has a coarse
approach for Tmax in which all threads cause congestion
when reading different flags, and |n0 − n1| represents the
maximum number of threads reading the same flag when
the number of threads is not the same in both sockets,
causing line stealing.

TQPI
diss1,min=max(Tdiss,min(ri,mi)) +RI +RQ

TQPI
diss1,max=max(Tdiss,max(ri,mi)) + 2(RI+

2Tm(n, 1)) + |n0 − n1|RQ

ri= ⌈logmi+1(ni)⌉, i = 0, 1

(30)

Finally, in order to minimize congestion, we can select a root
per socket that sets a flag read by all threads from the other
socket. The cost is similar to the pair-wise approach but,
although we remove congestion, we increase the overheads
due to line stealing, as shown in Equation (31).

TQPI
diss2,min=max(Tdiss,min(ri,mi)) +RI +RQ

TQPI
diss2,max=max(Tdiss,max(ri,mi)) + 2RI + nRQ

ri=⌈logmi+1(ni)⌉, i = 0, 1

(31)

3.3.3 Performance Results

Figure 11a shows the results of the dissemination barrier
on Sandy Bridge using the best m, obtained by estimating
the average of QPI transfers. Our algorithm provides a
maximum speedup of 26.5x over Open MPI and 12x over
Intel MPI. The difference is high because MPI needs to
synchronize processes (the implementation could cooperate
with the operating system to utilize shared memory for this
task). Although Intel MPI shows low latency for 16 threads,
it has issues with non-balanced cases like 10 or 12 threads.
When compared to a thread library like OpenMP, our algo-
rithm obtains a speedup of 1.7x over GNU OpenMP and up
to 3.8x over Intel OpenMP. Since in the HMPI collectives
there is no recommendation for barrier, we compare our
algorithm with a dissemination barrier with no parameter
optimization (m = 1) and no single-use flags. In this case
the maximum speedup is 1.93x.

Figure 11b compares the three dual-socket approaches
in order to analyze the trade-offs between line-stealing and
congestion. “Pair-wise” uses a final flag per thread read
by a peer from the other socket, suffering from congestion
in the QPI link. “Socket-root” uses one root per socket
whose final flag is read by all threads from the other socket,
suffering from line stealing. We increased the scale of this
figure to enable the comparison of the different barriers,
thus removing MPI results.

When the difference in the number of threads per socket
is high (e.g., 10 threads: 8 threads in one socket and 2 in
other) stealing and congestion are limited (in the pair-wise,
there is less congestion since there are less different flags,
while in the socket-root there is less stealing). Thus, these
approaches perform better than the pure dissemination.
However, when increasing the number of threads in both
sockets, the pair-wise approach suffers from a higher over-
head due to the congestion caused by the reads of the differ-
ent flags, while the increase in line stealing in the socket-root

has less impact. Regarding the use of dissemination without
parameter optimization (m = 1) and no single-use flags, it
almost doubles the latency of our optimized barriers.

Figure 11c shows the results for the dissemination
on Xeon Phi using the model with contention, providing
speedups of up to 3x over OpenMP and 11x over MPI. Our
experiments showed that, although the parameters m and
r change when considering the model with contention, the
average of latency is not significantly affected. However, the
model with contention provides parameters that produce
performance results with less variability. This is because
the use of contention tends to provide m = 2 or m = 1,
increasing the number of rounds but reducing line steal-
ing. Regarding the multi-m dissemination (Figure 11d), it
provides speedups of up to 1.28x over dissemination, but
contention limits its benefits.

4 BROADCAST

A broadcast transfers data from one thread called root to
n others. We designed an algorithm identifying our next
technique single-step line broadcast: all children of a given
node can copy the data at the same time. However, the more
children the root has, the higher the contention, the more
lines may be stolen and the more costly the synchronization
is: The parent notifies that data is ready (one-to-many, To2m)
and children notify to the parent that they have copied
(many-to-one, Tm2o) so the parent can free the structure.
Hence, we use the CLa performance model to obtain the
best broadcast tree.

We distinguish two scenarios depending on message size
but with the same algorithmic structure: A generic tree in
which each node i can use a different number of children
(ki) and all ki children of thread i copy the same data. We
use a tool that generates all structurally equivalent trees [16],
calculating the broadcast latency to select the best structure.
This tree could change slightly in a scenario with contention
like Xeon Phi, in which we may have rounds of children
accessing the same data at different stages.

4.1 Single-line Broadcast

When the message is smaller than a line, we use notification
with payload for the one-to-many synchronization. Thus,
we use the same line approach (Equations (14) and (17))
adding the cost of the parent and the children copying the
data to/from this same line. Note that, on Sandy Bridge,
there is no contention and, in an intra-socket scenario,
threads accessing different data do not cause congestion.

For the many-to-one synchronization, we use the same
line approach (Equations (6) and (8)). Although the different
variants have the same Tmin, this version presents lower
Tmax. Figure 12 shows the algorithm with the synchro-
nization modes selected. The first if block corresponds to
children that wait for their parent’s flag and copy the data.
In the second one, a parent sets the data and the flag, and
waits for its children to copy. In the final block, children
notify to their parent that they have copied the data.

For a given tree structure, we construct the CLa graph
and search the critical path. Figure 13 shows an example of
a four-node binary tree with the costs for the intra-socket
Sandy Bridge scenario (the critical path has thicker edges
and nodes with dotted circles). The E1s link operations

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 10

(a) M-way dissemination on Sandy
Bridge.

(b) Different inter-socket barriers on
Sandy Bridge.

1
2

5
1
0

2
0

5
0

2
0
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

1
2

5
1
0

2
0

5
0

2
0
0

2 6 11 16 21 26 31 36 41 46 51 56

Opt. Dissemin.
Min−Max Model

Intel MPI (icc)
OpenMP (icc)

(c) M-way dissemination on Xeon
Phi KNC.

1
2

5
1
0

2
0

5
0

2
0
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

1
2

5
1
0

2
0

5
0

2
0
0

2 6 11 16 21 26 31 36 41 46 51 56

Opt. Dissemin.
Min−Max Model

Intel MPI (icc)
OpenMP (icc)

(d) Multi-m dissemination on Xeon
Phi KNC.

Fig. 11. Performance results of the barrier. Latency is shown in logarithmic scale.

Algorithm 6: One line broacdast

Function OneLineBroadcast(int me, cl t * mydata, tree t tree)
if tree.parent != -1 then

[S1] cl_wait(tree.pflag[tree.parent],1); //one-to-many

[S2] cl_copy(tree.data[tree.parent],mydata,1);
if tree.nsons > 0 then

[S3] cl_copy(mydata,tree.data[me],1);
[S4] cl_write(tree.pflag[me],1); //one-to-many

[S5] cl_wait(tree.sflag[me],tree.nsons); //many-to-one

if tree.parent != -1 then
[S6] cl_add(tree.sflag[tree.parent],1); //many-to-one

end
end

Fig. 12. One line broadcast in CLa pseudo-code.

within each thread and we use E2s in the synchronizations
and data copies. Finally, there is an E3 because t1 and t2
write the same flag, where t0 polls.

RI+RL
*

RR+RL
*

RI+RL
*

RI

RR

t0 (root)

t2

t1

t3

S1

S2

S3

S4

S5

S6

}

}
RI

RR

S3

S4

S5 RR

}
S1

S2

S6

S1

S2

S6

}RR+RL
*

Fig. 13. CLa graph for a one line broadcast using a four-node binary
tree. The critical path is calculated for a single-socket Sandy Bridge.
Costs with ‘*’ represent situations in which the same thread operates
consecutively with the same line and the cost of accessing is counted
only once.

Since we use trees, we observe regularities in the critical
path: It includes the transfer of data from the root to its
children plus the synchronizations (Tlev(k0) = To2m(k0) +
Tdata + Tm2o(k0)), plus the cost of the most expensive
subtree (Tbc(subtreei), in Figure 13 the left subtree). Hence,
we can generalize it as shown in Equation (32)3, where ki is
the number of children of thread i.

minimize
ki

Tbc(tree) = Tlev(k0) + max
i=1,...,k0

(Tbc(subtreei))

subject to Tbc(leaf) = 0
∑n

i=0
ki = n, ki ≥ 0 (32)

4.1.1 Considerations for Sandy Bridge

The minimization has to balance the number of threads
that get the value at the same time, and the notification

3. If we use a global flag where the root sets the shared structure as
occupied by the current operation, we have to add RI to the equation.

cost. In a multi-socket broadcast some edges become QPI
links. Having the tree nodes in an ordered list, we generate
permutations to locate the QPI links in different edges4. To
calculate the cost of each permuted tree and select the best
one, we apply Equation (32) considering:

1) Transfers across sockets cost RQ.
2) To isolate QPI transfers and minimize line stealing, we

use single-use synchronization lines: each synchronization
uses one line per socket.

3) We do not consider QPI congestion caused by different
subtrees because this complicates the model and our
experiments showed that the benefits are minimal.

The best dual-socket trees for Sandy Bridge are almost
always flat. This is because, many-to-one synchronization
from threads located in different sockets can overlap if we
use separate lines per socket.

Figure 14a shows the performance results of our algo-
rithm compared to two MPI libraries. Broadcasts with an
imbalanced number of threads per socket (e.g., ten threads)
use different trees depending on the socket where the root
is located. Our algorithm clearly outperforms both MPI li-
braries obtaining a speedup of 14x when compared to Open
MPI and 8x relative to Intel MPI. Authors of the NUMA-
aware HMPI library recommend the use of a flat tree with
synchronization based on barriers. When compared with
this approach, we obtain a speedup of up to 1.8x.

4.1.2 Considerations for Xeon Phi

On Xeon Phi, we can apply the same algorithm and equa-
tions but considering that the copy of the data involves con-
tention. In order to prune the search of the best tree, we use
the same strategy than in the many-to-one synchronization
(cf. Section 3.1). For a given number of threads, we analyze
the combinations of: (1) number of sons of the root and (2)
organization of the remaining threads in subtrees. For each
subtree, we select the optimal configuration obtained for its
number of threads.

Since Xeon Phi exhibits contention, we consider trees
in which each thread can be parent of several groups of
threads. The operation of one parent is as follows: (1) It
copies the message into a shared location and sets the noti-
fication flag. (2) If it has more children, it re-copies the mes-
sage into another shared location and sets a new flag. And
(3) it uses one-line many-to-one synchronization to receive
the notification from all its children. In order to generate the

4. We do not need all permutations: there is no difference among
threads from the same socket.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 11

trees and select the best one, we use the same simplification
than in the one-to-many synchronization (cf. Section 3.2):
first the root writes the data and a flag that is read by a
set of descendants and then, the remaining threads are split
evenly among the available parents. In this algorithm, the
root is able to write the new data and flag immediately after
writing the previous flag. Hence, its children will receive
the message before the rest of subtrees. In order to alleviate
this effect, intermediate nodes (with parent and children)
can copy directly the parent data into a shared structure
from where their children will get it. And then, they will
make the copy into its own buffer. Performance results in
Figure 15a show up to 4.7x improvement over MPI. The
model underestimates the real cost due to the simplification
and because the implementation requires some indirections.
However, it predicts accurately the performance trends, and
the average results are within the min-max model. Our
results show that this algorithm shows less variability in
performance than the use of simple trees.

4.2 Multi-line Broadcast

With multi-line messages the cost is generally driven by the
copy, not by the synchronization. Hence, it is most efficient
if children copy data directly from the original location. In
this case, Tdata corresponds to a multi-line transfer. Given
the cost of the copy, Tmax has to consider that children may
not copy the message at the same time, delaying the whole
algorithm. If data is too big to fit in cache, we split it in
chunks that can be cached. At most, one thread will need to
maintain its copy and its parent data.

4.2.1 Considerations for Sandy Bridge

The multi-line transfer model for Tdata is Equation (4). In
a multi-socket scenario, we ignore QPI congestion as we
have not observed a significant performance impact in this
algorithm. Figure 14b shows results for an 8 KB broadcast
(128 lines) that, when compared to Open MPI and Intel
MPI, obtains a speedup of up to 7.3x. Again, HMPI uses
a flat tree with barriers. Here, the speedup is lower (up
to 1.3x) because the cost is driven by data copies, and our
optimization also proposes flat trees in most cases.

4.2.2 Considerations for Xeon Phi

Since the children copy the data from the original location
(zero-copy strategy), having several groups of descendants
from a same parent only limits line stealing and contention
when checking the flag. Thus, only we analyze the approach
in which each parent has one group of descendants.

The copy of the data (Tdata) has to combine the multi-
line model and the contention model. We use the slope
factor of the multi-line ping-pong model (o) as the time that
it takes for one thread to get the message. This operation will
be affected by the contention caused by the rest of children.
As intercept or constant factor, we arbitrarily chose the b
from the contention model (assuming that the buffers are in
exclusive state) [8].

The result of this approach is shown in Figure 15b, with
a speedup of up to 44.6x over MPI. The cause of the peak
for 45 threads is that we optimize for the best case (the min-
model does not present any peak).

5 REDUCTION

Reduction is widely used in parallel programming, e.g.,
to combine results after splitting computation between
threads. Its communication pattern is the opposite to broad-
cast: the root performs an operation with data received from
n threads, thus, data from n+ 1 threads (including the data
from the root) have to be combined. We explore two different
algorithms depending on the message size.

5.1 Single-line Reduction

To avoid the serialization caused if several threads write to a
common location, we use a technique that we call cache line
privatization: each thread copies data to a private buffer, and
thus these writes can overlap [8]. Then, the root performs
the operation reading these buffers. Although privatization
forces the root to read multiple buffers, it compensates the
serialization (note that the root is not polling this buffer,
so stealing is not an issue). Regarding synchronization, the
root has a flag to notify that buffers are ready (one-to-many)
and children use another CL to notify that copies have been
made (many-to-one), as in Figure 16: When a thread has
children (first if block), it notifies that it is ready, waits for
its children notification, and operates with the content of
their buffers. When a thread has a parent (second block), it
waits for the parent to be ready, copies its own data into a
buffer and notifies its parent.

Algorithm 7: One-line reduction

Function OneLineReduction(int me, cl t * mydata, tree t tree)
if tree.nsons > 0 then

[S1] cl_write(tree.pflag[me],1); //one-to-many

[S2] cl_wait(tree.sflag[me],tree.nsons); //many-to-one

for i=0,...,tree.nsons-1 do
[S3] cl_add(mydata, tree.sdata[me][i]);

end
if tree.parent != -1 then

[S4] cl_wait(tree.pflag[tree.parent],1); //one-to-many

[S5] cl_copy(mydata, tree.mybuffer, 1);
[S6] cl_add(tree.sflag[parent],1); //many-to-one

end
end

Fig. 16. Reduction of a one line message in CLa.

RI

RR

RL+RR

t0 (root)

t2

t1

t3

S4

S5

S6

S4

S5

S6

S1

S2

S3

S4

S5

S6

RR+RL

RI

RI

RL+RR

RR

RR

S1

S2

S3

S3

RR

RL+RR
*

RR*

RR

Fig. 17. CLa graph for a one line reduce using a four-node binary tree.
The critical path is calculated for a single-socket Sandy Bridge. Costs
signaled with ‘*’ represent situations in which the same thread operates
consecutively with the same line and the cost of accessing is counted
only once.

Figure 17 represents the CLa graph of a four-node binary
tree, and its critical path. The E1 edges link operations
within each thread, E2s appear in the synchronizations and
data copies, and the E3 represents that t1 and t2 write the
same flag, where t0 polls. As in broadcast, the regularities
in the critical path allow us to generalize it for a generic tree

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 12

2 4 6 8 10 12 14 16

0
.1

0
.5

5
.0

5
0
.0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

Broadcast
Min−Max Model
Open MPI (gcc)

Intel MPI (icc)
HMPI−like

(a) One byte broadcast.

2 4 6 8 10 12 14 16

1
2

5
1
0

2
0

5
0

1
0
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

Broadcast
Min−Max Model
Open MPI (gcc)

Intel MPI (icc)
HMPI−like

(b) 8 KB broadcast.

2 4 6 8 10 12 14 16

0
.2

0
.5

2
.0

5
.0

2
0
.0

1
0
0
.0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

Reduction
Min−Max Model
Open MPI (gcc)
Intel MPI (icc)

OpenMP (gcc)
OpenMP (icc)
HMPI−like

(c) One byte reduction.

2 4 6 8 10 12 14 16

1
2

5
1
0

2
0

5
0

1
0
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

Reduction
Min−Max Model
Open MPI (gcc)

Intel MPI (icc)
OpenMP (gcc)
OpenMP (icc)

(d) 4 KB reduction.

Fig. 14. Performance results on Sandy Bridge. Latency is shown in logarithmic scale.

1
2

5
1
0

2
0

5
0

1
0
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

1
2

5
1
0

2
0

5
0

1
0
0

2 6 11 16 21 26 31 36 41 46 51 56

Broadcast
Min−Max Model

Intel MPI (icc)

(a) One byte broadcast.

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

2 6 11 16 21 26 31 36 41 46 51 56

Broadcast
Min−Max Model

Intel MPI (icc)

(b) 8 KB broadcast.

1
5

5
0

5
0
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

1
5

5
0

5
0
0

2 6 11 16 21 26 31 36 41 46 51 56

Reduction
Min−Max Model

Intel MPI (icc)
OpenMP (icc)

(c) One byte reduction.

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

2 6 11 16 21 26 31 36 41 46 51 56

Reduction
Min−Max Model

Intel MPI (icc)
OpenMP (icc)

(d) 4 KB reduction.

Fig. 15. Performance results on Xeon Phi KNC. Latency is shown in logarithmic scale in 15b, 15c, and 15d.

where thread i has ki children and ki buffers for data copies.
Note that children with cheaper subtrees (like the subtree of
t2) notify first, thus, their notifications to the parent may
overlap with the reduction of more expensive subtrees (like
the subgraph formed by t1 and t3). However, if we do not
consider this overlap we still get an upper bound for Tmin.

5.1.1 Considerations for Sandy Bridge

Equations (33) show the cost of a level of the tree (cost of line
stealing is reflected in Tlev,max) and Equation (34) represents
our solution (ki is the number of children of thread i, and
k0 the number of children of the root).

Tlev,min(k) = RI + 2((k + 1)RR +RL)
Tlev,max(k) = RI + 2((2k + 1)RR +RL)

(33)

minimize
ki

Tred(tree) = Tlev(k0) + max
i=1,...,k0

(Tred(subtreei))

subject to Tred(0) = 0
∑n

i=0
ki = n, ki ≥ 0

(34)

With two sockets, we use single-use synchronization
cache lines to isolate polling from different sockets. As in
broadcast, we generate arbitrary trees and permutations of
the QPI link locations and we consider QPI congestion for
children of the same parent.

Figure 14c shows the latency of a reduction using a sum
of floats for our algorithm, MPI and HMPI, and a sum of
integers for OpenMP. Our implementation improves MPI
libraries by up to 16x and OpenMP ones by up to 5.6x.
We observed that Intel libraries present latency peaks for
imbalanced scenarios (10 threads for Intel MPI and 12 and
14 for Intel OpenMP). HMPI uses a binary tree, delaying
QPI communications to the last step. When comparing our
approach with this algorithm (both using our synchroniza-
tion system), we obtain a speedup of up to 1.3x.

5.1.2 Considerations for Xeon Phi

We use the algorithm described for Sandy Bridge and the
approach from Section 3.1 to avoid the generation of all

possible trees. We modify the model from Equations (33)
and (34) to introduce contention in the To2m synchroniza-
tion, and we evaluate the impact of considering overlapping
among the children of the same parent (which reduces
contention and line stealing). This results in trees with larger
fan-outs and lower Tmin, although real results show that the
trees obtained with both approaches perform similar: with
improvements of up to 41x over MPI and 3.3x over OpenMP.

5.2 Multi-line Reduction

Splitting computation tasks between threads may require
a reduction of more than one element. Using a multi-line
version of Equation (34) forces each parent to read long
buffers in a serialized manner. To maximize overlap, we
use binomial trees, applying the model to construct an
optimized implementation.

At a given stage of the tree, remaining threads are
arranged in pairs: thread t0 reads and reduces data from
thread t1. Each pair needs two one-to-one synchronizations:
From t1 to t0 to notify that data is ready, and from t0 to t1 to
notify that it has been copied and t1 can leave the operation.
After each stage, the number of active threads is halved.
Assuming that the overhead of the operation is similar to a
copy, the cost of one stage is 2(RI +RR)+Tm(1, N). In this
algorithm, and due to the message size (as in the multi-line
broadcast from Section 4.2) line stealing does not capture all
the variability and we have to consider the delay that may
occur if some transfers do not overlap.

5.2.1 Considerations for Sandy Bridge

The Tm estimation uses one buffer to load data from, and
another one to store the data. In the multi-line reduction
there are two buffers to load data from. Hence, we use 2Tm

in the approximation. However, even when not considering
this difference, we obtain a good prediction of the behavior
of the algorithm. Given the data size, simultaneous transfers
can congest the QPI link. Thus, we use one binomial tree

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 13

per socket and a final QPI transfer. Let n0+1 and n1 be the
number of threads per socket (the root is in socket 0), Tmin

for the binomial reduction is shown in Equation (35).

Tstage = 2(RI +RR) + Tm(1, N)
Tinter = 2(RI +RQ) + Tm(1, N)

Tbin,min(n+ 1) = lceil log2(n+ 1)⌉Tstage

TQPI
bin,min(n0 + 1, n1) = Tbin,min(max(n0 + 1, n1)) + Tinter

(35)

Figure 14d shows the results of the binomial algorithm
compared to MPI and OpenMP. We do not compare with
HMPI because they recommend the use of a similar tree.
We used 4 KB messages to have all buffers cached. They
are smaller than for broadcast because there are more inner
copies. Our reduction obtains a speedup of up to 4.33x
over MPI libraries and up to 4.8x over OpenMP. OpenMP
supports the reduction of a list of variables, but the multi-
line reduction is only supported in Fortran versions.

5.2.2 Considerations for Xeon Phi

The model is similar than for Sandy Bridge, but a Xeon
Phi core makes a 512-bit load and a 512-bit store in one
cycle, and its vector instruction set is optimized for three-
operand instructions [17], hence, we do not observe the
same latency differences regarding Tm. If we want to refine
the estimation, we could use 1.5Tm, but 2Tm overestimates
the results. Figure 15d shows improvements of up to 13.3x
over OpenMP and 20x over MPI.

6 RELATED WORK

Analytical performance models have been largely used
to optimize parallel computation. Models like LogP [18],
LogGP [19], PlogP [20] or Hockney [21], enable the analy-
sis of algorithm performance in distributed environments.
Some of them [22], [23] were extended with memory con-
cerns to measure effects of buffer copies in communication.
The PRAM [24] model studies the logical structure of par-
allel computation, without taking into account communica-
tion among processors nor access to global memory. Recent
works include multi-core features, like mPLogP [25] for Cell
B.E. processors. Others [26], [27] extract features from code,
hardware and input data to develop high level models to
configure application scheduling on multi-cores.

The use of models for algorithm optimization has been
tackled in multiple works. Karp et al. [28] use LogP to show
that Fibonacci trees are optimal for broadcast, while Sanders
et al. [29] use a simple linear communication model to
develop bandwidth-optimal broadcast and reduction algo-
rithms. Li et al. [13] tackle NUMA-aware MPI collectives us-
ing a simplified model. Mellor-Crummey et al. [30] analyze
different synchronization algorithms in a multiprocessor
environment but with almost no cache coherence concerns.
Hijma et al. [31] provide optimization guidelines in several
architectures but avoid cache coherence issues.

Regarding cache coherence, most works focus on mem-
ory hierarchy and cache conflicts [32], [33], [34]. David et
al. [35] analyze lock synchronization for multi-cores, con-
sidering cache states and memory operations. Putigny et
al. [36] use benchmarking to model algorithms but limit
the analysis to one-socket Sandy Bridge architectures and
obviate thread interaction. Our performance model extends

our previous works [7], [8], a cache coherence based model
for homogeneous many-core processors and hierarchical
NUMA machines. We focus on analytical optimization, gen-
eralizing its applicability and the algorithm design.

7 DISCUSSION AND CONCLUSIONS

While cache coherence simplifies the management of syn-
chronization and communication between cores, it exhibits
complex performance properties and thus complicates high-
performance code design. We address this issue with cache
line aware (CLa) optimizations, a semi-automatic design
and optimization method that eases the translation of an
algorithm to a performance model in a systematic manner.
We demonstrate algorithm development techniques for CLa
that improve performance between 1.3x and 44.6x in com-
parison to highly-optimized vendor-provided communica-
tion libraries.

One of the main difficulties for scalability is dealing
with thread interaction, which is inherent to concurrency
and hidden by the cache coherence protocols. CLa design
enables to quantify and localize these interactions that may
harm performance severely. Using CLa graphs, we can
locate contention (threads accessing the same address at
the same time), congestion (threads accessing different ad-
dresses simultaneously), and line stealing. And the min-max
models present the expected variability and predictability of
the algorithm. Kernels or primitives with shared variables
and thread interaction are the algorithmic parts that will
benefit the most from the use of our methodology. Note that
CLa is useful to identify interactions that affect the same line
but it relies on the designer to decide which variables share
or do not share lines.s

The insight gained with the CLa methodology enables
us to identify good design practices (single-use synchro-
nization lines, single-step broadcast, line privatization) and
quantify the benefits of these techniques in the different
architectures. These design practices are oriented to bound
the variability caused by thread interaction, thus reducing
the distance between the min and max models. Moreover,
by parametrizing the building blocks of the performance
model, hardware designers could quantify the impact that
architectural design decisions might have in shared memory
algorithms.

We demonstrate the use of CLa to optimize algorithms
for two architectures: the x86 accelerator Xeon Phi and the
dual-socket NUMA processor Sandy Bridge. The homo-
geneity of the Xeon Phi ring highly simplifies algorithm
optimization in terms of modeling. However, the impossi-
bility of taking advantage of locality makes communication
among cores much slower than in Sandy Bridge. Moreover,
the DTD contention limits the applicability of the single-step
broadcast technique. Regarding the Sandy Bridge architec-
ture, the main drawback is congestion through the QPI link
and the cost of inter-socket line stealing.

This work is a major step in order to construct a full
automatic optimization system for multi- and many-core
architectures, to enable the location and quantification of
performance and scalability bottlenecks. We aim to intro-
duce refinements in the min-max models to be able to
predict the expected behavior, as well as to include memory

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 14

and TLB concerns to be able to optimize a wider range of
algorithms and kernels in multiple architectures.

ACKNOWLEDGMENTS

We thank the support from Alexander Supalov and Robert
Blankenship from Intel. This work was supported by the
Ministry of Economy and Competitiveness of Spain and
FEDER funds of the EU (Project TIN2013-42148-P).

REFERENCES

[1] S. Saini et al., “Performance Evaluation of the Intel Sandy Bridge
Based NASA Pleiades Using Scientific and Engineering Applica-
tions,” in Proc. 4th Intl. WS. on Perf. Modeling, Bench. and Sim. of
HPC Systems (PMBS’13), Denver, CO, USA, 2013.

[2] D. Molka et al., “Memory Performance and Cache Coherency
Effects on an Intel Nehalem Multiprocessor System,” in Proc. 18th
Intl. Conf. on Parall. Arch. and Compilation Techniques (PACT’09),
Raleigh, NC, USA, 2009, pp. 261–270.

[3] D. Hackenberg et al., “Comparing Cache Architectures and Co-
herency Protocols on x86-64 Multicore SMP Systems,” in Proc.
42nd Annual IEEE/ACM Intl. Symp. on Microarch. (MICRO’42), New
York, NY, USA, 2009, pp. 413–422.

[4] Intel, “Intel R© Xeon Phi
TM

Coprocessor: Software Developers
Guide,” 2014.

[5] G. Chrysos, “Intel R© Xeon Phi
TM

Coprocessor (Codename Knights
Corner),” Keynote talk at the 24th Hot Chips: A Symp. on High
Perf. Chips, Cupertino, CA, USA, 2012.

[6] T. Hoefler and T. Schneider, “Optimization Principles for Col-
lective Neighborhood Communications,” in Proc. 25th ACM/IEEE
Intl. Supercomp. Conf. for High Perf. Comp., Networking, Storage and
Analysis (SC’12), Salt Lake City, UT, USA, 2012.

[7] S. Ramos and T. Hoefler, “Cache Line Aware Programming for
ccNUMA Systems,” in Proc. 24th Intl. Symp. on High-perf. Parall.
and Distrib. Comp. (HPDC’15), Portland, OR, USA, 2015, pp. 85–88.

[8] ——, “Modeling Communication in Cache-coherent SMP Cys-
tems: a Case-study with Xeon Phi,” in Proc. 22nd Intl. Symp. on
High-perf. Parall. and Distrib. Comp. (HPDC’13), New York, NY,
USA, 2013, pp. 97–108.

[9] Intel, “Intel R© 64 and IA-32 Architectures Optimization Ref. Man-
ual,” 2014.

[10] V. Volkov, “Intro to MIC performance,” BeBOP meeting, http://
www.cs.berkeley.edu/∼volkov/volkov12-MIC.pdf, 2012.

[11] R. Dolbeau, “Address Selection for Efficient Barriers on the Intel
Xeon Phi,” CAPS Enterprise white paper, http://www.dolbeau.
name/dolbeau/publications/barrierphi.pdf, 2013.

[12] J. Torrellas et al., “False Sharing and Spatial Locality in Multipro-
cessor Caches,” IEEE Trans. on Computers, vol. 43, no. 6, pp. 651–
663, 1994.

[13] S. Li et al., “NUMA-aware Shared-memory Collective Communi-
cation for MPI,” in In Proc. 22nd Intl. Symp. on High-perf. Parall. and
Distrib. Comp. (HPDC’13), New York, NY, USA, 2013, pp. 85–96.

[14] S. Ramos and T. Hoefler, “Benchmark Suite for Modeling In-
tel Xeon Phi,” http://gac.des.udc.es/∼sramos/xeon phi bench/
xeon phi bench.html, 2012.

[15] T. Hoefler et al., “Fast Barrier Synchronization for InfiniBand,” in
Proc. 20th IEEE Intl. Parall. & Distrib. Processing Symp., CAC’06 WS.,
Rhodes, Greece, 2006.

[16] G. Li and F. Ruskey, “Advantages of Forward Thinking in Gener-
ating Rooted and Free Trees,” in Proc. 10th ACM-SIAM Symp. on
Discrete Alg. (SODA’99), Baltimore, MD,USA, 1999, pp. 939–940.

[17] R. Rahman, “Intel R© Xeon Phi
TM

Coprocessor Vector Microarchi-
tecture,” 2012.

[18] D. Culler et al., “LogP: towards a Realistic Model of Parallel
Computation,” SIGPLAN Not., vol. 28, no. 7, pp. 1–12, 1993.

[19] A. Alexandrov et al., “LogGP: Incorporating Long Messages into
the LogP Model - One Step Closer towards a Realistic Model for
Parallel Computation,” in Proc. 7th ACM Symp. on Parall. Alg. and
Arch. (SPAA’95), S. Barbara, CA, USA, 1995, pp. 95–105.

[20] T. Kielmann et al., “Fast Measurement of LogP Parameters for
Message Passing Platforms,” in Proc. 15th IPDPS WS. on Parall.
& Distrib. Processing, Cancun, Mexico, 2000, pp. 1176–1183.

[21] R. W. Hockney, “The Communication Challenge for MPP: Intel
Paragon and Meiko CS-2,” Parall. Comp., vol. 20, no. 3, pp. 389 –
398, 1994.

[22] K. W. Cameron et al., “lognP and log3P: Accurate Analytical
Models of Point-to-Point Communication in Distrib. Systems,”
IEEE Transactions on Computers, vol. 53, no. 3, pp. 314–327, 2007.

[23] K. W. Cameron and X. H. Sun, “Quantifying Locality Effect in
Data Access Delay: Memory logP,” in Proc. 17th IEEE Intl. Parall. &
Distrib. Processing Symp. (IPDPS’03), (8 pages),Nice, France, 2003.

[24] R. M. Karp and V. Ramachandran, “A Survey of Parallel Algo-
rithms for Shared-Memory Machines,” Univ. of California, Berke-
ley, CA, USA, Tech. Rep., 1988.

[25] L. Li et al., “mPlogP: A Parallel Computation Model for Heteroge-
neous Multi-core Computer,” in Proc. 10th IEEE/ACM Intl. Conf. on
Cluster, Cloud and Grid Comp. (CCGRID’10), Melbourne, Australia,
2010, pp. 679–684.

[26] F. Blagojevic et al., “Scheduling Dynamic Parallelism on Acceler-
ators,” in Proc. 6th ACM Conf. Comp. Front. (CF’09), Ischia, Italy,
2009, pp. 161–170.

[27] J. E. Savage and M. Zubair, “A Unified Model for Multicore
Architectures,” in Proc. 1st Intl. Forum on Next-generation Multi-
core/Manycore Tech. (IFMT’08), Cairo, Egypt, 2008, pp. 9:1–9:12.

[28] R. M. Karp et al., “Optimal Broadcast and Summation in the LogP
Model,” in Proc. 5th ACM Symp. on Parall. Alg. and Arch. (SPAA’93),
Velen, Germany, 1993, pp. 142–153.

[29] P. Sanders et al., “Two-Tree Algorithms for Full Bandwidth Broad-
cast, Reduction and Scan,” Parall. Comp., vol. 35, no. 12, pp. 581–
594, 2009.

[30] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scal-
able Synchronization on Shared-Memory Multiprocessors,” ACM
Trans. on Computer Systems, vol. 9, no. 1, pp. 21–65, 1991.

[31] P. Hijma et al., “Stepwise-refinement for Performance: a Method-
ology for Many-core Programming,” Concurrency and Computation,
p. In press, 2015.

[32] A. Agarwal et al., “An Analytical Cache Model,” ACM Transactions
on Computer Systems, vol. 7, no. 2, pp. 184–215, 1989.

[33] L. G. Valiant, “A Bridging Model for Multi-core Computing,” Jnl.
of Comp. and Syst. Sciences, vol. 77, no. 1, pp. 154 – 166, 2011.

[34] D. Andrade et al., “Accurate Prediction of the Behavior of Mul-
tithreaded Applications in Shared Caches,” Parall. Comp., vol. 39,
no. 1, pp. 36 – 57, 2013.

[35] T. David et al., “Everything You Always Wanted to Know About
Synchronization but Were Afraid to Ask,” in Proc. 24th ACM Symp.
on Operating Systems Principles (SOSP’13), Farminton, PA, USA,
2013, pp. 33–48.

[36] B. Putigny et al., “A Benchmark-based Performance Model for
Memory-bound HPC Applications,” in Proc. 12th Intl. Conf. High
Perf. Comp. & Sim. (HPCS’14), Bologna, Italy, 2014, pp. 943–950.

Sabela Ramos received the B.S. (2009), M.S.
(2010) and Ph.D. (2013) degrees in Computer
Science from the University of A Coruña, Spain.
From September 2015, she is a postdoctoral
researcher at ETH Zürich, Switzerland. Her re-
search interests are in the area of High Per-
formance Computing, focused on message-
passing communications and performance mod-
elling on multi and manycore architectures.

Torsten Hoefler is an Assistant Professor of
Computer Science at ETH Zürich, Switzerland.
He is also a member of the Message Passing In-
terface (MPI) Forum where he chairs the “Collec-
tive Operations and Topologies” working group.
His research interests revolve around the cen-
tral topic of “Performance-centric Software De-
velopment” and include scalable networks, par-
allel programming techniques, and performance
modeling.

