
Using Compiler Techniques to Improve Automatic Performance Modeling

Arnamoy Bhattacharyya, Grzegorz Kwasniewski, Torsten Hoefler
Department of Computer Science

ETH Zurich
Zurich, Switzerland

Email: arnamoyb, grzegorz.kwasniewski, htor@inf.ethz.ch

Abstract—Performance modeling can be utilized in a number
of scenarios, starting from finding performance bugs to the
scalability study of applications. Existing dynamic and static
approaches for automating the generation of performance
models have limitations for precision and overhead. In this
work, we explore combination of a number of static and
dynamic analyses for life-long performance modeling and
investigate accuracy, reduction of the model search space, and
performance improvements over previous approaches on a
wide range of parallel benchmarks. We develop static and
dynamic schemes such as kernel clustering, batched model
updates and regulation of modeling frequency for reducing
the cost of measurements, model generation, and updates. Our
hybrid approach, on average can improve the accuracy of the
performance models by 4.3%(maximum 10%) and can reduce
the overhead by 25% (maximum 65%) as compared to previous
approaches.

Keywords-Performance Modeling, LASSO Regression, Static
Analysis

I. INTRODUCTION

Performance modeling is useful in a number of ways
– ranging from finding scalability issues in scientific ap-
plications [1] to finding performance bugs [2]. Analytical
performance modeling is difficult and requires detailed un-
derstanding of the application code [3]. Therefore an auto-
mated approach to generate performance models eliminates
the necessity of having detailed domain knowledge and helps
performance engineers to quickly determine the behaviour
of an application.

The recent automation of various parts of the performance
modeling process [4], [5], [1] led to a wider adoption of this
methodology. A pure dynamic or a pure static approach to
generate performance models is not sufficient as each of
them suffers from the lack of precision of the generated
models. Again, a dynamic model generation strategy suffers
from overhead that may not be acceptable during a produc-
tion run. In this work, we combine a number of existing
and new approaches to tackle the life-long automatic model
generation problem. Our goal is to generate performance
models at high precision and low overhead so that there is
minimum perturbation during the program execution.

Figure 1 depicts existing and new approaches and how we
combine them together for the generation of performance
models. We combine results from statically determining the

���������	
���������	��������

�������������

���������
����

���������
��������

����

����	����
����� �

�!�

�"	#� ��

���������
����������

�����$��
%
�&�

#���'��
(�����

�����	(�����
���)�����
*���������

Figure 1: Combining Existing and New Approaches for
Automated Performance Modeling. Our novel techniques are
the citation-free nodes.

iteration counts of program loops [6] with existing dynamic
but limited performance modeling techniques [5]. Just as
in model-checking, the static analysis over-approximates the
state space of the program and may not always find accurate
equations. However, we show how any information gained
via static analysis can be used efficiently to improve the
performance as well as the accuracy of existing dynamic
techniques by reducing the model search space significantly.
For example, in Figure 1, the automated loop iteration
counting technique helps to find interaction terms between
program inputs that will otherwise be very expensive to
search in a dynamic setting. Static data flow analysis helps
to map the definition of program inputs to the various uses
inside loops and functions and therefore reduces the search
space for automatic model generation for a given loop or
function.

In addition to analyzing the effectiveness of combining
the static and dynamic model generation, we build a tool
that automatically generates self-modeling applications. As
shown in Figure 1, to achieve lowest overhead, we develop
several static and dynamic techniques, such as static Pro-
gram Dependence Graph (PDG) [7] based kernel similarity
analysis, batched model update and adaptive measurements.
We also extend prior work on dynamic model generation
(EPMNF) [5] by introducing interaction terms in models
that greatly improve precision. Self-modeling at low over-
head enables life-long performance modeling, where the

application automatically learns and observes performance
of its parts during production (for various sets of input
parameters used in practice). It can then either output the
learned models or watch for outliers in the measurements
and raise performance exceptions early.

A. Contribution

We make the following contributions in this paper:

• We explore the combination of static and dynamic anal-
ysis and investigate the accuracy and the reduction of
the model search space for a wide range of benchmarks.

• We develop a static scheme to cluster kernels based on
the similarity of their performance models. This reduces
the overhead during life-long performance modeling.

• We design and analyze various dynamic strategies, such
as batched model updates and regulation of measure-
ment frequency for reducing the cost of measurements,
model generation, and updates.

II. LIMITATION OF A PURE STATIC OR DYNAMIC
APPROACH

Though performance modeling can be essential to un-
derstand performance limits, automation of such techniques
only started recently. In these automatic approaches the
performance M of a program is represented through the
performance models m of n program parts, called kernels:

M = {m1,m2, . . . ,mn} (1)

We define the performance model m of each kernel as
a linear regression function of a set of predictors p =
{p1, p2, . . . , pp}.

m =

|p|∑
i=1

αi · pi + β where pi ∈ p (2)

A predictor pi is a function of one or more program input
parameters ι. If there are r input parameters that influence
the performance of a kernel, the predictor set is formed by
applying a set of transformations τ1, τ2, . . . τv on those input
parameters.

p = {
⋃
v

⋃
r

τv(ιr)} (3)

It can be worth noticing that an infinite number of
transformations can be applied to each input parameter,
thus giving rise to an infinite set of predictors. Researchers
pursued two basic avenues to bind this infinite space of
predictors so far: (1) static modeling by analyzing the
source code [8] and (2) dynamic modeling during program
runtime [9] . Still both methods have serious limitations
which we briefly describe in the following.

A. Static Performance Modeling

Several static analysis techniques exist for analyzing the
performance of programs. Since scientific programs spend
a major portion of the execution time in loops, most of the
static analysis methods count the number of loop iterations
to bound the asymptotic performance of loops. Polyhe-
dral methods can handle loop nests whose iteration space
(all possible values of the iteration variables) form affine
sets [10]. Hoefler and Kwasniewski [6] show an analysis
that handles a larger class of loops whose iterators are
manipulated with affine functions. For example, consider the
following loop1:

Listing 1: An Affine Loop
for (j = 1; j < niter; j = j*2)
for (k = j; k < niter; k = k++)
A[k,j] = (A[k-1,j-1] + A[k-1,j]) / 2

Using the polyhedral approach, the loop is modeled as
the function1 niter(niter−1)

2 , which is an over-approximation.
In the HK method, a program is represented as a set of
nested loops - similar to the polyhedral model. It was shown
in previous works that a subset of this class covers many
important codes in parallel computing [8]. The HK method
works with the following terms derived automatically from
the outer loop nest of Listing 1:

1) Loop Induction variable: j
2) Initial assignment: j=1
3) Loop guard: j<niter
4) Loop update: j=j*2

If all loops are affine, using the above information, the HK
method forms a set of equations that can be symbolically
solved to get the performance model of the loop, which is
a linear combination of a set of predictors.

For example, the exact and more precise model m of the
loop above as given by the HK method is

m = niter · blog(niter)c− 2blog(niter)+1c+niter+ 1 (4)

However, the HK method cannot handle non-affine loops.
The performance model of such loops are marked as unde-
fined (undef). Therefore, the undef terms in the models
make this method limited because the method cannot give
precise analysis for non-affine loops. The following non-
affine conditions may occur in the program:
• Multiple exits from a loop body
• Loop update is not an affine function
• Loop guard or initial assignment contain references to

non-constant values (function calls, variables declared
and changed outside of the loop tree, untraceable calls)

For example let us consider the following loop from the
CG benchmark of the NAS benchmark suite [11]:

1Update (24.09.15): The listing was adapted to match the original HK
method which uses strict inequalities.

Listing 2: A Non-affine Loop
do j=1,lastrow-firstrow+1 sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1
sum = sum + a(k)*p(colidx(k))
enddo
w(j) = sum
enddo

The values of rowstr(j) and rowstr(j+1) cannot
be determined statically and the inner loop of Listing 2
becomes non-affine. The HK method can trace back the
value of lastrow-firstrow to the input parameter
combination na/nprows therefore the model of the outer
loop becomes:

m =
na

nprows
· undef (5)

Therefore, though the HK method is useful to discover
interaction between predictors to generate better quality
models, the presence of undef terms in the models necessi-
tates an extension of this method. We describe in Section III
how we can still use the precise results from HK method to
help the dynamic model generation as well as use runtime
profiling information to resolve most undef terms obtained
from the HK method.

B. Dynamic Performance Modeling

Recently dynamic approaches in performance modeling
have been proposed [1], [5]. In these approaches, the
predictors are formed by applying powers and logarithm
transformations on program inputs. The search space of pre-
dictors is constructed from program input parameters using
the following form which is called Extended Performance
Model Normal Form (EPMNF):

p = {ιki logl ιki , k, l ∈ R, ιi ∈ I} (6)

Here I represents the set of program input parameters.
By assigning different values to k and l, the predictor
set is constructed from the input parameters. An example
model from EPMNF for program input parameters ι1 and
ι2 would be c1 · ι21 + c2 · ι2 log ι2 , where c1 and c2 are
constants. The formulation of EPMNF uses an educated
guess about the performance of the applications studied. The
method neither uses any static analysis to understand the
behavior of the kernels nor does it consider the interaction
of predictors. For example predictors such as ι1 · ι2 (for two
different input parameters ι1 and ι2) will not be considered
using the EPMNF method. If we extend EPMNF to include
predictors formed using all possible combinations of the
program inputs, the search space of predictors will explode
combinatorially as

(
ikl
w

)
, where w predictors are taken at a

time for combination.
We show in Section III how we can extend EPMNF to

consider combination of predictors to generate higher preci-
sion performance models, still at a relatively low overhead.

III. THE NEW HYBRID APPROACH

To overcome the weakness of the previously described
static and dynamic approaches, in this section we describe
our new approach for generating performance models with
higher accuracy. We also describe techniques for reducing
the overhead of the model generation because our aim is to
generate life-long performance models in a dynamic settings.

A. Modeling Granularity and Kernels

The performance of an application can be viewed as a
single model for the whole source code, which is the sum or
product of all its parts, but this approach has two drawbacks:
• Accuracy: The used methods could become less pre-

cise for complex models, for example, a whole program
analysis may detect a loop that executes a logarithmic
number of times and calls a matrix multiplication,
however, it may not detect the n3 log n model of the
composition easily due to complex flow patterns.

• Resolution: Users are often interested in the finest
possible resolution in order to spot potential perfor-
mance problems, for example, it is less helpful to report
that a program execution of a complex program takes
cubic time than pointing to the set of most expensive
functions in the program.

Without loss of generality, we consider functions and
loops in a program as kernels. We use the Loop Call Graph
(LCG) [5] representation of the program to identify kernels
based on loop nesting and loops within functions.

B. Performance Model Parameters

The performance of each kernel depends on the values of a
set of program input parameters. We require the programmer
to specify a set of scalar parameters that influences the
program runtime. The programmer specifies the names of
the source code variables that influence the runtime and
the compiler traces back the variables in the source from
IR using debug information. Currently, our implementation
supports the following three types of program inputs:
• A member of a structure: In this case, the parameter

name has to be supplied along with the structure name.
• A local variable in a function: In this case, the

parameter name has to be supplied along with the
function name.

• A global variable or a macro: In this case, the
parameter name is sufficient.

In the next section we describe how static and dy-
namic analyses can help each other for the generation of
performance models. Our performance model generation
technique works by selecting, from an initial search space
of predictors, the predictors that have the most significance
to describe the performance of a kernel. This is done in two
steps:

1) Construct the initial search space of predictors using:
(i) the result from a precise static analysis (when there
are no undef terms in the reported model) or (ii) using
our improved definition of EPMNF in cases where the
result from static analysis has undef terms.

2) Using runtime profiling information, run an online
variant of LASSO regression [5] to select the most
significant predictors and generate the performance
model.

C. Accuracy improvement and Search Space Reduction

Our new approach discovers new predictors that are com-
binations of two or more of them. We follow two approaches
to discover the interaction terms:

1) Result From Static Analysis: Once the models are gen-
erated statically by analyzing the intermediate representation
(IR) of the compiler, the models are checked for preciseness.
If there are no undef terms in the static model, the model
is parsed as a linear function of predictors and that set of
predictors becomes the initial search space of predictors for
that particular kernel.

2) Use Runtime Information: For static models with
undef terms, we first build the initial predictor set of that
kernel using static pointer analysis (to find which input
parameters are used in which kernel) and Equation 6.

The pointer analysis is performed between the operands
of the set of memory access (load/store) instructions inside
a kernel and the set of first store instructions of the program
input parameters. If there is a must points-to relation between
an operand in a memory access instruction inside a kernel
and the store to a program input parameter p1, predictors are
formed from p1 using EPMNF. We also conservatively add
an input parameter that has a may points-to relation with
any memory access inside the kernel. If the pointer analysis
confirms that for an input parameter p2, no memory access
operand inside a kernel points to p2, we do not use p2 for
that kernel.

The above method handles variables that are related by a
points-to relation to a program input parameter. But there
can be derived variables that are related with program
input parameter(s) by arithmetic operation(s). The next code-
extract from the NAS Parallel Benchmark IS shows how
variables are created using program input parameters and
therefore can be traced back to program inputs.

Listing 3: Example: Variable Propagation
for(i=0; i<NUM_KEYS; i++)
bucket_size[key_array[i] >> shift]++;

In the source code, NUM_KEYS is derived from the
program input parameters TOTAL_KEYS_LOG_2 and
NUM_PROCS. We traverse the data flow graph backwards
in the IR and use the debug information included in the
IR to find the relation of variables to the program input
parameters. The traced back input parameters are included

in the static model (during static analysis using HK method)
and passed to EPMNF (for dynamic analysis).

We not only construct the initial search space of predictors
formed using the EPMNF definition [5] in Equation 6, but
also consider interactions among them. Thus we redefine
Equation 6 for a calculating the predictor set in the hybrid
approach as:

phybrid = {ιki logl ιki ∪ Cw(ιki logl ιki)}, {ιi, ι2, . . . , ιr} ∈ I
(7)

Here Cw represents the interaction terms constructed from
predictors formed using the EPMNF definition, taken w at
a time. If from EPMNF we have κ predictors initially, we
construct new predictors by taking all different combinations
of predictors in groups of size w where 2 ≤ w ≤ κ. For
example, if EPMNF gives us three predictors ι21, log ι2,

1
ι3

,
we will construct the following new predictors in groups of
size 2 and 3: ι21 ·log ι2,

log ι2
ι3

,
ι21
ι3
,
ι21·log ι2
ι3

. We have seen from
our experiments that the predictive quality of the models
using the values w = 2, 3, 4 greatly improves precision
of models and a value of w > 4 marginally improves the
model quality (less than 0.01%). Though previous research
showed that w = 2, 3 combination of predictors generate
good quality models [12], but according to our experience,
values of w = 2, 3, 4 improve quality of the models than
taking only values w = 2, 3.

After the initial search space of predictors is formed
using the result from static analysis and our improved defi-
nition of EPMNF, performance models are generated during
runtime using an online version of the LASSO regression
algorithm [5]. LASSO removes insignificant predictors and
generates easily interpretable model.

D. Overhead Reduction
Model generation during a program run suffers from

overhead arising from different actions, e.g., (i) gathering
profiling data, (ii) measuring model accuracy to take a deci-
sion to whether to update the model and then (iii) updating
the model. The overhead should be taken into account if we
want to enable life-long performance modeling. Overhead
also depends on the cardinality of initial search space of
predictors that are passed to LASSO [13]. This cardinality
is already tackled while using the HK method and restricting
the values of w as described in the previous section.

In this section we describe various strategies to further
reduce overhead.

1) Batched model update: Updating an existing model
every time new measurement arrives can cause large
overheads in loops that are executed many times during
a program run. For example the following code from the
NAS benchmark BT, fills a buffer that is to be sent to
eastern neighbors:

Listing 4: Example large loop from BT
if (cell_coord(1,c) .ne. ncells) then
do k = 0, cell_size(3,c)-1
do j = 0, cell_size(2,c)-1
do i = cell_size(1,c)-2,cell_size(1,c)-1

do m = 1, 5
out_buffer(ss(0)+p0) = u(m,i,j,k,c)
p0 = p0 + 1

end do
end do

end do
end do

For a B class BT with 16 processes, the second loop in
the nest is executed 6 million times, therefore giving rise
to 6 million different executions of the third loop in the
nest. If the model update function is called each time the
third loop finishes execution (each time a new measurement
arrives for modeling), the overhead resulted only from the
third loop is 1.7%. There are more similarly large loops in
BT and calling the model generation function on each new
measurement causes a combined overhead as high as 23%.

To have a balance between the amount of collected profile
data and model update frequency, we call the model gener-
ating function on batches of data points instead of calling
the function every time a new measurement arrives. Still this
method has much less storage overhead because mainly the
storage overhead in applications come from kernels that run
a large number of times.

We further regulate the model update frequency based on
the prediction of the already generated models on unseen
data. We describe this strategy in detail in Section III-D3.

2) Exploiting Static Model Similarities: Often scientific
applications have “similar looking” loops. The performance
models for these loops have the same functional form,
but may differ in the predictors in them. For example,
the two loop-nests in Listings 5 and 6 occur in the
accelerate_kernel_c_ function2 from the Mantevo
benchmark [14]. Both of them assign values to the same
number of locations of the two different arrays xvel1 and
yvel1. While calculating the value to be assigned, both
loops access the same number of locations from different
arrays and apply the same operations on them. Static analysis
can be used to identify such similar loops and cluster
them. Then our tool generates model for only one loop per
cluster, thus reducing overhead. We call this similarity static
similarity.

We use Program Dependence Graph (PDF) [7] for the de-
tection of static similar loops. A program dependence graph
is a graph G where the set of vertices V are either statements
or predicates and the set of edges E are either control flow
dependences or data flow dependences between the nodes.
For detecting static similar loops, we use a similar technique
as used in clone detection [15], with two differences. First,
we do not consider functions because the static similarity
among loops occurs much more often than static similarity

2Update (24.09.15): The function is taken from the CloverLeaf miniapp.

among functions in scientific codes. Therefore, we restrict
our analysis to loops. Secondly, while comparing two nodes
in the PDGs of two loops to find a syntactic equivalence
(defined in the next paragraph), we ignore variable names
in the statement or predicate. Therefore we can cluster loops
whose performance models have the same functional form
but only differ in the predictors.

Our analysis starts by choosing a pair of loops in the
program. Our algorithm first finds two nodes, one each
from the respective PDGs of the two loops, that have the
same syntactic structure (they have the same instructions
at the same location of their respective basic blocks and
the number of arguments and the type of arguments for the
instructions also are the same). Once one such pair of nodes
is found, we traverse the PDGs of both loops to check the
syntactic equivalence of the successor nodes. Our analysis
searches for equivalence in both control flow and data flow
successors and therefore can find loops that are semantically
similar (loops that perform in a similar way). The algorithm
succeeds when each node in a PDG of a loop has a matching
node in the PDG of the other loop. The algorithm aborts as
soon as the successor nodes for the respective PDGs are not
syntactically equivalent. The algorithm thus clusters all the
loops in the program into static similar clusters.

This similarity information leads to the reduction of num-
ber of loops needed to be analyzed dynamically, as only one
‘base’ loop per similarity cluster needs be profiled. Though
during run time the performance of static similar loops may
vary due to caching activity. To tackle that problem, we
introduce a fall-back mechanism based on the prediction
confidence of the models in the next section.

3) Frequency of Model Update: To reduce overhead of
runtime model generation, we regulate the frequency of
model update based on the prediction of the model on
unseen data. This regulation not only allows the reduction
of model update frequency for good quality models but
also allows us a fall-back mechanism for the kernels that
are found to be static similar but at run time, for some
reason (e.g. caching activity) behaves dissimilarly. We use
an exponential-backoff strategy similar to the one used in
congestion control of a network for models with a good
prediction performance on unseen data. We call a model
whose prediction on unseen data batch falls under a certain
confidence interval (95%) of previous predictions, a strong
model. The metric we use for measuring this prediction
confidence is described in the next section. Once a model
reaches the strong state, both the frequency of profiling and
update of the model is regulated. We keep a ‘hit’ counter
every time the prediction on new data (batch) falls under
95% confidence interval of previous predictions. With a hit,
the profiling and model update for a loop is delayed for the
next q number of iterations where q is given by:

q = b · rand(0, 2hc) (8)

Listing 5: Loop 1 (static similarity)
for (k=y_min;k<=y_max+1;k++) {
for (j=x_min;j<=x_max+1;j++) {
xvel1[FTNREF2D(j,k,x_max+5,x_min-2,y_min-2)]
=xvel0[FTNREF2D(j,k,x_max+5,x_min-2,y_min-2)]
-stepbymass[FTNREF2D(j,k,x_max+5,x_min-2,y_min-2)]

*(xarea[FTNREF2D(j,k,x_max+5,x_min-2,y_min-2)]

*(pressure[FTNREF2D(j,k,x_max+4,x_min-2,y_min-2)]
-pressure[FTNREF2D(j-1,k,x_max+4,x_min-2,y_min-2)])
+xarea[FTNREF2D(j,k-1,x_max+5,x_min-2,y_min-2)]

*(pressure[FTNREF2D(j,k-1,x_max+4,x_min-2,y_min-2)]
-pressure[FTNREF2D(j-1,k-1,x_max+4,x_min-2,y_min-2)]
));

}
}

Listing 6: Loop 2 (static similarity)
for (k=y_min;k<=y_max+1;k++) {
for (j=x_min;j<=x_max+1;j++) {
yvel1[FTNREF2D(j,k,x_max+5,x_min-2,y_min-2)]
=yvel0[FTNREF2D(j,k,x_max+5,x_min-2,y_min-2)]
-stepbymass[FTNREF2D(j,k,x_max+5,x_min-2,y_min-2)]

*(yarea[FTNREF2D(j,k,x_max+4,x_min-2,y_min-2)]

*(pressure[FTNREF2D(j,k,x_max+4,x_min-2,y_min-2)]
-pressure[FTNREF2D(j,k-1,x_max+4,x_min-2,y_min-2)])
+yarea[FTNREF2D(j-1,k,x_max+4,x_min-2,y_min-2)]

*(pressure[FTNREF2D(j-1,k,x_max+4,x_min-2,y_min-2)]
-pressure[FTNREF2D(j-1,k-1,x_max+4,x_min-2,y_min-2)]
));
}

}

Here, b is the batch size and hc is the current hit counter
value. For a kernel that is a function, the delay is simply the
random number between 0 and 2hc . We chose to generate
a random number because that gives us a chance to detect
sudden fluctuations in the behavior of a kernel. If the back-
off counter is monotonically increasing, the probability of
detecting this sudden fluctuation becomes low. When a miss
occurs, the back-off counter value is set to 0. If the number
of iterations of a loop does not reach the delay size q at the
end of the execution, the model for the loop is updated.

E. Measuring Model Accuracy

Though our modeling methodology can be generalized for
a number of performance metrics, we model execution time
because then the models can be used to find both perfor-
mance bugs and scalability issues. In a dynamic setting, a
typical run creates a dynamic profile prof for v kernels in
an application. A dynamic profile of a kernel consists of a
series of measurements mri’s during that run:

prof = {mr1,mr2, . . . ,mrv} (9)

The measurement mri of a kernel i is a tuple consisting of
the measured execution time (in regression terms, response)
for one execution of the kernel and the dynamic values of
its predictor set:

mri =< ti, pi > (10)

For loops, the measurements are done for calculating the
fitting of the model. The model is updated for a batch of b
measurements at once instead of calling the model update
function each time a new measurement is received. The next
b measurements are used as test data to evaluate the model
accuracy. We use adjusted R-square (ARS) of the predictions
to determine the accuracy. But as we are calculating ARS
out-of-sample, we call this metric Predicted Adjusted R-
Square (PARS). The formula for PARS is the same as ARS
and is given below [16]:

R2 = 1−
∑b
i=1 (ti − pred(pi))

2∑b
i=1 (ti − t̄)2

(11)

PARS = R2 − (1− R2)
m

b−m− 1
(12)

Where b and m are the test data batch size and number
of predictors respectively. pred(pi) represents the predicted
value of the response based on the generated model on the
predictors. t̄ is the average of measured execution times in
a batch. We use PARS because widely used metrics like R2

can be misleading in an online setting. R2 gives the fit within
training data, but not on unseen test data. As we are using the
online method for the lifetime of an application, the number
of training runs is unlimited in our case and therefore R2 is
not a good metric for us. If the batch size is not met at the
end of a program, the model update function is called on the
remaining data points. The effectiveness of this batch update
in reducing overhead is described in Section IV-C where we
tune the batch size b based on a trade-off between memory
requirement and model update overhead.

PARS is not enough to determine whether the assumption
about the linearity of the model holds. A high value of PARS
can be deceiving because it does not consider the variation
of fitted values from the mean of observations. We use a
second test, the Lack of Fit (LOF) F-test [17] to determine
if there is a significance lack-of-fit of the linear fitted model
on new data.

The F-value for the test is calculated using the formula:

F =

∑h
i=1

(
t− pred(pi)

)2
/ (c− 2)∑h

i=1

(
ti − t

)2
/ (h− c)

(13)

Here h is the number of data points and c is the LOF degrees
of freedom and is determined by the number of distinct val-
ues of the predictors. F-statistics needs multiple observations
for a fixed set of predictor values so that the term h−c does
not become 0. Therefore we need to keep the previously seen
input parameter configurations. For measuring F-statistics
on a batch of b observations, h = b + w, where w is the
number of seen input parameter values. The storage space
and retrieval of seen input configurations are optimized using
hash tables. The p-value for an F-test is then calculated using
the incomplete beta function (I) [18] of the F-value and the

two degrees of freedom according to the formula [18]:

pF−test = 1− I (c−2)F
(c−2)F+(h−c)

((c− 2)/2, (h− c)/2) (14)

A p-value less than 0.05 can be interpreted as a significant
lack of fit.

IV. EXPERIMENTS

A. Accuracy Improvement
We run all our experiments on a Intel core-i7 3.4 GHz

quad-core machine where each core is 2-way multi-threaded.
We extend an existing online modeling tool PEMOGEN [5]
with our new techniques for accuracy improvement and
overhead reduction. We generate performance models for
a number of scientific applications from the NAS [11] and
MILC [19] benchmark suites. We use the DragonEgg plugin
of LLVM-3.3 to compile Fortran codes. The benchmarks are
instrumented using the LLVM compiler and then the binary
is generated from the bitcode using the LLVM assembler
and the GCC-4.7 linker with ‘-O3’ optimization. MPICH
version 3.1.2 is used for benchmarks that use MPI.

We vary the input parameters according to the different
classes of the NAS benchmarks (different problem sizes) and
according to the input provided with the MILC benchmarks
including various grid configurations and values such as
preferred accuracy, seed for random number generator etc.
For the generation of models, we use 20 training runs
including replicated measurements with a fixed set of input
parameter values. We also run 20 test runs with a mixture of
seen (in the training runs) and unseen input parameter values
(with replications) to measure the accuracy of the generated
models. The replicated runs with a fixed set of input pa-
rameter values are necessary to calculate the LOF of the
models (see Section III-E). In the experiments we compare
the accuracy improvement and overhead reduction of our
hybrid approach over the previous dynamic approach [5].

Figure 2 reports the distribution of percentage improve-
ment of PARS value (accuracy) for the generated models
that have insignificant LOF from the new hybrid approach
as compared to the previous dynamic method. As can be
seen in the figure, the hybrid strategy significantly improves
the PARS for the generated models compared to the previous
dynamic approach.

Figure 2 also shows the distribution of PARS and p-
values of LOF for the generated models for one benchmark
from each of the two benchmark suites. We do not include
figures for all the benchmarks due to space contraints but we
observed from our experiments that for benchmarks such as
BT, LU, SP the models for a number of kernels suffer from
LOF for the previous online technique due to presence of
interaction terms of predictors. Using static analysis, those
interaction terms can be discovered and therefore the p-value
for the models of a number of kernels become insignificant.

For the MILC benchmark gp_quark_prop, the perfor-
mance of the previous dynamic technique is poor because

a large portion of the kernels suffer from significant LOF.
This indicates that models formed using the old EPMNF
definition are not suitable for these benchmarks and the
statically discovered predictors that include interaction of
predictors should be considered for better fitting models.

It is also interesting to see from Figure 2 that in BT and
kid_su3_rmd, a number of kernels have a high PARS
value (> 0.80) but a significant LOF. However, the PARS
of the models using the hybrid approach are higher than the
maximum achievable using the previous dynamic technique.

Even after using the hybrid approach, there are a few
kernels that suffer from significant LOF (p-value < 0.05).
This indicates that these kernels are not accurately modeled
even using the hybrid approach. They are mostly complex
functions of input parameters that are not easy to model
automatically.

B. Overhead Reduction

The hybrid approach reduces the overhead by reducing
the number of predictors that is passed to LASSO (see
Section III). The second column of Table I shows the
average number of parameters reduced by applying the
hybrid strategy — the highest number of parameters reduced
is for FT from NAS suite, accounting for the 3.6% overhead
reduction by the hybrid approach over the previous dynamic
approach.

We realize that the overhead is still significant for life-
long performance modeling. Now we give the efficacy of
the previously described overhead reduction techniques.

C. Batched Model Update

We perform experiments with different batch sizes to find
a suitable size for modeling in the benchmarks. Table II
shows the different memory and timing overhead for dif-
ferent batch sizes. The maximum timing overhead is huge
if the update function is called every time a new data point
arrives. Also the improvement beyond a batch size of 2048 is
insignificant due to the absence of enough iterations for the
overhead to further decrease in the loops of the benchmarks.
We choose a batch size of 512 for keeping the overhead at a
maximum of 9.11% with respect to a run without profiling
and model generation.

D. Exploiting Static Model Similarities

We perform experiments to find the number of static
similarity clusters formed and how accurately we can predict
the performance of other loops in a similarity cluster by
using the hybrid model of the base loop in that cluster. For
measuring the accuracy, we first generate hybrid models of
the base loop from each similarity cluster for 20 training
runs. Then for 20 test runs, we check the number of clusters
in which the PARS of at least one loop (other than the base
loop) falls under 95% confidence interval at least once in the
20 test runs. We also measure how much overhead is reduced

BT CG EP FT SP

2.5

5.0

7.5

10.0

Benchmarks

%
 Im

pr
ov

em
en

t

BT CG EP FT SP
10.0

7.5

2.5

5.0

%
im
pr
ov
em

en
t

(a)

gp_quark_prop IS kid_su3_rmd LU MG

1

2

3

4

5

6

Benchmarks
%

 Im
pr

ov
em

en
t

gqp IS ksr LU MG
6

4

5

3

2

1
%
im
pr
ov
em

en
t

(b)

Dynamic Hybrid

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●● ●●●

●

●

●
● ●

●
●

●

●●
●

●●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

0.6

0.7

0.8

0.9

0.0
5

0.5
0

0.9
5

0.0
5

0.5
0

0.9
5

p−value

PA
R
S

Dynamic Hybrid

0.9

0.8

0.7

0.6
0.05 0.50 0.95 0.05 0.50 0.95

p-value

(c) BT

Dynamic Hybrid

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●
●

●
●

●

●●
●

●
●

●●●●

●
●

●●

●
●

●
●

●

●
●

●

●●
●

●

●
●

●
●●

●

● ●
●

●

●●
●

● ●
●

●

●
●
● ●●

●
●

●

● ●
●

●
●● ●● ●

● ●
●● ●

●
●

●

●

●
●

●

●●●
●

●
●
●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●

● ●

●●
●

●

●
●●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●
●●

●

●●

●

●

●

● ●●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

● ●

●
● ●●● ●

●

●

●

●
●

● ●
●

●
●

●

● ●
●

●●

●

●

●
●

●

● ●●

●
●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●●

●● ●●
●

●
●
●

●
●

●
●

●

●

●●

●

●
●

●
● ●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

● ●

●●
●

●

●

●
● ●

●

●
●

●
●

0.6

0.7

0.8

0.9

0.0
5

0.5
0

0.9
5

0.0
5

0.5
0

0.9
5

p−value

PA
R
S

Dynamic Hybrid

0.9

0.8

0.7

0.6
0.05 0.50 0.95 0.05 0.50 0.95

p-value

PA
R
S

(d) kid su3 rmd

Figure 2: (a) and (b) PARS improvement of the new hybrid approach over the previous dynamic approach. (c) and (d)
P-value from F-test vs. PARS plot for the previous dynamic and hybrid approach for benchmarks. ** gqp and ksr stand for
gp quark prop and kid su3 rmd respectively.

Table I: Statistics for various experiments with NAS and MILC Benchmarks.

Benchmark
Avg. Parameter
Reduction (%)

(Sec IV-B)

Static Similar Clusters
(%)

(Sec IV-D)

Successful
Clusters (%)

(Sec IV-D)

Frequency Regulated
Miss (%)
(Sec IV-E)

BT 25 50 48 4.2
CG 11 34 33 3.2
EP 22 22 19 0.5
FT 32 23 23 1
IS 8 44 42 1.3
LU 6 32 29 2
MG 6 25 23 0
SP 10 22 22 2.7

gp quark prop 12 6 5 8
kid su3 rmd 18 2 2 4

Table II: Memory and Time Trade-off for Various Message
Sizes

Batch Size
Max. Memory

Overhead
(In Bytes)

Max. Calling
Overhead

2 16 75
8 64 60.12
32 256 42.33

128 1024 25.12
256 2K 18.14
512 4K 9.11
1024 8K 9.05
2048 16K 8.95
4096 32K 8.93
8192 64K 8.93

if we apply the clustering strategy for the 20 training runs.
These two statistics show us how much profiling and training
overhead saved during the 20 training runs is worthwhile.

Column 3 of Table I shows the number of clusters formed
as a percentage of total number of kernels. As seen from the
column, a number of kernels can be clustered together using
this approach and also for a major part of these clusters, the
PARS of the models of loops other than the base loop on
test runs fall under 95% confidence interval.

It is interesting to see that the percentage of clustered
kernels in the NAS benchmarks is significantly higher than

the MILC benchmarks. The BT benchmark has the highest
percentage of static similar loops. A significant number of
these loops come from the copy_faces subroutine that
copies the face values of a variable defined on a set of cells
to the overlap locations of the adjacent sets of cells. Because
a set of cells interface in each direction with exactly one
other set, there are similar loops to fill six different buffers.
Then there are six similar loops for unpacking the received
data.

The benchmark IS has a lot of similar loops that perform
simple array assignments based on the variable NUM_KEYS,
which is essentially the number of keys for the bucket sort
algorithm and is computed by dividing the total number of
keys by the number of processors.

The Hy + G columns in Figure 3 show the overhead
reduced using the clustering strategy as compared to the
non-clustering hybrid approach (the Hybr columns) for NAS
and MILC benchmarks. The best reduction is achieved in BT
benchmark because BT has a high number of similar loops
and also the prediction of the performance for the other loops
using the model of the base loop in the cluster are accurate.
The overhead reduction of MILC benchmarks are moderate
using this strategy.

BT CG EP FT IS

2.5

5.0

7.5

10.0

12.5

Dyn
m
Hyb

r
Hy+

G
H+G

R
Dyn

m
Hyb

r
Hy+

G
H+G

R
Dyn

m
Hyb

r
Hy+

G
H+G

R
Dyn

m
Hyb

r
Hy+

G
H+G

R
Dyn

m
Hyb

r
Hy+

G
H+G

R

Type

%
ov

er
he

ad
 c

om
pa

re
d

to
 n

on
−p

ro
fil

in
g

ru
n

gp_quark_prop kid_su3_rmd LU MG SP

2.5

5.0

7.5

10.0

12.5

Dyn
m
Hyb

r
Hy+

G
H+F

R
Dyn

m
Hyb

r
Hy+

G
H+F

R
Dyn

m
Hyb

r
Hy+

G
H+F

R
Dyn

m
Hyb

r
Hy+

G
H+F

R
Dyn

m
Hyb

r
Hy+

G
H+F

R

Type

%
ov

er
he

ad
 c

om
pa

re
d

to
 n

on
−p

ro
fil

in
g

ru
n

Figure 3: Overhead for the dynamic, hybrid approach
and hybrid approach+various overhead reduction strategies.
Hy+G shows the overhead after applying the strategy de-
scribed in Section III-D2 and H+R shows overhead reduc-
tion after applying strategy described in Section III-D3 on
top of the previous strategy.

E. Frequency of Model Update

As described before, model update frequency regulation
not only reduces the overhead of model update for a good
quality model but also allows a fall-back mechanism for poor
quality models to improve. We use the running mean and
running standard deviation of the PARS values measured
dynamically [20] so that we can avoid the storage of
previous PARS values of a particular model while applying
the strategy.

Similar to the previous experiments, we generate models
for 20 training runs of the benchmarks. Then we turn
the frequency regulation strategy on and observed how the
overhead is reduced in the training runs. We also report
what percentage of kernels for which the regulation started,
have at least one miss (where the new PARS goes above the
confidence interval level) for the 20 test runs.

As seen from the H + R columns in Figure 3, the
frequency regulation strategy is able to further reduce the
overhead when applied along with the similarity clustering
strategies. BT and SP benefit most from this strategy for
having a number of loops (that deals mainly with copying
and packing/unpacking values to neighbors in various direc-
tions) with high iteration count that have generated models
with good fits.

The last column of Table I shows the percentage of loops
where there is at least one miss for the test runs. The
percentage is not the lowest for BT and SP but still the
high iteration count loops help reducing maximum overhead
for these benchmarks. For MILC benchmarks, there are
higher number of misses than NAS indicating possibility of
either better possible models (undefs from static models and
missing predictors with interaction terms from the improved
EPMNF) or kernels whose performance can not be modeled
as a linear function of input parameters.

F. Sample Models

1) LU: LU is a Lower-Upper Gauss-Seidel solver from
the NAS parallel benchmark suit. The code fragment loops
over three dimensional arrays rsd and frct, negates the
values of the frct array and stores them to the same
corresponding locations of the rsd array.

Listing 7: Example loop from LU
do k = 1, nz
do j = 1, ny

do i = 1, nx
do m = 1, 5

rsd(m,i,j,k) = - frct(m,i,j,k)
end do

end do
end do

end do

The model generated by the hybrid approach for the above
loop nest is:

f(P) = 1.41 · nz · ny · nx+ 4.75 (15)

The previous online approach would start with a larger
search space formed using EPMNF, causing more overhead
and then produce a model with 15 predictors in it (not given
due to space constraints). The PARS for the previous online
model is 0.82 with a LOF p-value of 0.03, showing the
necessity of the hybrid approach.

The hybrid model discovers through static analysis the
interaction between nx, ny, nz that represent the number

of points in the 3D grid. Not only the overhead is reduced
for a way smaller search space, but also the hybrid model
has a PARS of 0.94 with a p-value of LOF 0.59, meaning
the model fits well for the kernel.

2) GP QUARK PROP: The following loop from
hmom_action function of the
d_action_rhmc.c file of the GP_QUARK_PROP MILC
benchmark calculates a sum over all sites on a particular
node in the upward direction:

Listing 8: Example loop from MILC
sum=0.0;
FORALLSITES(i,s){
for(dir=XUP;dir<=TUP;dir++)
sum+=(double)ahmat_mag_sq(&(s->mom[dir]))
-4.0;

}

The performance model for the loop generated from the
hybrid approach is:

f(P) = nx · ny · nz · nt · (1.56 · TUP
− 0.49 ·XUP + 0.45) + 0.001

(16)

The model from the pure online approach has 45 terms in
it with a PARS of 0.75 and a p-value 0.01. But the hybrid
model has a PARS of 0.88 with a p-value for F-test 0.40,
indicating the model fits well for the kernel. The macro TUP
is always greater than XUP and therefore the execution time
does not become negative. The value of i and s are 0 and
a variable sites_on_node, where sites_on_node is
the multiplication of input parameters nx, nx, ny and nt.
These information are gathered by source code backtracking
(see Section III-C).

V. RELATED WORK

The use of performance modeling manually has been
explored before. There are approaches that focus on models
generated for a very specific purpose but less on human-
readable general-purpose models. For example, Ipek and
de Supinski propose multi-layer artificial neural networks
to learn application performance [9] and Lee and Brooks
compare different schemes for automated machine-based
performance learning and prediction [21]. Zhai, Chen, and
Zheng extrapolate single-node performance to complex par-
allel machines [22]. Wu and Müller [23] extrapolate traces
to larger process counts and can thus predict communication
operations.

Hoefler and Gropp. aimed to popularize performance
modeling by defining a simple six-step process to create
application performance models [3]. Bauer, Gottlieb, and
Hoefler show how to model performance variations using
simple statistical tools [24].

Another objective of performance modeling is to predict
application performance on a different target architecture.
Carrington et al. propose a model-based prediction frame-
work for applications on different computers [25], Marin

and Mellor-Crummey demonstrate how application models
can be derived semi-automatically to predict performance
on different architectures [26], and Yang, Ma, and Müller
model application performance on different architectures
by running kernels on the target architecture [27]. Besides
program inputs, predictors generated from hardware features
can be used in our hybrid approach to model performance of
applications across architectures. This poses an interesting
direction of future work.

The authors of the Statistical Stall Breakdown [28] de-
scribe a mechanism that samples hardware counters and
dynamically multiplexes hardware counters to compute a
breakdown model for a PowerPC based microprocessor.

The work by Huck et al. [29] focuses on automating the
process for parallel performance experimentation, analysis
and problem diagnosis. Such mechanism is built on top of
the PerfExplorer performance data mining system combined
with the OpenUH [30] compiler infrastructure. The PerfEx-
pert [31] tool employs the HPCToolkit [32] measurement
system to execute a structured sequence of performance
counter measurements to detect probable core, socket and
node-level performance bottlenecks in important procedures
and loops of an application.

The work of Pavlovic et al. [33] characterizes the memory
behavior, including memory footprint, memory bandwidth
and cache efficiency of several scientific applications. Based
on the analysis of the executions of such applications they
also estimate the impact of the memory system on the
amount of the instruction stalls and on the real computation
performance. Their results are shown per application exe-
cution, summing up all the information from the different
tasks.

There are other performance tools that exploit processor
hardware counters and that have integrated sampling capa-
bilities into their analyses. Tools like TAU, Scalasca [34],
HPCToolkit, use sampling in addition to instrumentation,
their sampling capabilities are mainly focused on assigning
time consumption to source code lines instead of providing
finer details on the hardware counters.

Gonzalez, Gimenez and Labarta present a tool that auto-
matically characterizes the different computation regions of
the program [35]. Llort, Gonzalez and Servat detect clusters
based on IPC and number of instructions committed and
then detects the change of performance counters like cache
misses inside the clusters [36].

Alam and Vetter propose code annotations, called “Mod-
eling Assertions” [37] that combine empirical and analytical
modeling techniques and help the developer to derive per-
formance models for his code. Kerbyson and Alme propose
a performance modeling approach [38] that is based on
manually developed human expert knowledge about the
application. Those modeling techniques rely on empirical
execution of serial parts on the target architecture and are
usually applied to stable codes which limits their usefulness

during software development.
The recent automatic online performance modeling strat-

egy [5] had serious limitations as described in previous
sections. Our hybrid strategy is the first technique that
combines the knowledge obtained from static analysis and
the power of dynamic analysis to produce more precise
model. Our method can easily be extended for modeling
other performance metrics such as cache misses,number of
floating point instruction etc.

VI. CONCLUSION

We show how to combine static and dynamic analysis
techniques in life-long performance modeling. Using static
analysis on top of pure dynamic analysis enables us to
discover predictors formed by the combination of predictors,
which was not possible by a previous dynamic approach.
Our improved dynamic analysis helps the deficiency of static
analysis in resolving undef terms. The hybrid approach is
able to generate models that are more precise and have a
better prediction accuracy (up to 10% improvement). The
hybrid models not only help to discover interaction among
predictors but also reduce the cardinality of the predictor
search space for the dynamic analysis greatly. We also show
how batch update of models reduce the modeling overhead.
We discover that there are a number of static similar loops
that need not to be modeled individually. We also show,
by regulating the frequency of model generation, a very
small fraction of kernels in the benchmarks show variance
in performance from the prediction of the generated models.
We expect that this hybrid model generation strategy will
greatly help performance engineers without enough domain
knowledge to find possible performance bottlenecks for
tuning self-modeling applications.

REFERENCES

[1] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using
Automated Performance Modeling to Find Scalability Bugs
in Complex Codes,” in Proceedings of SC13: International
Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’13, 2013, pp. 45:1–45:12.

[2] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understand-
ing and detecting real-world performance bugs,” in Proceed-
ings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’12, 2012,
pp. 77–88.

[3] T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance
Modeling for Systematic Performance Tuning,” ser. SC ’11,
2011, pp. 6:1–6:12.

[4] N. R. Tallent and A. Hoisie, “Palm: Easing the burden of
analytical performance modeling,” in Proceedings of the 28th
ACM International Conference on Supercomputing, ser. ICS
’14, 2014, pp. 221–230.

[5] A. Bhattacharyya and T. Hoefler, “PEMOGEN: Automatic
Adaptive Performance Modeling during Program Runtime,”
in Proceedings of 23rd International Conference on Parallel
Architecture and Compilation Techniques, Aug. 2014.

[6] T. Hoefler and G. Kwasniewski, “Automatic Complexity
Analysis of Explicitly Parallel Programs,” in Proceedings of
the 26th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA’14). ACM, Jun. 2014.

[7] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program
Dependence Graph and Its Use in Optimization,” ACM Trans.
Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, Jul. 1987.

[8] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and
C. Bastoul, “The Polyhedral Model is More Widely Appli-
cable Than You Think,” in Proceedings of the 19th Joint
European Conference on Theory and Practice of Software,
International Conference on Compiler Construction, ser.
CC’10/ETAPS’10, 2010, pp. 283–303.

[9] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “ An
approach to performance prediction for parallel applications,”
in Proc. of the 11th Intl. Euro-Par Conference, 2005, pp. 196–
205.

[10] R. M. Karp, R. E. Miller, and S. Winograd, “The Organization
of Computations for Uniform Recurrence Equations,” J. ACM,
vol. 14, no. 3, pp. 563–590, Jul. 1967.

[11] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga, “The NAS Parallel Benchmarks–
Summary and Preliminary Results,” in Proceedings of the
1991 ACM/IEEE Conference on Supercomputing (SC), 1991,
pp. 158–165.

[12] L. Huang, J. Jia, B. Yu, B. gon Chun, P. Maniatis, and
M. Naik, “Predicting execution time of computer programs
using sparse polynomial regression,” in Advances in Neu-
ral Information Processing Systems (NIPS) 23, J. Lafferty,
C. Williams, J. Shawe-taylor, R. Zemel, and A. Culotta, Eds.,
2010, pp. 883–891.

[13] D. Malioutov, M. Cetin, and A. Willsky, “Homotopy contin-
uation for sparse signal representation,” in Acoustics, Speech,
and Signal Processing, 2005. Proceedings. (ICASSP ’05).
IEEE International Conference on, vol. 5, March 2005, pp.
v/733–v/736 Vol. 5.

[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving Perfor-
mance via Mini-applications,” Sandia National Laboratories,
Tech. Rep. SAND2009-5574, 2009. 3

[15] R. Komondoor and S. Horwitz, “Using slicing to identify
duplication in source code,” in Proceedings of the 8th Inter-
national Symposium on Static Analysis, ser. SAS ’01, 2001,
pp. 40–56.

[16] I. G. G. Kreft, I. Kreft, and J. de Leeuw, Introducing
Multilevel Modeling, ser. ISM (London, England). SAGE
Publications, 1998. [Online]. Available: http://books.google.
com/books?id=tu2XjCN544YC

3Update (24.09.15): We cite the official technical report taken from the
official Mantevo site.

[17] J. D. Hart, Nonparametric Smoothing and Lack-of-Fit Tests.
Springer New York, 1997.

[18] J. R. Lackritz, “Ridge Regression: Biased Estimation for
Nonorthogonal Problems,” The American Statistician, vol. 38,
no. 4, pp. 312–314, 1984.

[19] “MILC Code Version 7,” http://www.physics.utah.edu/∼detar/
milc/milc qcd.html.

[20] B. Welford, “Note on a Method for Calculating Corrected
Sums of Squares and Products,” Technometrics, vol. 4, no. 3,
pp. 419–420, 1962.

[21] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz,
K. Singh, and S. A. McKee, “Methods of inference and
learning for performance modeling of parallel applications,”
in Proc. of the 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, (PPoPP 07), 2007, pp.
249–258.

[22] J. Zhai, W. Chen, and W. Zheng, “Phantom: predicting
performance of parallel applications on large-scale parallel
machines using a single node,” SIGPLAN Notices, vol. 45,
no. 5, pp. 305–314, 2010.

[23] X. Wu and F. Muller, “Scalaextrap: Trace-based communica-
tion extrapolation for SPMD programs,” ACM Transactions
on Programming Languages and Systems, vol. 34, no. 1,
2012.

[24] G. Bauer, S. Gottlieb, and T. Hoefler, “ Performance modeling
and comparative analysis of the MILC lattice QCD applica-
tion su3 rmd,” in Proc. of CCGrid, 2012.

[25] L. Carrington, A. Snavely, and N. Wolter, “A Performance
Prediction Framework for Scientific Applications,” Future
Gener. Comput. Syst., vol. 22, no. 3, pp. 336–346, Feb. 2006.

[26] G. Marin and J. Mellor-Crummey, “Cross-architecture Perfor-
mance Predictions for Scientific Applications Using Param-
eterized Models,” in Proceedings of the Joint International
Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’04/Performance ’04, 2004, pp.
2–13.

[27] L. T. Yang, X. Ma, and F. Mueller, “Cross-Platform Perfor-
mance Prediction of Parallel Applications Using Partial Ex-
ecution,” in Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, ser. SC ’05, 2005, pp. 40–.

[28] R. Azimi, M. Stumm, and R. Wisniewski, “Online perfor-
mance analysis by statistical sampling of microprocessor
performance counters,” in ICS 05:Proceedings of the 19th
Annual International Conference on Supercomputing, 2005,
pp. 101–110.

[29] K. Huck, O. Hernandez, V. Bui, S. Chandrasekaran, B. Chap-
man, A. Malony, L. McInnes, and B. Norris, “ Capturing per-
formance knowledge for automated analysis,” in Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, SC
08, 2008, pp. 49:1–49:10.

[30] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng,
“ OpenUH: an optimizing, portable OpenMP compiler,” in
12th Workshop on Compilers for Parallel Computers, 2006.

[31] M. Burtscher, B.-D. Kim, J. M. J. Diamond, L. Koesterke, and
J. Browne, “PerfExpert: an easy-to-use performance diagnosis
tool for HPC applications,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, 2010, pp. 1–
11.

[32] N. Tallent, J. Mellor-Crummey, L. Adhianto, M. Fagan, and
M. Krentel, “HPCToolkit: performance tools for scientific
computing,” Journal of Physics: Conference Series, vol.
012088, 2008.

[33] M. Pavlovic, Y. Etsion, and A. Ramirez, “ Analysis of
memory system requirements for scientific computing,” in
IEEE International Symposium on Workload Characteriza-
tion, 2009.

[34] F. Wolf, B. Wylie, E. Abraham, D. Becker, W. Frings,
K. Furlinger, M. Geimer, M.-A. Hermanns, B. Mohr,
S. Moore, M. Pfeifer, and Z. Szebenyi, “Usage of the
SCALASCA for scalable performance analysis of large-
scale parallel applications,” in Tools for High Performance
Computing, 2008, pp. 157–167.

[35] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic detection
of parallel applications computation phases,” in IPDPS, 2009,
pp. 1–11.

[36] G. Llort, J. Gonzalez, H. Servat, J. Gimenez, and J. Labarta,
“On-line detection of large-scale parallel application’s struc-
ture,” in Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, 2010, pp. 1–10.

[37] S. Alam and J. Vetter, “A framework to develop symbolic
performance models of parallel applications,” in Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International, April 2006.

[38] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasser-
man, and M. Gittings, “Predictive Performance and Scalabil-
ity Modeling of a Large-scale Application,” in Proceedings
of the 2001 ACM/IEEE Conference on Supercomputing, ser.
SC ’01, 2001, pp. 37–37.

