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ABSTRACT
To this day, polyhedral optimizing compilers use either extremely
rigid (but accurate) cost models, one-size-fits-all general-purpose
heuristics, or auto-tuning strategies to traverse and evaluate large
optimization spaces.

In this paper, we introduce an adaptive and automatic scheduler
that permits to generate novel loop transformation sequences (or
recipes) capable of delivering strong performance for a variety
of different architectures without relying on auto-tuning, nor on
pre-determined transformation strategies.

We evaluate our approach using the Polybench/C benchmark
suite against two modern state-of-the-art optimizers on three dif-
ferent architectures: An AMD ThreadRipper, an Intel Xeon Phi,
and an Intel Xeon Platinum. Our results provide evidence that a
set of high-level objectives backed up by an automatic adaptive
scheduler (i.e., not hard-wired) is capable of achieving competitive
performance, while only resorting to evaluating a handful of tuned
variants.

CCS CONCEPTS
• Theory of computation→Continuous optimization; • Soft-
ware and its engineering → Compilers; • Information sys-
tems→ Information storage systems.
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1 INTRODUCTION
Modern polyhedral compilers and affine transformation frame-
works [4, 7, 14, 17, 19, 26, 29, 31, 43] are, despite the vast progress
made in the last 30 years, still hindered by rigid cost models and
heuristics. To a large extent, their modern popularity is owed to
the ability to compose transformations in a single pass, and to the
success of general-purpose optimization criteria. The minimiza-
tion of the maximal dependence distance [1, 7, 27]–a simple but
effective heuristic that improves the program’s locality by bringing
computations that share data closer in time is one of such crite-
ria [28]. Other efforts have also attempted to introduce additional
performance objectives such as contiguity and inner-parallelism to
maximize SIMD-vectorization opportunities [24, 40, 44]. As it turns
out, architectural and hardware trends (i.e., an increasing number
of cores, larger and deeper memory hierarchies, longer latencies,
and widening vector units) together with ever more complex and
demanding software applications [41] are rendering sub-optimal
general-purpose (polyhedral) compiler techniques. This makes it
imperative to design and develop novel and adaptive compiler op-
timizations that depart from single, general-purpose optimization
criteria.

The legal space formulation [33, 39] and the notion of performance
lexicons recently introduced in [23] give some unique opportunities
to conduct guided search spaces operating with a higher notion of
performance optimization. The latter uses a set of Integer Linear
Program (ILP) cost functions that can be combined and used to cre-
ate novel and customized transformation sequences. Examples of
these ILP objectives are Dependence Guided Fusion (DGF) and Stride
Optimization (SO). Indeed, steering the exploration of transforma-
tion variants with a performance lexicon is equivalent to pruning
the candidate schedules that do not exhibit one/any of the desired
traits. If we were to explicitly generate and test all combinations
in a set with L objectives, or more precisely, permutations of ILP
objectives, we would be required to traverse a space of size O(L!). In
addition, the complexity drastically increases when the selection of
transformations can be further customized to subsets of statements.

In this work, we develop mechanisms by which this extraordinar-
ily large space can be characterized, queried, and navigated in an
effective and scalable way. Two of our main contributions are: i) A
method to estimate the impact of subsets and combinations of high-
level performance objectives, where each objective is implemented
as an ILP cost function, without the need for explicit compilation
or exhaustive enumeration. ii) A novel technique to extrapolate
the performance effects of larger combinations of ILP objectives in
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various scenarios (i.e., code patterns, statement partitions, or new
architectures). These mechanisms enable us to navigate the legal
space of transformations in a controlled fashion, testing only small
combinations of objectives and quantifying their impact without
actual runs, and form the basis for an adaptive scheduler—a form
of greedy domain-specific compilation scheme, which is not bound
by chains of prefixed transformation recipes.

Our work bridges the gap between general-purpose and domain-
specific compilation while simultaneously reducing the need for
auto-tuning. Moreover, the scheduling system described here is
adaptive in nature, in the sense that the selection and sequence
of transformations applied will vary depending upon patterns ob-
served and the target architecture. Nonetheless, unlike [23], such
patterns are not hardwired. In summary, our contributions are:
• A novel approach to generate new transformation recipes
with an adaptive polyhedral scheduling engine; we rely on
a pre-computed database to perform queries on the fly and
decide the best sequence of ILP objectives to apply to subsets
of program statements.
• A novel methodology to characterize, traverse and quantify
large loop transformation spaces.
• Evidence that an enhanced and semantically rich ILP perfor-
mance lexicon, backed up by an adaptive automatic scheduler
is capable of delivering competitive, and in some cases strong,
performance without resorting to large scale auto-tuning
techniques.
• An extensive evaluation on three modern and architecturally
diverse processors, achieving comparable or superior perfor-
mance to current state-of-the-art optimizers.

The remaining of this paper is organized as follows: Sec.2 further
motivates our research problem; Sec.3 presents the related back-
ground concepts, including recapping the legal space formulation
and extensions to the performance lexicon; Sec.4 describes in detail
the steps necessary to implement an automatic and adaptive poly-
hedral scheduling engine. Next, the effectiveness of our scheduling
system is demonstrated in the experimental evaluation of Sec.5. We
conclude by discussing related work in Sec.6 and the conclusion in
Sec.7.

2 MOTIVATION
In intensive loop computations, compiler transformations must
balance the complex interactions between parallelism and local-
ity to achieve the best possible performance. On one end, maxi-
mizing parallelism often results in loop distribution (fission), loop
permutations pushing dependence satisfaction into the innermost
vectorizable loop level, and loss of program locality. On the other
end, indiscriminate maximization of locality via loop fusion can
reduce parallelism. Various polyhedral compilers try to address
such complex interplay of objectives.

Acharya et al. [1, 2] enhanced Pluto’s tiling-hyperplane algo-
rithm, enabling the exploration of a richer transformation space.
Their technique has proven extremely scalable but mostly applied
to multi-core processors. Besides, they consider the selection of tile
sizes as an orthogonal problem; Ultimately, affecting the program’s
parallelism and locality. Zinenko et al. [49] proposed a template for
the construction of affine scheduling algorithms that accounts for

multiple levels of parallelism and deep memory hierarchies. Their
approach models multi-level parallelism and temporal/spatial local-
ity by orchestrating a collection of parameterizable optimization
problems with configurable constraints and objectives. Still, their
approach hard-wires several design decisions, e.g., when to switch
from carrying fewer spatial proximity relations to carrying as many
as possible. For example, in the presence of both coincident (paral-
lelism) and proximity (locality) relations being carried by the same
schedule dimension, parallelism is always preferred. This design
decision is equivalent to hard-wiring the order between two ILP
objectives. Recently Kong and Pouchet [22, 23] introduced another
successful solution, which consisted of an extensible transforma-
tion lexicon of “small” ILP objectives, each addressing a specific
performance property. Their approach identified pre-determined
patterns (i.e., shallow loop nests) found in the code and decided a
priori the ILP objectives to apply depending on the pattern detected
and the target machine. The lexicon was proven effective across
several architectures. But it still comes with limitations: (i) The
rigidness of how the subset of performance properties are selected
and embedded into the ILP, both per pattern, and architecture, (ii)
how the priority of the objectives is established. The second limita-
tion heavily undermines the approach scalability, as the number
of choices of the objective’s priority order is L! (L being the size of
the lexicon). Thus, explicit enumeration and testing of all possible
variants is only possible for a handful of cases, becoming quickly
intractable with ILP lexicons of 8 or more objectives. If, in addition,
we consider all possible statement clustering options (number of
subsets in a set with S statements), the optimization space grows
exponentially.

In a separate category of techniques, we have auto-tuning sys-
tems and directive-based approaches. The former conducts explicit
searches of large candidate transformation spaces guided by partic-
ular criteria (i.e., minimizing time, optimizing for energy or memory
footprint, or even searching for particular combinations of the prior)
[3, 9, 12, 19, 38, 48]. The latter, offer control over the transformations
applied by allowing the programmer to give precise constraints. But
they increase the user’s burden and make the code less portable.

In summary, the above strategies center more on the mechanisms
to generate large exploration spaces rather than focusing on: (i)
How to generate small but meaningful tuning spaces; (ii) cater
end-users by providing high-level, composable and customizable
policies that permit to navigate the space; and (iii) supply users
with mechanisms to assess the characteristics and demographics of
the constructed tuning spaces.

To further illustrate the complexity of this problem, we show
in Figure 1 the performance distribution of more than 2000 tile
variants generated with the Pluto compiler, for the 2mm compute
kernel (Listing 1). The generated variants are evaluated on two
representative high-end systems—a 68-core Intel Xeon Phi and
a 48-core Intel Xeon Platinum (formerly Skylake). Variants are
grouped into bins by performance and loop fusion heuristic used:
Maximal loop distribution (nofuse), maximal loop fusion (maxfuse)
and, smart-fuse—a hybrid heuristic that attempts to balance locality
and parallelism (smartfuse). Tile sizes are selected to produce tile
volumes fitting between the L1- and L2-caches.

Tile sizes, in addition to determining the program’s locality, also
control the number of parallel loop iterations to be distributed
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Figure 1: Pluto’s performance distributions for Polybench/C 2mm kernel (Double Precision, Standard Dataset) on two Intel
machines: a 68-core Intel Xeon Phi (left) and a 48-core Intel Xeon Platinum (right).

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j) {

S1: tmp[i][j] = 0;
for (int k = 0; k < N; ++k)

S2: tmp[i][j] += alpha * A[i][k] * B[k][j];
}
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j) {
S3: D[i][j] *= beta;

for (int k = 0; k < N; ++k)
S4: D[i][j] += tmp[i][k] * C[k][j];

}

Listing 1: 2mm kernel source code.

among the processing cores. In other words, the number of parallel
iterations is inversely proportional to the tile size selected. The
best performing variant is the nofuse heuristic, with 1x256x32 and
20x256x32 tile sizes, for the Xeon Platinum and the Xeon Phi, re-
spectively. From the figure, we can observe that only a tiny fraction
of the space (2/2000 variants) achieve approximately 80 GF/s on
the Xeon Phi. This number increases to 3 points (over the same
2000 variants) on a 48-core Intel Xeon Platinum system, peaking
at 260 GF/s. As a reference, Intel MKL’s DGEMM achieves 1TF/s
on the Xeon Phi and 0.75TF/s on the Xeon Platinum. In conclusion,
extracting strong performance is a complicated task. Our work,
however, achieves nearly identical performance by only generating
and explicitly evaluating 5 different transformation variants, thus
significantly reducing tuning time. In the following sections, we
introduce and describe methods by which novel and customized
sequences of affine transformations can be automatically generated
with an adaptive scheduler, i.e., which does not resort to hard-wired
transformation recipes (Sec.4 for a summary of the framework and
approach).

3 BACKGROUND
The polyhedral model operates on Static Control Parts (SCoPs).
Each SCoP consists of loops whose boundaries and access rela-
tions are functions of outer loop iterators and program (symbolic)
parameters. Standard restrictions of the polyhedral model, such
as having a single entry and exit point in each loop, use of non-
affine expressions, presence of indirect accesses, and side-effect free
functions can be relaxed at the cost of more conservative program
analyses [6, 34, 36]. Next, we recap the basic internal abstractions

used by polyhedral compilers: iteration domains, access functions,
dependence polyhedra, and schedule.

Iteration domains capture the dynamic instances of each pro-
gram statement S . An iteration domain DS ∈ Z+ is a polyhedron
defined by a systemM ®x ≥ ®0 constructed from the upper and lower
bounds of each loop iterator. A two-dimensional M-by-N loop nest
with a single statement would be defined as {(i, j) : 0 ≤ i ∧ 0 ≤
j ∧ i ≤ M ∧ j ≤ N }. The relation between the iteration space
DS and the data-space of a multi-dimensional array A is repre-
sented with access functions/relations, which associate to each
point ®x ∈ DS a data-element FAS (®x). For example, the array refer-
ence C[i][j-1] in a statement S can be modeled with the relation
FAS = {S(i, j) → C(a1,a2) : a1 = i ∧ a2 = j − 1}. Program trans-
formations are modeled as schedule functions that map points in
iteration domains to a multi-dimensional time-space. Each state-
ment instance is assigned a timestamp representing its execution
date. Schedules can be lexicographically compared. For instance,
a statement instance with timestamp ⟨0, 1, 0⟩ executes before any
other statement starting with ⟨1, ∗, ∗⟩ (“*” denotes any value). We
use the 2d+1 schedule representation which allows modeling the
nesting structure explicitly of the program as well as the linear
transformations occurring (i.e., loop permutation or skewing). The
representation uses 2d+1 time dimensions and d+1 columns (or
input dimensions), where d is the maximum loop depth. We as-
sume the schedule has zero-offset, and refer to the even rows as
scalar dimensions and the odd ones as linear dimensions. Finally,
each program dependence is represented by one or more polyhedra.
A dependence polyhedron DR,S is constructed from the con-
straints of the iterations domainsDR andDS , the access functions
FAR and FAS on the common array (as equalities), and the relative
execution order of the statements involved. The latter must be
preserved by the new schedule (ΘR (xR ) ≺ ΘS (xS )).

3.1 Building the Legal Space
Our work leverages the convex set of semantic preserving affine
schedules [33, 39] which is a single convex space modeling the
valid reordering transformations. The ILP system built integrates
legal constraints for all dependence polyhedra of the original SCoP.
Given a point ⟨xR ,yS ⟩ ∈ DR,S , the semantics of the original pro-
gram predicate that the statement instance xR executes before
yS . Thus, the transformations ΘR and ΘS must preserve the or-
dering condition ΘR (xR ) ≺ ΘS (yS ), which means that the times-
tamps assigned to them must maintain their relative order. As
we use multi-dimensional schedules of depth 2d+1, the difference
between two schedules will be a lexicographic positive vector:
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ΘS (yS ) − Θ
R (xR ) ≻ (δ1,δ2, ..,δ2d+1); 2d+1 boolean (0/1) variables

are used for each (convex) dependence polyhedron DR,S , one for
each schedule dimension, and the dependence is satisfied when any
of the δi variables become positive. The ability to decide at which
level is a dependence met, is the biggest advantage of this class
of scheduling frameworks. These constraints were formalized in
[33, 39] as:

∀DR,S , ∀p ∈ {0..2d }, δDR,Sp :
2d∑
p=0

δ
DR,S
p = 1

∀DR,S , ∀p ∈ {0..2d }, ∀⟨ ®xR, ®yS ⟩ ∈ DR,S :

ΘSp ( ®xS ) − Θ
R
p ( ®yR ) ≥ −

p−1∑
c=0

δ
DR,S
c · (K · ®n + K ) + δ

DR,S
p

(1)

Eq. 1 states that all dependences must be satisfied exactly once, at
some schedule dimension l . The summation expression on the right-
hand-side of the inequality constitutes a nullification of the legality
constraint for all schedule dimensions p > l ; This is achieved by
the term K · ®n + K where K is a large enough positive integer, and
®n is the vector of parameter coefficients [33].

3.2 The ILP Performance Lexicon
Kong and Pouchet [23] complemented the legal space (Sec.3.1) with
a performance lexicon, i.e., an extendable set of ILP objectives,
each of which prunes the legal space to drive the lexicographic
optimization process. The vocabulary covers multiple performance
goals which operate at a much higher level than simple transforma-
tions such as “unroll loop-k by 4”. Their approach groups and clas-
sifies SCoP sub-components using a predefined set of metrics, such
as the number of scheduling dimensions, properties of the depen-
dence graph, or the number of self-dependencies. The predefined
classes and the features of the target architecture (e.g., number of
cores) are then used to tailor the transformations applied. A form of
domain-specific compilation within a general-purpose flow, which
delivers strong performance while producing one single optimized
transformation variant.

3.3 Glossary
Throughout the remaining of this paper we use the following ter-
minology:

• Legal Space: A single convex space modeling all legal affine
transformations (Sec.3.1).
• (ILP) Performance Lexicon/Vocabulary: an extensible set of
ILP cost functions, each maximizing a specific property in
the output code (Sec.3.2 and Sec.3.4). We also refer to each
ILP cost function/objective in the lexicon as a performance
idiom.
• Nano-kernel (NK): A SCoP consisting of at most two state-
ments, each of dimensionality d ≥ 1, accessing at most four
arrays, possibly inducing one or more program dependences.
Dependences should only exist between a single pair of array
references to effectively isolate the intended characterization
from external noise (i.e. other dependences).
• Variant / Version: An input SCoP transformed by a subset of
ILP objectives from the performance lexicon.

• Dependence Key: attributes of a nano-kernel used to find
all its associated entries in the Nano-Kernel database. Also
referred to as Input Features.
• Output Features: set of attributes extracted from the com-
puted transformation and from the generated (output) code.
• Nano-kernel Database of Transformations (NK-database):
A database that stores input and output features for each
nano-kernel transformed by a set of ILP objectives.
• Statement Partition Policies: Equivalence relations produced
by statement policies defined in Sec.4.6.
• Adaptive Scheduler: A greedy domain-specific compilation
scheme, which is not bound by chains of prefixed transfor-
mation recipes.

Table 1: ILP Transformation Lexicon, abbreviation,
and impacting performance property (Par:Parallelism,
Loc:Locality).

Objective Name Abbreviation Par. Loc.
Skew Parallelism SKEWPAR ✓
Outer Parallelism - Inner Reuse OPIR ✓ ✓
Automatic Dimension Aligning (NEW) ADA ✓ ✓
Inner Parallelism IP ✓
Dependence Guided Fusion DGF ✓
Separation of Independent Statements SIS ✓
Fusion Preserving Parallelism (NEW) FPP ✓ ✓
Permutability (NEW) PERM ✓
Stride Optimization SO ✓
Stencil Vector Skewing VSKW ✓ ✓
Stencil Dependence Classification SDC ✓ ✓
Stencil Parallel Constraints SPC ✓ ✓

3.4 Extensions to the ILP Performance Lexicon
In this work we expand the vocabulary of ILP performance objec-
tives introduced in [22, 23]. The complete list of ILP cost functions
we use is reported in Table 1. We add three more cost functions:
permutability (PERM), fusion preserving parallelism (FPP), and Au-
tomatic Dimensions Aligning (ADA). PERM is directly embedded
into the construction of the legal space, as described in [24]:

ΘSl ( ®xS ) − Θ
R
l ( ®yR ) ≥ −

l−1∑
p=0
(δ
DR,S
p − ρ

DR,S
p ) · (K · ®n + K ) + δ

DR,S
l

The ρ boolean variables model permutability of loop dimensions,
and are directly linked to the dependence satisfaction variables δ
via the inequality δ ≥ ρ. This property is maximized with the sum
of ρ variables per given dimension (loop level). But, unlike [24],
here we restrict this property to a specific subset of statements,
while also applying it to the scalar dimensions preceding the lin-
ear level. These constraints maximize the number of unrollable
loop dimensions by satisfying dependencies as earlier as possible
(like Feautrier’s [15] algorithm). This formulation requires relaxing
the condition that the sum of δ variables for a given dependence
to be equal to 1; instead, we accept this sum to be ≥ 1. The FPP
constraints favor transformations that fuse loop dimensions that
are both either sequential or parallel. Intuitively, we want to allow
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fusion when there is no loss of performance. This novel set of con-
straints applies to each inter-statement dependence polyhedron
found between arbitrary statements R and S, and connects the par-
allelism satisfaction variables of the linear dimensions (the π binary
variables) to the ϕ (fusion) variables of the immediate preceding
scalar dimension:

ϕR,Sl ≤ 1 − π Rl+1 + π
S
l+1 ∧ ϕ

R,S
l ≤ 1 + π Rl+1 − π

S
l+1, l even

max
∑
DR,S

Wl × ϕD
R,S

l

We recall that each statement will have one π variable for each
linear scheduling dimension (the odd dimensions ofΘS in the 2d+1
representation). Then, for every δDR,S

c we define πRc ≤ 1 − δDR,S
c

and πSc ≤ 1−δDR,S
c . The overall property of parallelism is optimized

level-wise by maximizing the sum of πl variables at level l [23].
AϕR,Sl variable becomes true (1), when both of the involved state-

ments exhibit the same parallelism property, effectively cancelling
each other and lifting the upper bound of ϕR,Sl . The objective func-
tion of FPP uses weightsWl = 2d−⌊l/2⌋ , where d is the maximum
loop depth. An example of how this new objective would work is
shown in the code snippets below. Without FPP, statements S1 and
S2 could potentially be fused by some transformation, inhibiting
the available parallelism. In contrast, leveraging the FPP objective
will effectively interchange the loop order of either S1 or S2 to align
their parallel/sequential property. The final choice of which loop
order is produced will ultimately depend on additional objectives
embedded in the ILP.

parforparfor ( i = 0 ; i <M; i ++)
f o r ( j = 0 ; j <N ; j ++)

S1 : A[ i ] += 1 . 0 ;

f o r ( i = 0 ; i <M; i ++)
parforparfor ( j = 0 ; j <N ; j ++)

S2 : A[ j ] += B[ i ] ∗C[ j ] ;

The third new ILP objective we introduce is the ADA cost func-
tion. Intuitively, the goal of this objective is to align the coefficients
used in the linear dimensions of the schedule, to the affine func-
tions of an array reference, from the outermost to the innermost
dimension for the former, and from the slowest to the fastest varying
dimension of the array. This objective is a simplified version of the
OPIR performance idiom from [23], where the constraints relating
the parallelism to the schedule coefficients are not embedded. The
result of this objective on the rightmost loop nest of the previous
example would essentially permute the loop order, making loop j
the outermost loop. This happens because j is the only iterator in
the slowest (and fastest too) varying array dimension for arrays A
and C. The motivation of this cost function is to be able to couple
it with FPP, making outer-coarse grained parallelism the driving
property to extract, while avoiding loop fusion when it could render
performance loss.

4 ADAPTIVE SCHEDULING
Our goal is to automate the selection and ordering of ILP objec-
tives. This translates to generating new schedules that adapt to the
computational patterns and hardware characteristics. We first build
offline a nano-kernel database (NK-database) of transformations
from a sufficiently large set of affine example programs (Sec.4.2).
Each entry in the database represents a specific nano-kernel trans-
formed by a small (2 or 3) set of ILP objectives from the performance
lexicon. We note that, depending on the size of the lexicon, a single
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Figure 3: Online compilation phase.

nano-kernel can generate hundreds to thousands of entries in the
database. All entries associated with a single nano-kernel are identi-
fied by the same dependence key (Sec.4.3). The difference among all
the entries associated with a nano-kernel are the cost functions ap-
plied and the output features extracted post-transformation. Later,
these output features are used to compute profitability scores that
allow the scheduler to choose the most successful transformation
matching a given dependence. Figures 2 and 3 show our framework
and the modules used in both phases. The offline step constructs the
NK-database. The blue ellipses show the steps to build a constrained
search space of ILP performance objectives from the Performance
Lexicon. Each point in this space represents a small combination
of ILP cost functions, all of which are applied to the input nano-
kernel, producing a space of transformations for the given input,
and each being a variant of the input nano-kernel. We then extract
output features from each transformation and store these in the
database for future querying. During the online compilation phase,
the scheduler (red box in Fig.3) decides the ILP objectives from the
lexicon (Tab.1) to integrate into the system by performing queries
to the NK-database with a subset of program dependences found
in the compiled program (Sec.4.7 and 4.8).

Query results take the form of subsets of ILP objectives to be
embedded in a determined order. Profitability scores drive the se-
lection, and each score is computed from output-features stored
in entries of the NK-database (Sec.4.4). This stage also sets the
order of objectives in the optimization problem. As an illustra-
tion, consider the 2mm kernel from Fig.1 with the dependences
{D1 : S1→ S2}, {D2 : S2→ S2}, {D3 : S2→ S4}, {D4 : S3→ S4}
and {D5 : S4 → S4}. The five dependences will be sorted by the
Dependence Ranker component of Fig.3 (Sec.4.5), preferring the de-
pendencesD2 andD5 in the querying process. Then, the ILP selector
will run a query on the NK-database of transformations to select up
to three ILP cost functions to integrate into the ILP. The querying
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process is repeated until all dependences are exhausted or until a
maximum number of objectives have been embedded. Note that
preferring certain subset of dependences does not imply bias on
ILP objectives.

During the online phase, we define five statement partitioning
policies that allow limiting the impact of transformations on the
statements belonging to each partition, a form of domain-specific
compilation. The motivation is to group statements sharing similar
behaviour so that they are transformed by the same set of ILP cost
functions.

For example, the statements in the 2mm kernel (Figure. 1) can be
grouped into {S1,S2} and {S3,S4}, if we use as criteria that statements
should write to the same array. Another criterion proposed groups
statements by their dimensionality, which would produce partitions
{S1,S3} and {S2,S4}. The principle followed is that statements in a
partition behave the same, and so, should be subject to the same
set of ILP objectives.

The partitioning policy affects the scheduler in that only depen-
dences belonging in full to the partition will be considered for the
query on the NK-database. This does not affect the legality of the
transformation in any way since we are already operating in the
convex legal space of semantic preserving transformations.

4.1 Leveraging the ILP Performance Lexicon
Our scheme exploits the combinatorial and modeling power of po-
lyhedral compilers to generate a tractable and yet rich exploration
space. The purpose of this space is not to find the best possible
transformation for a given SCoP, but to produce a wide variety of
candidate transformations such that the most relevant characteris-
tics can be easily identified and mapped to concrete performance
objectives. High-level objectives effectively serve the role of per-
formance compasses that can guide the search for different and
yet representative program variants. Nonetheless, we still have to
deal with the potential combinatorial explosion arising from the
number of statement subsets and the issue of choosing objectives
for each statement partition. Evaluating all N ! variants (where N is
the number of ILP cost functions/objectives to be considered), for
all statement partitions, is not feasible. But, limiting the exploration
to only a small number of permutations (up to three objectives) is
possible. The systematic space exploration presented in the next
section results in the NK-database which is then used to extrapolate
the effect of larger combinations of ILP cost functions on complete
kernels.

4.2 Building a Database of Nano-Kernels
We introduce the concept of Nano-Kernel (NK), which has the
following properties: 1) Consists of one or two program statements,
each with a loop depth greater or equal to one. 2) Each statement
accesses at most two multi-dimensional array references. 3) State-
ments may access the same array, in which case they induce a
dependence.

NKs are extremely small SCoPs which allow us to capture struc-
tural patterns relative to statements and potential dependences
between them. Their simplicity also permits us to determine the
impact of applied transformations easily, and to test large numbers

of ILP combinations, albeit in isolation. Algorithm 1 is used to up-
date the NK-database with any input affine program by using every
pair of array references. Given two statements R and S within it,
and a predefined performance lexicon L, the algorithm builds NKs
from every pair of references, inducing dependences in some cases.
The corresponding polyhedral SCoP is then built, and several SCoP
features are extracted from it (Sec.4.3). To minimize the potential
influence of spurious dependences and other disturbances arising
from static features (i.e., a high-stride of an array A[j][i] with
loop order ij), if necessary, we create mock array references fully
expanded to the iteration domain dimensionality. If both statements
require a mock-array, then different names are used as the objective
is not to introduce new dependences nor additional complexities
that affect the measurement of the transformation and property
to be detected. The SCoP built is transformed against all 2- and 3-
permutations of performance idioms produced from the lexicon
L, and stored in the trans f os set. The particular set of objectives
(a tuple of ILP cost functions), together with their order, is stored
in the variable objectives . The associated legal space (Sec.3.1) is
constructed, and the objectives embedded into the ILP. The system
is then solved, and an optimized version of the program is gener-
ated in opt . After this, several output features are computed and
composed with the initial entry_key and tuple of objectives. Lastly,
the entry is then added to the database.

Algorithm 1 Build Nano-Kernel Database
Input: L (ILP Performance Lexicon); R,S (Program Statements with

iteration domains DR and DS , access functions FAR and FBS , and
schedules ΘR and ΘS ); arch (Architecture Features); DB (current
NK-database);

Output: DB (updated NK-database);
/* L : lexicon defined in Table 1 */
transfos← Permutations (L,2)
transfos← transfos

⋃
Permutations (L,3)

for all FAR ∈ R do
for all FBS ∈ S do

SCoP← create_SCoP(DR ,DS ,FAR ,F
B
S ,Θ

R ,ΘS )

/* Dependence key features as per Section 4.3 */
entry_key← extract_SCoP_features (SCoP)
for all objectives ∈ transfos do

ilp← build_legal_space (SCoP)
ilp← embed_objectives (ilp, objectives, arch)
opt← apply_transformation (SCoP, ilp)
features_out← extract_code_features (opt)
entry← {entry_key, objectives, features_out}
DB.insert (entry)

end for
end for

end for

4.3 Input SCoP Features and Dependence Keys
To identify the multiple database entries associated to a single
Nano-Kernel we extract a dependence key, which is a simple
vector of attributes. The attributes we consider are the following:
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Table 2: Features used in profitability score calculation.

Variable Metric Description Type (Range)
fusionF Fusion Score Integer (≥1)
strideF Stride Score Integer (≥1)
locF Lines of Code Integer (≥ depth)
unrollable NK can be unrolled Boolean
noOutPar No. of Outer Parallel Loops Integer (≥ 0)
noSimdPar No. of SIMD Parallel Loops Integer (≥ 0)
noCores No. of Processor Cores Integer
noInner No. of Inner Loops Integer (≥1)
vecLen SIMD Vector Length DP/SP (4/8)
localityScore Aggregate Locality Score
parallelScore Aggregate Parallelism Score
locParScore Unified Locality & Parallelism Score

a) A boolean variable (0 or 1) to determine whether it’s an inter-
statement dependence or a self-dependence; b) The number of loop
dimensions of the source and target statement; c) The number of
dimensions of the source and target array reference; d) The depen-
dence type: none, flow, anti, read or write; e) The cardinality of
a dependence: 1-to-1, 1-to-N, N-to-1 or N-to-N; f) Boolean flags
to indicate whether the source or target statement are triangular
iteration domains; g) One boolean flag to record whether the itera-
tion domain of each statement is skewed; h) An integer storing the
number of array dimensions which have a constant shift (i.e., for
A[i+1][j][k-2] would be 2); i) Finally, a boolean that states if the
array reference has two or more iterators in any dimension. The
above attributes are computed for each NK and suffice to capture,
identify, and differentiate a large fraction of dependences that can
be found in affine programs. As a dependence polyhedron is an
affine relation between two iteration domains [42], we compute
the cardinality of this relation as a property: Bijective (or 1-to-1) iff
each source statement instance is associated with a single target
statement instance; 1-to-N, iff a single statement instance is the
dependence source of multiple statement instances; N-to-1, is the re-
ciprocal case. Finally, the N-to-N case happens when a dependence
instance has multiple source statement instances and multiple tar-
get statement instances (i.e., two back-to-back reductions on the
same scalar variable).

localityScore (f usionF , str ideF , locF , unrollable) =

f usionF × str ideF × locF /unrollS (unrollable)

unrollS (unrollable) =
{
vecLen if unrollable = true
1.0 : otherwise

(2)

4.4 Architecture Independent Metrics,
Architecture Dependent Choices: Assessing
the ILP Cost Functions Impact

At compile-time, the output features of the database entries serve as
the input to the profitability score function used in run_query of
Algorithm 2. Output features capture three classes of profitability:
parallelism only, locality only, and combined locality and paral-
lelism. Features that capture parallelism involve the number of
outer parallel loops, inner parallel loops, number of cores, and
the SIMD-vector length. The count of parallel loops can be zero
(no parallelism), one (fused-parallel), two (distributed-parallel), or

higher (parallel but likely with some light code explosion). Table 2
describes the input and output variables used in Eq.2-4.

In a similar spirit, fusion scores (Eq.2) can assume the value of 1
(perfect fusion across all loop levels) or higher. We assign weights of
the form 2l to each loop level, from the innermost dimension (l = 0)
and increasing outward. The four branch-conditions in Eq.3 are
used to handle potential zero-values. The intuition behind this score
is that, ideally, the work will be performed by the outer-parallel
loops and distributed (divided) among the parallel hardware units
(cores, SIMD-units, and the number of inner parallel loops). This
case is covered by the first branch. If only outer-parallel loops are
found, then the score only benefits from coarse-grained parallelism
(second branch). Contrary, if only inner-parallel loops are found,
the parallel profitability will be the number of inner-parallel loops
divided by the vector length (third branch). The division is justified
in that lower, non-zero scores will be preferred. We also note that,
with today’s hardware trends, it is increasingly common for the
number of hardware-cores in a processor to exceed the SIMD-vector
length. Thus, the second branch will normally produce a smaller
(preferred) value than the third branch. Finally, if no parallelism is
exhibited, then the parallel score results in a constant loss.

parallelScore (noOutPar, noSimdPar, noCores) =

noOutPar/(noCores × noSimdPar × vecLen) :
if noOutPar > 0 ∧ noSimdPar > 0

noOutPar/(noCores) :
if noOutPar > 0 ∧ noSimdPar = 0

noSimdPar/vecLen :
if noOutPar = 0 ∧ noSimdPar > 0

noCores × vecLen : otherwise

(3)

locParScore(noCores, noInner ) ={
noCores × (1 + noInner ) : is multi-core
noCores/(1 + noInner ) : is many-core

nanoKernelScore = localityScore ×

parallelScore × locParScore

(4)

Lastly, we assume that the balance between locality and paral-
lelism (Eq.4) is mainly captured by the number of innermost loops,
where higher values translate to lower locality. This assumption is
based on the polyhedral scanning process and the common observa-
tion that compact code normally performs better. For instance, the
number of innermost (parallel or sequential) loops can drastically
increase by multi-dimensional loop shifting, or by fusing loop nests
that have been skewed in different ways. Both can also impact the
number of lines of code produced (variable locF in Eq.2). As such,
we assume that parallelism has likely been maximized when the
number of innermost loops is 1, otherwise loop distribution would
happen at some loop level, increasing the number of loops lexically
observable in the transformed code. Similarly to Eq.2 and Eq.3,
lower parallelism+locality scores (Eq.4) are still always preferred,
but for different reasons. We penalize finding more inner-loops in
the multi-core case (locality loss), while rewarding in the many-core
case (increase in parallelism). We note that both the parallelism
score and the locality score already prefer fewer inner loops.

The scoring function described permits us to extrapolate the
impact of applying arbitrary (i.e., non-hard-wired) set of objective
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functions (and their order) on any affine code. The NK-database
is the main building block for designing and implementing our
scheme. The metrics stored in the database are mostly architecture-
independent—they represent properties exposed and enforced in the
output/transformed code—making it possible to search and select
objectives that produce specific properties for specific architectures
or for ones that are similar enough. Equations 2-4 result in a single
number, with lower non-zero values being better. Our strategy
offers the advantage that scores can be adapted to architectural
features. For a many-core processor, we could prefer properties
that expose outer coarse-grained parallelism, whereas, for a 10-core
processor, we could favor transformations that trade parallelism
for a higher locality.

4.5 Ranking Dependences
Before selecting the ILP objectives that best optimize a given SCoP,
we proceed to order the dependences local to the current statement
partition. The motivation is to use the most influential dependences
to decide the overall transformation strategy. Sorting dependences
also allows us to cover as many of them as possible with a single
subset of objectives, since a particular dependence structure could
exist between several pairs of statements. We first prioritize de-
pendences that involve statements with maximum loop depth. The
second criteria, is to favor dependences accessing the larger arrays.
Third, we prefer to use intra-statement dependences over inter-
statement ones. This last choice serves to prioritize parallelism. As
an illustration, a dependence involving two 3-dimensional state-
ments takes higher precedence over any dependence relating two
1-dimensional statements.

4.6 Statement Partitioning
Next we describe a few control knobs that permit the scheduler
to adapt the selection of ILP objectives to specific dependences
patterns and which leads to a simple form of domain-specific com-
pilation. The scheduling mechanism being described so far is greedy
in nature. It chooses a small subset of dependences to determine
the overall behavior of the SCoP. While the interplay among state-
ments stemming from dependences and data reuse is vital to achieve
strong performance, an overarching goal of this work is to deliver
a flexible adaptive scheduler that produces customized and robust
transformations, i.e., that depart from general “one size fits all” ap-
proaches and hard-wired cost models. Flexibility in our scheduler is
attained by defining five partition policies that lead to equivalence
classes among statements. Statements in the partition are subjected
to the same set of transformations. The overall principle is that
statements in an equivalence class should have similar behavior,
if not identical. Effects of a partition policy are enforced by the
scheduler when choosing dependences, since it only selects depen-
dences local to the partition, i.e., where both the source and target of
the dependence reside in the same partition. The five equivalence
classes are: 1) Dim: Statements in a partition should have identical
number of surrounding loops. 2) Max: Consider each statement
its own partition. In practice, this amounts to focusing on single
statement properties (i.e., parallelism, stride locality). This policy
ignores potential inter-statement locality, but which is regained by

minimizing the coefficients on scalar dimensions. 3) Selfdep: State-
ments belonging to a partition should have identical number of
self-dependences. 4) Single: A single partition with all dependences.
5) Write: Statements in the partition should write to the same array.
In most cases, this results on using inter- and intra- statement, flow
and write dependences to drive the scheduling decisions. We note
that the above partition policies are unaware of the program depen-
dence graph and its Strongly Connected Components (SCCs). This
means that some policy could consider statements in different SCCs
for loop fusion or, vice-versa, statements in the same SCC for loop
distribution. Thus, to avoid unnecessary objectives, which would
not result in useful transformations, we identify these scenarios
and skip their insertion in the ILP system.

4.7 Selecting ILP Objectives
Next, we use the nano-kernel space previously built to implement
and customize the selection of ILP cost functions. The motivation
for this lays on a critical premise: that only a few dependences
and structural properties are necessary to decide the overall
behavior of a partition of statements. The steps to build the
final ILP system, while selecting the set of objectives together with
their priority is shown in Algorithm 2.

Algorithm 2 Select ILP Cost Functions
Input: Pi (statement partition), L (ILP Performance Lexicon), NK-

database (Nano-Kernel Database), prefix (Previously selected ILP
objectives)

Output: suffix (Sequence of ILP objectives for Pi )
/* Select dependences from the current partition */
deps← select_dependences_from_partition (Pi );
/* Sort list of dependences as per Sec.4.5 */
deps.sort ();
suffix← [];
lexicon← L;
while deps , ∅ and lexicon , ∅ do

current← get_next_dependence (deps);
/* Build dependence key as per Sec. 4.3 */
key← compute_dependence_key (current);
/* Determine the cost functions to append. Priority*/
/* of cost function defined by its position */
/* in the objectives vector. See also Section 4.8*/
objectives← run_query (NK-database, key, prefix);
if objectives , ∅ then

suffix.append (objectives);
lexicon← lexicon - objectives;

end if
end while
return suffix;

Algorithm 2 leverages several properties of convex optimization.
It is applied to each statement partition produced by a given policy
(Sec.4.6). The final result is a vector s = {Op1 ,Op2 , ...,Opk }, where
the sub-indices p1,p2, ...,pk indicate the priority of the objective.
In particular, if i < j for some Opi and Opj , then objective Opi has
a higher priority than Opj . In a nutshell, this algorithm computes
and appends suffixes Opl ..Opl+d (with d = 2 ∨ d = 1) to a growing
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vector suffix. Note that, Opl (the leading objective of the new
suffix), and the last objective in prefix (the previously selected
objectives), must match. This constraint guarantees that the specific
order of objectives is: a) maintained, and b) the transformation
effects are compounded and aggregated. The first iteration of the
above algorithm can choose, for example, to maximize outer and
inner parallelism, while the second iteration could maximize inner
parallelism and fusibility of loops. Ultimately, this yields the effect
of maximizing all three properties in a single transformation, but
restricted to the set of statements belonging to the current partition.
Equations 2-4 are used in run_query to evaluate and compare
all possible transformation candidates (small permutations of ILP
objectives) that meet the current selection criteria.

It is possible to not add new ILP objectives for every dependence
within the current statement partition. This happens when the num-
ber of dependence polyhedra within the partition is larger than the
number of ILP objectives comprising the lexicon, at which case we
run out of objectives before dependences, or on the contrary, we
exhaust the dependences before the objectives (as in the 2mm case).
So the selection loop terminates with either one of these two cases.
Besides, we highlight that it is possible to have several structurally
similar dependence polyhedra whose patterns are covered by pre-
viously added ILP objectives. Continuing with our 2mm example, if
statements S2 and S4 are grouped into the same partition, and the
reduction dependence S2→S2 is selected to run the query, then this
dependence pattern, which repeats for S4→S4, is also covered.

4.8 Avoiding Conflicting Objectives
To dynamically compute transformation recipes, the selection of
ILP cost functions from the NK-database performed by run_query
enforces several other filters. We thus pass the vector of previously
selected ILP objectives in the prefix of Algorithm 2. First, we avoid
selecting two or more ILP cost functions that attempt to extract
the same property in different manners. That is, we never select
two objectives from the set {OPIR, ADA, SKEWPAR, SDC} nor from
{IP, VSKW}. The second restriction is to limit the number of ILP
objectives per statement partition to at most six (out of the 12 cost
functions considered). This design restriction is because extracting
outer coarse-grained parallelism, SIMD-parallelism, good stride
access, fusion, and permutability (for the legality of loop unrolling)
already accounts for five objectives. Third, the selection must also
enforce that the new subset of objectives must not intersect with
previously chosen ones (except for one). Fourth, the selected vector
of objectives for any query must achieve the best profitability score
(lower is better). Fifth, the transformation candidate must, obvi-
ously, match the dependence key provided. Lastly, we leverage a
consistency criteria to ensure that the new subset of objectives does
not contradict any of the previously selected ones. Specifically, we
require the leading objective to match the objective with the lowest
current priority already embedded in the ILP system, i.e., the last
objective currently in the vector. For example, if the scheduler has
already selected objectives ⟨ SO, DGF, SIS ⟩, then the second query
must start with the SIS objective. This is the key to compound and
aggregate performance benefits with ILP objectives.

5 EXPERIMENTAL EVALUATION
We run our experiments on two multi-core systems equipped with
a 12-core AMD Threadripper 2920X (with 1 thread per core) and a
48-core Intel Xeon Platinum 8160 processor (dual-socket, 24 cores
per socket, 2 threads per core). As a reference, a DGEMM achieves
173.85 GFLOP/s in the former while 0.75 TFLOP/s for the latter.
Besides, we run our benchmarks on a many-core system equipped
with an Intel Xeon Phi 7250 processor (68 cores, 2 threads per
core), with a peak performance of 1.5 TFLOP/s. The many-core
system requires more parallelism to obtain peak performance than
the traditional multi-core machines. We include the many-core
system in our evaluation to show that our scheduler achieves high-
performance across a broad range of target systems. We refer to
these systems as AMDTR (Threadripper), SKL (Xeon Platinum),
and KNL (Xeon Phi) for brevity.

We implemented the scheduling strategy and nano-kernel build-
ing approach in the PoCC compiler [31], which is, to the best of
our knowledge, the only open-source polyhedral compiler imple-
menting the legal space single-shot scheduling engine.

We use the PolyBench/C-3.2 benchmark suite [32], and com-
pare our scheduler against 3 baselines: the best performance in a
tiled and fusion auto-tuning space generated with the Pluto com-
piler (PLT-AT), version 0.11.4. The default performance obtained
with Pluto (PLT-DF), which uses tile sizes of 32d and the smartfuse
heuristic, and MDT, the model-driven transformation approach
described in [23]. The PLT-AT space considers three fusion heuris-
tics implement in Pluto: Nofuse that amounts to maximal loop
distribution, maximum possible parallelism, but lowest locality.
Maxfuse that maximizes loop fusion, likely diminishing parallelism.
Smartfuse, roughly a middle ground that balances parallelism and
locality. Tile sizes are chosen, such as the kernel’s footprint fits
between the L1 and L2 cache sizes. We select tile values travers-
ing powers-of-2–between 1 and, 512 or 1024, depending on the
benchmark–and non-powers-of 2 as done in [23]. Our criteria pro-
duces 2188 different source variants for gemm, over 7200 variants
for doitgen, and 768 variants for gemver. We omit results for
the ludcmp kernel since all loop transformations are disallowed by
multiple scalar dependences, rendering its performance distribution
as flat as cholesky’s. Lastly, several symm variants are removed
due to code explosion and AOCC failing to compile them for the
AMDTR platform. We filter out variants exceeding the 512KB of
source code size.

We generated for all benchmarks the 5 transformed versions
corresponding to the partition policies described in Sec.4.6. We
recall that our scheduler produces “new transformation recipes”
by deciding, for each statement partition, the subset of ILP objec-
tives to apply together with their priority (the position in which
the optimization variable is placed in the overall ILP system). A
NK-database of transformations is generated for each benchmark,
consisting of O(|A|2×LP3) entries, where |A| is the number of array
references in the benchmark, L is the size of the performance lexi-
con, and LP3 is the number of 3-permutations from L. Although in
our evaluation each benchmark is used to build its own NK-database,
we note that this need not be the case, as a single database can be
constructed in a fully-offline one shot fashion, thereby substantially
reducing the end-to-end time for possible auto-tuning. As an example,
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Figure 4: Polybench performance summary in log scale (GFLOP/s): 12-core AMDTR (top), 48-core SKL (middle), and 68-core
KNL (bottom) systems for the different schedulers (Double Precision, Standard Dataset).

a lexicon consisting of 6 objectives, and a benchmark with 6 array
references (e.g., dgemm), takes approximately 1.2 hours. We limit L
to six objectives (OPIR, ADA, SIS, SO, DGF, IP) for all linear algebra
kernels (non-stencils) and use the full lexicon (all 12 ILP objectives)
for stencils and stencil-like benchmarks. The motivation for this
design is that most linear algebra kernels already exhibit sufficiently
large optimization spaces, which benefit more from fusion explo-
ration, and exploiting parallelism and intra-statement locality via
loop permutation. In contrast, stencil benchmarks require more
pattern-specific objectives (i.e., SDC, SPC, VSKW) to find strong
performing transformations.

After the polyhedral optimization, we run vendor-specific com-
pilers to lower the generated code. In particular, we run AOCC
on the AMD system and ICC 2018 on the Intel machines. We set
both compilers to the -O3 optimization level. We use OpenMP to
generate multi-threaded code and pass additional flags to AOCC
(-unroll-full-max-count, -finline-aggressive, -flto) and
ICC (-funroll-all-loops) targetting its AVX512 vector ISA. All
measurements are collected using double precision, standard dataset,

and report the average value of 5 runs removing the best and worse
time.

Summary: Our evaluation aims to demonstrate that polyhe-
dral adaptive scheduling (non-hardwired), leveraging a performance
lexicon, can produce (novel) transformation recipes that translate
into strong performance competitive with auto-tuning spaces. We
choose the Polybench suite since it is already designed to cover
most of the “polyhedral dwarfs” scenarios. It contains a breadth
of kernels showcasing loop nests of different dimensionality and
shape, various affine array access patterns and dependences with
different structures. Moreover, while our evaluation is Polybench-
specific, both the offline and online stages of our scheduling frame-
work can be used on other benchmarks suites (e.g., Rodinia) with
suitable SCoPs. As the creation of the NK-database of transforma-
tions is meant as an offline phase, one-time cost, our evaluation
incurs on a minimal online overhead due to the need of evaluating
only five transformed variants for each input. Our scheduling strat-
egy preserves the benefits of model-driven transformations while

Session 2: Compiler Optimization and Code Generation  PACT '20, October 3–7, 2020, Virtual Event, USA

92



2m
m

3m
m ad
i

at
ax

bi
cg

ch
ol
es
ky co
r .

co
v.

do
itg

en

du
rb
in

dy
np

r o
g

fd
td
2d

fd
td
ap
m
l

flo
yd

w
.

ge
m
m

ge
m
v e
r

ge
su
m
m
v

gr
am

s.

ja
co
bi
1d

ja
co
bi
2d lu

m
vt

r e
gd

et
ec
t

se
id
el
2d

sy
m
m

sy
r2
k

sy
rk

tr
is
ol
v

tr
m
m

ge
om

ea
n

1

16

256

G
FL

O
P/
se
c

DIM MAX SELFDEP SINGLE WRITE
2m

m

3m
m ad
i

at
ax

bi
cg

ch
ol
es
ky co
r .

co
v.

do
itg

en

du
rb
in

dy
np

ro
g

fd
td
2d

fd
td
ap
m
l

flo
yd

w
.

ge
m
m

ge
m
ve
r

ge
su
m
m
v

gr
am

s.

ja
co
bi
1d

ja
co
bi
2d lu

m
vt

r e
gd

et
ec
t

se
id
el
2d

sy
m
m

sy
r2
k

sy
rk

tr
is
ol
v

tr
m
m

ge
om

ea
n

1

32

512

G
FL

O
P/
se
c

DIM MAX SELFDEP SINGLE WRITE

2m
m

3m
m ad
i

at
ax

bi
cg

ch
ol
es
ky co
r.

co
v.

do
itg

en

du
rb
in

dy
np

ro
g

fd
td
2d

fd
td
ap
m
l

flo
yd

w
.

ge
m
m

ge
m
v e
r

ge
su
m
m
v

gr
am

s.

ja
co
bi
1d

ja
co
bi
2d lu

m
vt

r e
gd

et
ec
t

se
id
el
2d

sy
m
m

sy
r2
k

sy
rk

tr
is
ol
v

tr
m
m

ge
om

ea
n

1

16

256

G
FL

O
P/
se
c

DIM MAX SELFDEP SINGLE WRITE

Figure 5: Impact of Statement Partitioning Policy on the AMD Threadripper (top), Intel Xeon Platinum (middle) and Intel
Xeon Phi (bottom)

increasing the scheduler’s flexibility and transformation robust-
ness. For instance, the KNL and SKL MDT variants are precisely
those used in [23], but their work lacked a customized recipe for
the Threadripper architecture. We reuse the SKL MDT mode for
AMDTR (given that they are both multi-core systems with simi-
lar memory hierarchy). In that sense, the MDT transformation for
AMDTR, while in average obtain as good performance as the Best
Adaptive, they are not fully customized to the architecture. Steering
our attention onto the PLT-AT space, we observe from Figure.4 that,
even though in most cases, we do not match the best performance in
the PLT-AT space, we are in average approximately 1.5× and 2.5×
slower than its best variant. Nonetheless, the Best (of 5) Adaptive
variants represents a significant reduction in online tuning time, as
we only resort to explicitly generating and evaluating 5 benchmark
versions. Lastly, the Best Adaptive is at least 2× faster than PLT-DF
(Pluto default), across all architectures, and peaking at 8× better in
the KNL.

Overall, we observe in Figure 4 that the best adaptive variant
achieves strong performance in the BLAS-2 and BLAS-3 kernels,

as well as benchmarks correlation and covariance, on all three
architectures, being 10× better than PLT-DF in numerous instances.
Some notable improvements over the MDT variants are visible on
doitgen and fdtdapml with the AMDTR and KNL machines. For
the former, on the AMD system performance improves 2.5×. This is
due to our adaptive scheduling system yielding the transformation
recipe ⟨ SO, DGF, SIS, IP, OPIR ⟩ while the MDT variant produces ⟨
SO, IP, OPIR, SIS ⟩. In other words, adaptive scheduling chooses first
to fuse, separate independent statements and then exploit outer
parallelism (doitgen having multiple levels of it), while MDT re-
sorts to maximize data reuse by serializing the outermost loop,
and parallelizing the second outermost dimension and maintaining
all 3 statements distributed. In fdtdapml’s case, the best adaptive
variant fuses all 16 statements while successfully parallelizing the
outermost loop, satisfying its 86 dependences via a combination of
loop skewing of its inner space dimensions, time-shifting, and loop
distribution at the second scalar dimension. Finally, we can also
appreciate some remarkable performance for cholesky, relative to
gemm, which is owed to truly aggressive loop unrolling performed
by the AOCC compiler. Next, we explain the performance impact
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of the five partitioning policies (Sec.4.6). Figure 5 shows the per-
formance achieved for all policies across all benchmarks and on
all architectures. We observe that most BLAS-3 and BLAS-2 linear
algebra benchmarks exhibit minimal variation among policies. For
BLAS-3 kernels, the scheduler favors transformations that maxi-
mize first inner parallelism (IP), stride access optimization (SO), and
outer coarse-grained parallelism (OPIR/ADA). For instance, in 3mm
with write policy, our scheduler produces 3 statement partitions
and prioritizes the self-dependence on the main compute loop for
each Matmul. Datamining benchmarks such as correlation and
covariance, although similar to BLAS-3 kernels, benefit more from
considering larger statement partitions, as this enables the sched-
uler to avoid fusion inhibiting transformations. As an illustration,
the single policy for correlation produces the transformation
recipe ⟨ DGF, SIS, OPIR, IP, SO, ADA ⟩ (DGF with the highest
priority), whereas the write policy produces two distinct sets of
transformations: ⟨ IP, SO, ADA, DGF, OPIR ⟩ for partitions #1–#3,
and ⟨ DGF, SIS, OPIR, IP, SO ⟩ for statement partition #4, which is
the performance dominating one. In practice, almost the same set of
objectives. On the other hand, the selfdep policy produces only two
partitions, but with a significant loss in performance due to fusion
of the most compute-intensive statement with a lower-dimensional
statement (resulting from having DGF with the highest priority).
In turn, this induces an outermost serial loop. A similar phenome-
non is observed for lu across all architectures. The previous two
partitioning policies avoid the phenomenon. Lastly, the underlying
reasons for competitive performance on stencil kernels vary. For
instance, fdtd2d largely benefits from the dim policy, using the
dependences among the three full-dimensional statements with ⟨
SDC, SO, VSKW, ADA ⟩.

On the Optimality of the Scheduling Approach
Our adaptive ILP selection is greedy in nature, and does not guaran-
tee an optimal global solution. However, as each objective embedded
maximizes some performance property, in practice our scheduler
consistently delivers strong performance, as shown in Figures 4
and 5. Besides, we rely on the compounded effect of using multi-
ple ILP cost functions designed in a convex space to achieve good
performance at the cost of minor space exploration. In most cases,
all five partitioning policies deliver nearly identical performance,
surpassing that obtained with the Pluto compiler and its default
options (smart-fusion with 32d tile sizes). Nonetheless, we can still
get unlucky at times and observe some significant performance
variation. For instance, Polybench’s correlation and covariance
benchmarks achieve their best performance when using the single
and write partitioning policies because they give a better view of
the SCoP. This caveat is not different from exposing many fusion
heuristics without complete certainty of which one performs best.
Finally, ranking and prioritizing dependences also contributes to se-
lecting ILP objectives that address first the most compute intensive
statements (e.g. S2 and S4 in 2mm).

6 RELATEDWORK
Fully-automatic polyhedral compilers: Decades of research in fully-
automatic compilation lead to sophisticated general-purpose opti-
mizers such as Polly [18] and Pluto [8]. Although general-purpose

compilers boost productivity, they do not always obtain good perfor-
mance due to the low level at which they need to operate and their
one-size-fits-all optimization strategy [4]. Our scheduler, on the
other hand, carefully crafts the transformation objectives based on
the architectural feature of the target machine, while maintaining
the high productivity of general-purpose compilers.
User-driven transformers: Multiple works expose a scheduling lan-
guage on top of the polyhedral model through directives or pragmas.
UTF been arguably the very first of them [21]. AlphaZ expresses pro-
gram transformations as a set of equations based on the Alpha lan-
guage [47]. The Xlanguage allows users to generate multi-version
programs by specifying the type of transformation to apply as well
as the transformation parameters [13]. Along the same line, URUK,
Loopy, Orio, LOCUS and Chill expose the user loop transformations
to exploit the deep memory hierarchy and parallelism of modern
machines [10, 16, 20, 30, 37]. Bagnères et al. with Chlore and Clay
opened the polyhedral black-box allowing more close interaction
between compiler and users [5]. Their work enables users to exam-
ine, refine, and freeze a sequence of loop transformation directives.
Recently, Kruse et al. proposed an extension to the OpenMP prag-
mas to broaden the range of transformation in the Clang compiler
and allows the composition of them [25]. Baghdadi et al. introduced
TIRAMISU, a framework that features a scheduling language to tar-
get multiple platforms from multi-core to distributed machines [4].
Halide [35] uses interval analysis to represent loop bounds; there-
fore, it cannot naturally represent non-rectangular iteration spaces.
The same applies to another non-polyhedral compiler: TVM [11].
Yi et al. proposed POET, which allows the user to apply a set of
transformations to arbitrary programming languages via XML-
based transformation scripts [46]. Vocke et al, extended Halide to
target DSPs and add explicit scheduling commands to move data
to/from scratchpad memories [45]. Our compiler, on the other hand,
bridges the gap between productivity (of general-purpose compiler)
and performance (of directive-based transformers) by using high-
level objectives. The high-level objectives are lowered to low-level
optimization by an automatic scheduler.

7 CONCLUSION AND FUTUREWORK
We have presented a scheduler capable of generating transforma-
tion recipes in an automatic fashion. The scheduler queries a data-
base of nano-kernels, prioritizes dependences and exploits common
properties among statements to produce partitions that behave sim-
ilarly. We deliver performance on multi- and many-core systems
competitive and, in some cases, superior to two state-of-the-art
polyhedral optimizers.
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