
Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems

Torsten Hoefler
Department of Computer Science
ETH Zurich, Zurich, Switzerland

htor@inf.ethz.ch

Amnon Barak and Amnon Shiloh
Department of Computer Science

The Hebrew University of Jerusalem
Jerusalem, 91904, Israel

Zvi Drezner
College of Business and Economics

California State University
Fullerton, CA 92834, USA

Abstract—Large-scale parallel programming environments
and algorithms require efficient group-communication on com-
puting systems with failing nodes. Existing reliable broadcast
algorithms either cannot guarantee that all nodes are reached
or are very expensive in terms of the number of messages
and latency. This paper proposes Corrected-Gossip, a method
that combines Monte Carlo style gossiping with a deterministic
correction phase, to construct a Las Vegas style reliable
broadcast that guarantees reaching all the nodes at low cost.
We analyze the performance of this method both analytically
and by simulations and show how it reduces the latency and
network load compared to existing algorithms. Our method
improves the latency by 20% and the network load by 53%
compared to the fastest known algorithm on 4,096 nodes. We
believe that the principle of corrected-gossip opens an avenue
for many other reliable group communication operations.

Keywords-gossip algorithms; reliable broadcast

I. INTRODUCTION

Maintaining group communication in parallel and dis-
tributed computing environments in the presence of failures
is very important for parallel computations and system man-
agement. Such environments range from loosely connected
ad-hoc sensor networks, such as the Internet of Things (IoT),
through datacenter cluster computers, to tightly-coupled
highly-reliable parallel supercomputers. In all these cases,
endpoints can fail at any time. Specifically, the probability
that any node in a running application fails, grows with
the number of nodes, thus large-scale parallel applications
must continue to work despite node-failures. These appli-
cations usually build on group communication to coordi-
nate their computations and manage their resources. For
example, distributed operating systems [5], schedulers [7],
[23], databases [11], and parallel programming and runtime
environments [20] require fast global group communication.

Different use-cases have different reliability requirements.
While more specialized systems such as schedulers or oper-
ating systems can often accept a degree of inconsistent in-
formation, others, such as parallel programming frameworks,
need to offer consistent semantics to the programmer [20].
If, for example, an update to a scheduling system is lost, then
the quality of the scheduling decisions may be reduced, but
if a message that is part of a broadcast operation in the
Message Passing Interface (MPI) programming system is
lost, then the program might deadlock.

This paper focuses on efficient broadcasting as an impor-
tant primitive on its own [4], but hopes that other group

communications can be derived from its results. Reliable
broadcasts that tolerate r failures can be implemented using
r-connected communication graphs where each node can
be reached through r vertex-disjoint paths from the root.
However, this adds significant communication overheads,
since the total work is (rn) on n nodes - assuming a simple
network model with unit-time latency and message injection
and reception times. Alon, Barak, and Manber propose a
scheme for r = n − 1 with a best failure-free latency of
(log n) and a worst-case latency of (n) [1] but total work
of (n2), which makes it prohibitively expensive in practice.
The major benefit of r-connected graphs is that they do not
require any failure-detector, but this comes at a cost: if more
than r components fail, then reliability may be compromised.
In performance-critical scalable systems, such schemes are
only practical for small values of r due to the high work
overhead. The most typical r-connected graphs are binomial
graphs [10] with r = ⌈log2 n⌉.

If a failure-detector is available, then self-healing struc-
tures can be used to route around failing nodes [3], [8], [18].
Yet, these structures require a latency of at least 2 log2 n and
a total work of at least 2n messages to guarantee that all alive
(active) nodes are reached. However, failure-detectors cause
additional overheads, e.g.; control messages, can cause high
overheads in the case of failures. Also, in practice, timeouts
are complex to configure for reliably distinguishing slow
nodes or congested networks from failed nodes. The runtime
of these self-healing algorithms varies between (log n) and
(n), depending on the number of failures.
We improve upon these previous results by combining

Monte Carlo style gossiping with a parallel deterministic
recovery protocol in order to provide a set of reliable
Las Vegas style broadcast algorithms at various consistency
levels. Our algorithms that we call corrected-gossip require
no failure detector and outperform existing approaches in
terms of latency and number of messages (total work).

II. FAILURES, PERFORMANCE AND CONSISTENCY

In this paper we consider only crash failures where nodes
run correctly unless they fail, in which case they do not
make further relevant actions. We model the system as a set
of nodes P where the number of nodes |P | = N . We assume
that P does not change during the execution of a program (it
can be considered as a static name space of addresses from
0...N − 1). At any point in time, the set P consists of two

disjoint subsets: A - all active nodes, and F - all inactive
(failed) nodes. We denote |A| = n, thus |F | = N − n. It is
assumed that nodes might fail (transit from A to F) at any
time, but nodes may only become active (transit from F to
A) in a controlled manner that prevents them from re-joining
any former activities.

We assume that communications are reliable; that there
are no disrupting network failures (so even if an individual
link fails, the network as a whole can recover); that no
messages are lost; and any node can communicate with any
other node in latency L. Furthermore, sending or receiving
a message delays a node by O. Our communication model is
equivalent to the well-known LogP model [9] for o = O and
g ≪ o, |P | = n. We assume that messages can be sent and
received at the same time. For simplicity we assume that L
is divisible by O.
A broadcast in a system with n active nodes delivers a

message M from a single node to clients on all other n− 1
nodes [4]. This broadcast can support various properties such
as ordering and fault tolerance [4]. Broadcasts are posted
by a root node which invokes bcast(M) to broadcast
the message M . The broadcast call returns immediately
with a status that can be checked for completion later. The
reliability of broadcasts can be described with the following
four standard guarantees for non-faulty nodes: (I) integrity
(all received messages have been sent), (II) no duplicates
(each sent message is received by only one node), (III)
nonfaulty liveness (messages broadcast by a live node are
received by all live nodes), and (IV) faulty liveness (a
message sent by a failed node is either received by all live
nodes or by none of them) (cf. [4], [17]). We provide no
guarantees for messages received by faulty nodes. We call
a broadcast algorithm consistent if it guarantees properties
III and IV.

We generalize nonfaulty liveness and faulty liveness in
the following way: (III) a message sent by an active node is
received by at least f (n) nodes, and (IV) a message sent by
a failed node is either received by at least f (n) live nodes or
by none of them. The function 0 ≤ f (n) ≤ n determines the
consistency level. We call a broadcast weakly consistent if
Pr(f (n) > n − log n) = 1 − (1∕n�) for � ≥ 1 and strongly
consistent if f (n) = n. For many management tasks, weakly
consistent states are sufficient.

Dynamic load balancing, for example, works sufficiently
well with outdated information delivered by a weakly con-
sistent broadcast. Such schemes often use highly-resilient
and simple gossip algorithms for communications. However,
weakly consistent broadcasts can complicate reasoning about
systems because nodes that did not receive a given broadcast
message may be in a different state (e.g., stage of the
algorithm) than nodes that received the message. This is
often unacceptable, especially in parallel programs written in
the common Bulk Synchronous Parallel [22] programming
mode. Thus, depending on the use-case, consistent broadcast

algorithms may be required. In this paper we show how to
transform an inconsistent probabilistic gossip protocol into
a consistent deterministic protocol with minimal overheads.

III. CORRECTED-GOSSIP

Gossip algorithms have been widely successful in various
contexts that did not require strong consistency. Yet, they
become rapidly inefficient once about 50% of the nodes
were reached, because messages are more likely to be sent to
nodes that were already reached. We design three different
protocols based on the idea of combining randomized and
deterministic algorithms for improving the broadcast latency.
These three algorithms allow us to choose various tradeoffs
between consistency, simplicity, and performance. The three
algorithms are: (1) opportunistic, which applies the correc-
tion without checking for completion; (2) checked, which
runs the correction until all nodes received the message,
provided that no nodes fail during the correction; and (3)
fail-proof, which applies the correction and guarantees that
all active nodes receive the message, provided that no more
than f nodes fail during the operation. Our algorithms do
not require multicast, failure detectors, timeouts, acknowl-
edgments, or reconfiguration procedures.

All algorithms start with a single item of information
(color) at the root node and run T gossip rounds to spread
the color randomly. Drezner and Barak [12] show that for
T ≥ 1.639 ⋅ log2(N), each node is reached with high
probability for unsynchronized gossip. Yet simulations show
that this scheme is not strongly consistent even in the failure-
free case. For example, for N=1,000 and T=17, the gossip
colors all the nodes only 95.1% of the time.

To improve consistency, we employ various correction
protocols to distribute the data deterministically. The sim-
plest such protocol arranges allN nodes in a ring where each
colored node i sends correction messages to its neighbors,
starting with (i + 1) mod N , (i + 2) mod N .

A. The Gossip Phase

All our algorithms begin with a gossip phase, starting
with a single colored node (the root). Each colored node
sends a message to some other random node every O units
of time. Messages carry a virtual time-counter, so that all the
(colored) nodes stop sending new messages at time T . The
gossip phase continues for another L+O time units (between
T and T + L + O), allowing messages that are already on
their way to be received before starting the correction phase.
Pseudo-code for the gossip phase is shown in lines 5–6 of
Algorithm 1 in Appendix A.

Consider a system with N nodes of which n ≤ N are
active. For brevity, we call the root node and nodes that have
received the message during the gossip phase g-nodes and
nodes that first received the message during the correction
phase, c-nodes.

Let c(t) be the expected number of g-nodes at time t. Note
that at time t = 0, c(0) = 1, while at t < 0, c(t) = 0.
Lemma 1: The expected g-node count at time t + O is

c(t+O) = c(t)+(n−c(t))
[

1 −
(

1 − 1
N − 1

)c(t−L−O)]

. (1)

Proof: Consider the creation of g-nodes as a coloring
problem where all nodes but the root start uncolored and
nodes reached by a message are colored. Since only nodes
that are colored at t−L−2O can color a node at time t, and
since nodes do not select themselves, the probability that an
uncolored node did not receive a message at time t + O is
(

1 − 1
N−1

)c(t−L−O)
. As there are n− c(t) active non-colored

nodes just before t + O, the lemma follows.
Note that limt→∞ c(t) = n, so for any desired � (0 < � <

1), by selecting t such that c(t) ≥ n−�, the gossip phase can
itself be used to color all the nodes with probability 1 − �.
Figure 1 shows the expected number of colored nodes for

L = O = 1, n = N = 1, 024. It is easy to see that the rate
of coloring new nodes (i.e., the first derivative of the c(t)
function) increases up to around 512 nodes (t ≈ 18), then it
decreases towards zero. This is intuitive since when about
50% of the nodes are reached, most random messages will
reach already-colored nodes. The lowest progress is reached
when one needs to wait for the last few nodes to be colored.

0

256

512

768

1024

0 5 10 15 20 25 30
Time

N
od

es

c(t)K
opt

gossip becomes
 inefficient

Figure 1: Expected number of g-nodes L = O = 1, N =
n = 1, 024, the optimal tree (“opt”) would require t = 20
This observation motivates the use of a deterministic

correction once the random gossip becomes ineffective.
1) Outcome of the Gossip Phase: Once the gossip phase

ends, we view all the nodes as ordered on a ring (node-id
moduloN for addressing). As we shall see, it is useful at this
stage to find and bound the length of the longest uncolored
chain of consecutive nodes as this determines the needed
time to reach all the nodes in the correction phase.

Figure 1 also shows the 99%-probable longest uncolored
chain, K , as a function of time. We will later use K
to compute the optimal number of gossip rounds for our
algorithms. While the results in Figure 1 require a time-
consuming simulation, below we present a rough approxi-
mation function that can be evaluated quickly with several
simplifying assumptions.

Let T denote the time when the gossip phase stops sending
new messages. When the correction phase starts, the average
number of colored nodes is c(T +L+O), so the probability
that an arbitrary node is colored is c(T + L + O)∕N .

For any K ≥ 0, consider a specific node i out of all
N nodes. The probability that node i is colored, nodes i +
1,… , i+K are uncolored and node i+K + 1 is colored is:

p(K) =
c(T + L + O)2(N − c(T + L + O))K

NK+2
.

Since there are N possible sequences of K consecutive
non-colored nodes, assuming independence, the probability
that such a sequence exists is:

�K = 1 − (1 − p(K))N .

The probability pK that the maximal sequence of non-
colored nodes is K , is equal to the probability that a
sequence of K exists and longer sequences do not exist,
which is:

pK = �K
N−K−1
∏

i=1

(

1 − �K+i
)

. (2)

B. Opportunistic Corrected-Gossip

In our first algorithm, Opportunistic Corrected-Gossip
(OCG), the gossip phase is followed by a correction phase,
where the g-nodes send information in both directions alter-
nately along a virtual ring for a fixed time, C . Note that the
c-nodes do not send any messages. Note also that already-
colored nodes ignore all further messages. Algorithm 1 in
Appendix A shows the detailed procedure as performed by
each node.

Figure 2 shows an example with 10 nodes, L = O = 1,
T = 2, and C = 6 for a broadcast originating at node 1. Dark
nodes are g-nodes and light nodes are c-nodes or unreached
nodes. Dashed lines illustrate gossip messages and their start
and end-times. Solid lines represent correction steps and
their start and end times. This is an artificially-poor example
in order to demonstrate a case where OCG fails to reach all
the nodes (in this case node 8).

Claim 1: OCG can be easily extended to provide (I),
integrity; and (II), no duplication.

Proof: In a system that issues more than one broadcast,
nodes might receive messages from earlier broadcasts as
well as multiple messages of the same broadcast. Both can
be prevented by counting the number of broadcasts that
were started by each root node: the initiating root node
can increment this counter before calling bcast() and
each message can carry this counter. Each node can keep
a received-bcast counter, c[i], per root-node i, then discard
all messages with root-node i and a counter smaller or equal
than c[i]. When new nodes join, they should run a special
protocol to reset their c[i] for all active nodes.

47

8

0

3

2

5

9

1

6

9
6

8

5

5

8

5 2

6

9

7
4

7

4
3

0

6

3

4

1

9

6

7 4

9

64

7

3

6

9
6

8

5

Figure 2: Opportunistic Corrected-Gossip example for
N = 10, L = O = 1, T = 2, C = 6; g-nodes are darker

Claim 2: By selecting large enough values of T and C,
we can reduce the probability that the correction phase fails
to reach all the nodes below any desired �.

Proof: If the maximal chain of consecutive uncolored
nodes between any two g-nodes is K , then the correction
phase of OCG will reach (and color if active) all the nodes
in KO + L + O. Let K denote the smallest value of K for
which

∑N−1
i=K+1 pi < � (see Eq. (2) for definition of pi). Note

that K is a function of N , n, T , L, and, �. Once selecting a
value for T , we can compute K , then set C = KO +L+O
(since K is only an estimate, in practice we recommend
adding another O to C).

Corollary 1: By selecting T and C accordingly, OCG can
be adjusted to be weakly consistent or strongly consistent
with high probability guaranteeing properties (III) and (IV).

Selecting the number of gossip steps: We select T to
minimize the overall latency T + L + O +KO + L + O:

TOCGopt = argmin
T

(T + 2L + (2 +K)O) . (3)

To approximate T using Equation (3), first we pick a �
which is the probability to not reach 100% of the nodes,
then compute K and TOCGopt . Note that more than one value
of T can produce the minimum. In that case, we recommend
to select the T that can withstand the largest reduction in �.
To demonstrate the accuracy of the above approximation,

we simulated 106 runs of OCG with L = O = 1 on N = n =
1, 024 nodes for various values of T and measured the total
time to reach all the nodes. We repeated this experiment 10
times and in Figure 3 we plot (in dots) the maximum of
all observed total-times for each T . The figure also shows
(in solid line) the corresponding analytical results, based on
TOCGopt (Equation (3)).
Assuming that a system is expected to run the OCG

algorithm m times and that we wish the overall chance of
failure to be under , we can achieve this by selecting a �
such that 1 − (1 − �)m ≤ , or � ≤ 1 − (1 −)

1
m .

●

●

●

●

● ● ● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

35

40

20 25 30 35
Gossip Time (T)

To
ta

l T
im

e

predicted

simulated

Figure 3: Opportunistic Corrected-Gossip evaluation

Figure 3 shows that the approximation can predict the
optimal gossip time, T = 24, rather reliably. Here we choose
� = 1−(1−0.5)

1
106 = 6.93⋅10−7 to guarantee with about 50%

probability that all 106 runs of the algorithm are successful
- and observed a maximal difference of only one time-step
in all the experiments.

Discussion: As our equations are only approximations,
we recommend adding a small margin to the selected T . In
all our experiments, we added one O to T.

The design space for the correction phase is large. OCG is
meant to minimize the latency in networks with a high global
bandwidth, assuming that O ≤ L. In contrast, when O > L,
one could utilize c-nodes as additional message sources in
the algorithm. In the extreme case, a g-node could send
a message which is forwarded by a chain of c-nodes until
another g-node is reached. This strategy, which is beyond the
scope of this paper, could reduce the number of messages
and thus the total work.

C. Checked Corrected-Gossip
The Checked Corrected-Gossip (CCG) algorithm ensures

that all active nodes are reached, provided that no nodes
fail while the algorithm runs. Each node completes the
correction phase once it “knows” that it is no longer needed
for coloring all the active nodes. After the gossip phase We
differentiate between c- and g-nodes: c-nodes do not send
any messages in this algorithm. Each g-node i begins by
sending a “forward” message to its successor i + 1, then O
units later it sends a “backward” message to its predecessor
i − 1, then to i + 2, i − 2, i + 3, i − 3, etc. (all modulo N).
Each message is marked whether it is a forward or a

backward message. All g-nodes monitor all received cor-
rection messages and record the distance of the sender of
the first forward and first backward messages as m⊳ and m⊲
respectively. Note that because the gossip phase continues
for another L + O time-units in order allow all gossip-
messages to arrive, we know that these first messages are
also sent by the closest neighboring g-nodes from each
side. Once a g-node sent a forward message to distance
m⊲, it stops sending further forward messages. Similarly,
once a g-node sent a backward message to distance m⊳, it

stops sending further backward messages. Once a g-node no
longer needs to send neither forward nor backward messages,
it exits the algorithm. Algorithm 2 in Appendix A shows the
detailed procedure as performed by each node.

The CCG protocol is guaranteed to reach all active nodes,
assuming that no node fails during the operation. However,
in some unfortunate sequences of events that include node-
failures during the correction-phase, some nodes might
become stuck and fail to complete the algorithm. Despite
this improbable inconsistency, this protocol is practical and
comparable to a two-phase commit where a leader-failure
can result in a similar situation [15].

Figure 4: Checked Corrected-Gossip example
Figure 4 shows an example with 10 nodes, L = O = 1

and T = 4. We omit the gossip part, which is already
shown in Figure 2; dark nodes are g-nodes. We only show
forward (F) and backward (B) messages of the correction
phase. Their subscript indicates the sending order from their
respective source g-node. The tuple (x, y) next to each g-
node indicates (m⊲, m⊳). Observe that all nodes are reached
after 2 correction steps (+L∕O + 1) but the algorithm exits
after 5 steps (+L∕O + 1), when all g-nodes received a
message from their closest g-nodes in both directions.

Claim 3: CCG provides integrity (I), no duplication (II),
and is strongly consistent (provides (III) nonfaulty liveness
and (IV) faulty liveness) with f (a) = a if no node fails
during the correction phase.

Proof: (I) and (II) are similar to Claim 1 and (IV) does
not apply due to the assumption that no node fails while the
algorithm runs.

We prove (III) by contradiction. The proof is intuitive
and does not require the formal details of Algorithm 2.
We assume that node i is not reached after the algorithm
ends while at least one other node delivered the message.
Obviously, node i cannot be a g-node.

Let a and b be the closest g-nodes in i’s forward and
backward directions on the virtual ring (note that if the

gossip phase failed to reach any node, then a = b = root,
but we do not require a and b to be distinct). Both, a and b
enter the while loop on line 10 of Algorithm 2.

Besides node i, only uncolored nodes can be in between a
and b (otherwise, a and b would not be the closest g-nodes).
Node a will send backward messages to a−1, a−2, ... until
it learned about b and sent a message to b. Similarly, node b
will send forward messages to b+1, b+2, ... until it learned
about a and sent a message to a. Because i is in between a
and b, it must have received two correction messages.

Selecting the number of gossip steps: Similarly to
OCG, we select T to minimize the latency. However, since
the algorithm only ends after each node learned about its
surrounding g-nodes, the time to execute the correction is
about twice as long, T + L + O + 2KO + L + O:

T CCGopt = argmin
T

(T + 2L + (2 + 2K)O) . (4)

Note that more than one value of T can produce the
minimum, so we recommend to select among them the T
that can withstand the largest reduction in �.
To demonstrate the accuracy of this approximation, we

simulated 106 runs of CCG on N = n = 1, 024 nodes
for various values of T and measured the total time to
reach all the nodes and complete the algorithm. We repeated
this experiment 10 times and in Figure 5 we plot (in dots)
the maximum of all observed total-times for each T . The
figure also shows (in solid line) the corresponding analytical
results, based on T CCGopt (Equation (4)). As before, we used

� = 1−(1−0.5)
1

106 = 6.93 ⋅10−7 in our approximations. The
figure shows that the approximation can predict the optimal
gossip time T = 25 (for L = O = 1) rather reliably and we
have observed a maximal difference of only two time-steps
in all the experiments.

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

40

45

50

55

60

20 25 30 35
Gossip Time (T)

To
ta

l T
im

e predicted

simulated

Figure 5: Checked Corrected-Gossip evaluation

Discussion: Similar to OCG, we could use different
algorithm variants for the correction step. For example, if a
failure detector between neighboring nodes exists, then the
algorithm could forward a single message along the ring,
skipping failed nodes.

Since some nodes may not be reached if a node fails
during the correction step, CCG is not strongly consistent.

The next section introduces failure-proof corrected-gossip
(FCG) derived from CCG.

D. Failure-proof Corrected-Gossip
The Failure-proof Corrected-Gossip (FCG) algorithm is

designed to overcome up to f online failures (while the
algorithm is running). We show that at the conclusion of
the algorithm, either all remaining active nodes are colored
or none. Each node completes the correction phase of FCG
once it “knows” that it is no longer needed either for the
coloring of all active nodes or for allowing other nodes to
complete.

First we make an observation of a necessary but insuffi-
cient condition for an f-resilient broadcast. While it is not
strictly needed, it may help to understand the algorithm:

Observation 1: In a reliable broadcast with guaranteed
f -resilience, no colored node exits the operation before
ensuring that either itself or at least one of f +1 other nodes
will distribute the message to all remaining uncolored nodes.

Proof: Assume a colored node x exits before it knows
about f + 1 other nodes that will deliver the message. Let
F ⊂ N denote the set of nodes that fail during the operation
(|F | ≤ f). Let C denote the set of all nodes that are colored
right after x exits and all of x’s messages have been delivered
but before any new node will be colored. Since x exited,
x ∉ F (failure after exiting is not relevant since x cannot
influence the algorithm’s state anymore). Now, if C ⊂ F
then no other node in N∖F will receive the message.
The FCG algorithm is similar to CCG but runs until each

node knows that it has done its part, including to ensure that
at least f+1 other g-nodes exist, so that at least one of those
will not fail and will be able to continue propagating the
color to fulfill Observation 1. In practice, each node ensures
that at least f + 1 other g-nodes exist around it in each
direction, which is even stronger than what Observation 1
requires. FCG performs one more round than CCG (the
finalization round), where once a g-node knows about f
other g-nodes in any direction, it informs the nearby nodes
in the opposite direction about them in order to help them
to exit.

In the very unlikely case that less than f + 1 g-nodes
remain active, convergence might not be achieved with g-
nodes alone. In this case, c-nodes wait for a timeout, then
enter SOS mode where they send messages to all the nodes,
which then themselves enter SOS mode. The probability of
the SOS case can be reduced arbitrarily by increasing the
gossip time, T (similar to OCG as shown in Claim 2), so
this pathological case is not relevant in practice and was
never observed in our experiments. Yet, it must be included
to ensure FCG’s correctness in the extremely unlikely worst-
case.

Algorithm 3 in Appendix A shows the detailed procedure
as performed by each node. Specifically, the gossip phase
(lines 6-7) is similar to OCG and CCG. The first receive

(line 4) can also receive correction messages. Lines 8-10
handle the SOS case and all c-nodes enter lines 11-14
where they wait for either the final message or trigger the
SOS after a timeout. All g-nodes send messages forward
(⊳) and backward (⊲) (line 27) as in CCG, yet now they
include the array k⊳ or k⊲ in their backward and forward
messages, respectively. These arrays accumulate up to the
f + 1 closest g-nodes that are known to be alive in the
respective direction: they are updated with the source of
forward or backward messages as well as with the transitive
information received from the source g-nodes (lines 21-22).
The functions ◿⊳(x) and ◿⊲(x) sort the k nodes in x by
distance from the calling node on the ring in either forward
or backward direction, respectively. Each node that receives
an SOS message also enters SOS mode (line 23).

Once a g-node learns about f other g-nodes from ei-
ther the forward or the backward direction, it enters the
finalization round with respect to that direction and sends
final messages backwards or forwards accordingly, starting
again from its immediate neighbors (line 24). Once a g-node
passes the (f+1)-furthest g-node in either direction, it stops
sending in that direction (line 25). Once a node stopped
sending in both directions, it terminates. If a node sends
to itself without finding f+1 g-nodes in either direction, it
invokes the SOS protocol (line 26).

Figure 6: Failure-proof Corrected-Gossip example

Figure 6 shows an example with 10 nodes, L = O =
1 and f = 1. Dark nodes are g-nodes and for clarity, we
only focus on correction messages related to node 3. Shown
in parentheses are the direct and indirect nodes included
in each message. In this example, node 3 terminates after
receiving F(0,1), B(4) and B(5). Before terminating, it sends
final messages (dashed).

The next two lemmas are required for the proof of
correctness.

Lemma 2: If any g-node, k, delivers without SOS then
messages will be sent to all nodes.

Proof: Since k is a g-node and not in SOS, it can only

exit once it stops sending in both the forward and backward
directions (line 18). Wlog, consider the forward direction.
Before stopping to send forward, a g-node must detect f +1
other g-nodes (line 24) in the forward direction (or enter
SOS mode in line 28). Furthermore, it will have sent final
messages to at least all those f + 1 g-nodes before exiting.

More formally, we say that a node covers another set of
nodes if it will send final messages to these nodes. Each
g-node that does not enter SOS mode, covers at least f + 1
g-nodes of the logical ring of size N. We now show by
induction that the whole ring must be covered if a single
g-node exits without SOS mode. For the base-case, assume
that node A1 terminates, then it has covered all nodes up to
its f+1st g-node B1. Since at most f g-nodes can fail, there
will be at least one remaining g-node R1 among the covered
nodes. In the induction step, we set Ai+1 = Ri (the remaining
g-node from the previous step) which is guaranteed to cover
f+1 g-nodes up to Bi+1. It is easy to see that each induction
step reduces the set of uncovered nodes by at least one.

Lemma 3: If any node receives a message, it will deliver.
Proof: There are three types of messages: (1) forward or

backward messages, (2) SOS messages, (3) gossip messages.
By definition, a c-node received (1) or (2), but not (3). If a c-
node accumulates through (1) information about at least f+1
different g-nodes, then it will deliver (line 13), otherwise it
will eventually trigger SOS (line 14). A g-node received (3)
by definition and during the correction phase it will either
discover f +1 other g-nodes in both directions in the loop at
line 18 or trigger SOS (line 28). Either way, it will deliver.

Corollary 2: All nodes that receive a message eventually
terminate.

Claim 4: FCG provides integrity (I), no duplication (II),
and is strongly consistent (provides (III) nonfaulty liveness
and (IV) faulty liveness) with f (a) = a if no more than f
nodes fail during the correction step.

Proof: (I) and (II) are similar to Claim 1. We proceed
to prove (III) which assumes that the root r does not fail
during the operation.

To prove (III) by contradiction, we assume a node i ≠ r
does not deliver while a node j ≠ i delivers the message.
Thus, i is not a g-node because g-nodes always deliver
(Lemma 3). Further, no message could have been sent to
i, or else it would have delivered (Lemma 3). This implies
that no node returned from SOS because it would have sent
to all nodes before delivering. This contradicts Lemma 2.
Corollary 3: FCG can withstand any number of failures

happening before the algorithm or during the gossip phase.
This can be shown using the techniques above and the

full proof is omitted for brevity.
When is the SOS protocol needed: To determine if the

SOS protocol is needed during normal operations, let us look
at the case where the SOS protocol is disabled as if it would

not exist1. Let us define an “r-node” as a g-node that does
not fail while the FCG algorithm is running.

Lemma 4: If the SOS protocol is disabled, if any r-node
receives information about f other g-nodes in one direction
(⊳ or ⊲), then all r-nodes will receive information about
f + 1 g-nodes in that direction.

Proof: Wlog, consider the ⊳ direction. As soon as an
r-node, A, receives information in the ⊳ direction about f or
more other g-nodes, it will start sending final ⊳ messages
and will not stop until it either reaches itself or receives
information about at least f + 1 g-nodes in the ⊲ direction.
If A reaches itself, then the claim is evident. Otherwise
A will send final ⊳ messages to all those f + 1 g-nodes
that it learned about through ⊲ messages (including all the
nodes in between): since we assume no more than f online
failures, at least one of those f + 1 nodes, B1 is an r-node.
Using induction it is then similar to show that once all the
r-nodes in the range between A and Bi are covered, either
A receives a final ⊳ message from Bi or some new r-node,
Bi+1, receives it, where the distance between Bi+1 to A is
shorter than the distance between Bi to A. Within a finite
number of steps, that distance shrinks to 0, so before that
happens all r-nodes are covered all the way to A.

Claim 5: If the number of g-nodes is at least f 2 +f +1,
FCG will complete even if the SOS protocol is disabled.

Proof:While ignoring any c-nodes and uncolored nodes
in between, let us look only at sequences of consecutive g-
nodes. If any such sequence of f + 1 r-nodes exists, then
its furthest end in the ⊳ direction will be informed in the ⊳
direction about the other f r-nodes; and its furthest end in
the ⊲ direction will be informed in the ⊲ direction about the
other f r-nodes. The above lemma will therefore be fulfilled
in both directions, so every r-node will be informed about
f +1 nodes in each direction and complete the algorithm. It
can easily be seen that no placement of f non-r-nodes within
a closed chain of f 2 + f + 1 (or more) g-nodes can prevent
the formation of an f + 1-long consecutive sequence of r-
nodes (the worst case is to place non-r-nodes in positions 0,
f , 2f , 3f , …, (f − 1)f).

Similarly to OCG and CCG, we can approximate the num-
ber of needed gossip rounds analytically. The rather technical
derivation of an upper bound is available in Appendix B and
is not critical for the presentation of the algorithms.

IV. PERFORMANCE ANALYSIS

The performance of fault-tolerant broadcast algorithms is
often characterized by two metrics: (1) the total number
of messages sent (work) to complete the algorithm and (2)
the latency needed to complete the operation. Both metrics
depend on T in all the variants of corrected-gossip, as well
as on C for OCG. The worst-case latency for all algorithms

1This analysis requires that a node may not trigger the SOS mode
in line 28 of Algorithm 3 when sending to itself

requires at least N − 1 steps in the very unlikely case that
the gossip reached no nodes (or T = 0). Thus, we limit our
analysis to the more interesting and common case that only
needs a small number of additional correction steps once T
is well chosen.

A. Simulation Setup

Since an accurate analytical method for assessing the
latency in the LogP model is infeasible, we use Monte
Carlo style simulations to predict it, then use the analytical
approximations in Section III to determine the optimal T .
For GOS (see below) and OCG, we select � = 6.9315 ⋅10−7
to have at least 50% chance of consistency in all 106 trials.
For CCG and FCG, we aim to minimize the latency.

Our simulation creates failures by marking nodes as
inactive either at the beginning or during the execution.
We simulate various numbers of originally-inactive nodes
as well as up to f nodes that fail during the simulation.

We use realistic LogP parameters that we gathered from
Piz Daint, a Cray XC30 supercomputer with 5,272 nodes
connected by the Aries interconnect. All nodes start at time
zero and we record the latency until the last active node
receives the broadcast and completes the algorithm. We also
record the total work (the number of messages sent) as well
as the consistency (the percentage of nodes reached).

B. Other FT Broadcast Algorithms

Existing algorithms can be categorized into three classes:
probabilistic, restarting, and redundant. Probabilistic algo-
rithms use randomness to reach nearly all nodes with high
probability. They are the only algorithms that provide only
weak consistency. Restarting algorithms restart if they detect
a change in the virtual topology due to a failure and
redundant algorithms send messages redundantly f+1 times
to overcome up to f failures. We describe three specific
existing algorithms to represent each class.

1) Gossip: The simplest fault-tolerant broadcast is a prob-
abilistic gossip algorithm (GOS) where each node, once it
received a color, sends it to random peers until a fixed global
time is reached [16]. As described before, the efficiency of
this approach rapidly declines after 50% of the nodes are
colored. Nevertheless, it can be a very effective loosely-
consistent fault-tolerant broadcast algorithm.

2) Buntinas’ FT Broadcast: Buntinas’ fault tolerant con-
sistent broadcast (BFB) was proposed as part of a consensus
algorithm in MPI’s agreement protocols [8]. This algorithm
supports an arbitrary number of failures by using a dynamic
tree where each message contains the information about the
children in the next levels. Once all children have been
reached, the delivery is acknowledged back to the root. The
protocol relies on failure detectors to find out if any node
failed before or during the operation. If a failed node is
detected and the message cannot be delivered, a NACK

message is immediately propagated to the root which in turn
re-starts the whole operation with a modified tree.

The BFB algorithm restarts after each new node failure
and has a minimal latency (in case of no online failures) of
T BFB = 2(2O + L) log2N .
3) Binomial Graphs: Binary (dissemination) graphs

(BIGs) are a special case of perfectly connected graphs [10]
that can tolerate up to log2 P −1 failures using static routing.
In these networks, each node p is connected to a neighbor
set N = {p+2x mod P |0 ≤ x ≤ ⌊log2 P ⌋} of log2 P other
nodes. Each node sends the first received message to all
its neighbors and the communication finishes after log2 P
rounds. Each node can start forwarding messages as soon as
it receives them. Thus in the optimal case, the completion
time is equal to a single binomial tree where the last node
receives log2 P more messages. Assuming no faults, the
communication finishes after T BIG = (2O + L) log2 P +
O log2 P .

This is similar to multiple random spanning trees as
proposed by Birman et al. [6] but is more resilient because
it guarantees log2 P vertex-disjoint paths.

C. Expected Failures
For our study, we assume a mean-time between failures

of 18,304 hours as reported for compute servers of the
TSUBAME 2.0 supercomputer at the Tokyo Institute of
Technology [14]. Assuming that many scientific computing
jobs run for 12 hours between checkpoints, we can compute
the expected number of failures occurring during an applica-
tion’s run. For example, with 4,096 nodes, we expect ≈ 2.69
node failures during the application run.
D. Case study with N=4,096 nodes

Table 7 shows a comparison of all the presented algo-
rithms on a medium-sized system of 4,096 nodes. The results
for GOS, OCG, CCG, and FCG are simulated and the results
for BIG and BFB are modeled analytically as described
above. We ran 106 simulations for each combination of pa-
rameters and report the expected latency, total work (number
of messages) and inconsistency (expected share of nodes
not reached). All reported values are mean values and all
non-parametric confidence intervals were within 2% of the
reported median.

For BFB, we assume that ⌈20%⌉ of the failures happen
during the operation. We analyze the algorithms for no fail-
ures (f̂ = 0) and the expected failure scenario (f̂ = 3). We
run FCG with f equal to f̂ . The probability p̂ that CCG is
inconsistent, i.e., because nodes fail during the execution of
the algorithm, is at most p̂ = 4,096⋅55�s

18,304ℎ⋅602s∕ℎ⋅106�s∕s = 3.4⋅10−9

and thus, we never observed an inconsistent execution. We
always choose f = 1 for FCG because the probability
that two nodes fail during the execution of the algorithm
is p̂2 = 7.2 ⋅ 10−19. BIG is consistent up to f̂ = 9
because it can accept up to log2(4, 096) − 1 = 11 failures.
As opposed to the corrected-gossip variants, BIG’s static

algorithm f̂ T lat work incon.

GOS [12] 0 50 53 95,418 2e-5%
GOS [12] 3 50 53 95,331 8e-6%

OCG 0 32 42 38,400 1e-4%
OCG 3 32 42 38,355 3e-4%

CCG 0 36 44 19,057 0%
CCG 3 34 46 16,952 0%

FCG 0 37 48 23,153 0%
FCG 3 37 51 23,101 0%

BIG [2] 0 - 60 49,152 0%
BIG [2] 3 - 60 49,152 0%

BFB [8] 0 - 96 4,096 0%
BFB [8] 3 - 144 8,192 0%

20

40

60

64 128 256 512
1024

2048
4096

8192
16384

32768
65536

Nodes

Si
m

ul
at

ed
 L

at
en

cy

BFB
FCGBIG

CCG
OCG

opt

(a) Scaling for failure-free execution

20

40

60

64 128 256 512
1024

2048
4096

8192
16384

32768
65536

Nodes

Si
m

ul
at

ed
 L

at
en

cy

BFB BIG FCG

CCG

OCG

(b) Scaling for an execution with failures
Figure 7: Latency [�s], work [# msgs] and consistency of reliable broadcast algorithms for N = 4, 096 (in the table),
L = 2�s, O = 1�s for the expected failures in a 12-hour period.

overlay topology also suffers from nodes that failed before
the algorithm started. Yet, the probability that 11 randomly
chosen nodes disconnect the 4,096 node-graph is essentially
zero (< 10−40).
The results show that the corrected-gossip variants are su-

perior across the board. OCG for example, delivers 99.999%
consistency with 60% less messages (work) and 20% lower
latency than GOS, while FCG uses over 50% less work and
15% lower latency to guarantee the same reliability as BIG.
Further, while BFB requires the least amount of messages,
FCG’s latency is nearly 3 times less.

E. Scalability
We now investigate how well the different algorithms

scale with the number of nodes in the system. For this,
we ran simulations with increasing numbers of nodes and
we show the result for a failure-free execution in Figure 7a.
As before, we ran 106 simulations and all non-parametric
confidence intervals were within 2% of the plotted median
value. The lowest (fastest) dashed line marked “opt” indi-
cates the theoretically-optimal (non-fault-tolerant) broadcast
which provides a lower bound to the problem. We plot the
median values for OCG, CCG, and FCG and omitted GOS
for clarity because it performed significantly worse in all
configurations. The red and blue lines plot the best-case
times for BIG and BFB, respectively. For a weakly consistent
configuration, OCG wins regardless of the number of nodes.
A strongly consistent configuration using FCG outperforms
BIG in terms of latency with 512 or more nodes and scales
significantly better. We omitted work plots due to space
restrictions but FCG consistently completes with less than
50% of the work of BIG.

Figure 7b shows the results for a scaling run with 1.5625%
(N/64) node failures. Here we omit “opt“ because it would
not be consistent. In fact, it would not even be weakly
consistent because a failure close to the top of the tree
can leave nearly half the nodes unreached. All executions
are strongly consistent, except OCG which reached at least

99.999% consistency in all cases.
BIG is consistent for f̂ < log2N but the expected number

of failures for a 12 hour job grows as f̄ (N) = 12ℎ⋅N
18304ℎ .

Thus, for N > 22, 001, BIG may not be consistent on the
TSUBAME 2.0 system (with low probability).

As in the failure-free case, OCG outperforms GOS across
the board. FCG scales better and outperforms BIG when
the number of nodes exceed 256. As for the work, it is
very similar to the failure-free case. Our results demonstrate
that corrected-gossip is better in terms of latency, number
of messages and scalability.

V. RELATED WORK

Fault-tolerant runtime design is an increasingly important
topic. Birman et al. propose bimodal multicast, where an
unreliable multicast is followed by gossip rounds to correct
the lost messages. However, the correction step is not deter-
ministic and transforms the “all or nothing” guarantee into
“almost all or almost none” [6]. Similarly, Felber and Pe-
done propose a probabilistic reliable broadcast [13]. Hoefler,
Siebert, and Rehm [19] show how to correct an unreliable
multicast for full consistency without node failures.

Generally, deterministic constructions only work up to a
fixed number of failures f . For example, binomial graphs [2]
only tolerate up to log2 P worst-case failures without heal-
ing. Self-healing variants [3] tolerate arbitrary failures as-
suming fast failure detectors which may not always be
practical. Sun et al. [21] propose a reliable multicast protocol
where k “loggers” guarantee deterministic delivery of all
messages after a probabilistic gossip-based algorithm. In
contrast, our algorithm combines gossip with deterministic
correction to guarantee consistency despite failing nodes.

VI. CONCLUSIONS

We designed a series of practical algorithms for reliable
broadcasting in unreliable environments. We utilize a combi-
nation of probabilistic gossip and deterministic correction to
tune and implement various consistency levels. Our results

show that the combination of randomness and determinism
enables more scalable fault-tolerant protocols with up to
30% lower latency and 60% less messages than existing
algorithms.

We described the model-driven tuning of all parameters
of the algorithms (number of gossip and correction steps),
which makes them readily usable for fault-tolerant com-
munications, for example in MPI libraries or other parallel
systems where latency and work is critical.

We believe that our idea to combine probabilistic com-
munication with deterministic correction, should also be
suitable for other communication operations such as MPI’s
collective communications, providing reliable group com-
munication in unreliable environments.

VII. ACKNOWLEDGMENTS

We thank Angelika Steger and Gustavo Alonso for many
inspiring discussions and Darius Buntinas for sharing his
implementation of BFB. We also thank the anonymous
reviewers for their constructive comments. This research was
supported by the DFG, German Priority Programme 1648
“Software for Exascale Computing" (SPPEXA), project
FFMK.

REFERENCES

[1] N. Alon, A. Barak, and U. Manber. On disseminating
information reliably without broadcasting. In 7th Intl. Conf.
on Distr. Comp. Sys. (ICDCS), pages 74–81, Berlin, 1987.

[2] T. Angskun, G. Bosilca, and J. Dongarra. Binomial graph:
A scalable and fault-tolerant logical network topology. In
I. Stojmenovic, R. Thulasiram, L. Yang, W. Jia, M. Guo,
and R. de Mello, editors, Parallel and Distributed Processing
and Applications, volume 4742 of Lecture Notes in Computer
Science, pages 471–482. Springer, 2007.

[3] T. Angskun, G. Fagg, G. Bosilca, J. Pjesivac-Grbovic, and
J. Dongarra. Self-healing network for scalable fault-tolerant
runtime environments. Future Generation Computer Systems,
26(3):479 – 485, 2010.

[4] H. Attiya and J. Welch. Distributed Computing: Fundamen-
tals, Simulations and Advanced Topics (2nd edition). John
Wiley Interscience, 2004.

[5] A. Barak and O. La’adan. The mosix multicomputer operating
system for high performance cluster computing. Future
Gener. Comput. Syst., 13(4-5):361–372, 1998.

[6] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM Trans. Comput.
Syst., 17(2):41–88, 1999.

[7] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou. Apollo: Scalable and coordinated
scheduling for cloud-scale computing. In Proc. 11th USENIX
Conf. on Operating Systems Design and Implementation,
OSDI’14, pages 285–300, 2014.

[8] D. Buntinas. Scalable distributed consensus to support mpi
fault tolerance. In Proc. IEEE 26th Int’l Symp. Parallel &
Distributed Processing (IPDPS), pages 1240–1249, 2012.

[9] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. Logp:
Towards a realistic model of parallel computation. In Proc.
4th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming, PPOPP ’93, pages 1–12, 1993.

[10] A. H. Dekker and B. D. Colbert. Network robustness and
graph topology. In Proc. 27th Conf. on Computer Science
(ACSC ’04), Volume 26, pages 359–368, 2004.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
algorithms for replicated database maintenance. In Proc. 6th
ACM Symp. on Principles of Distributed Computing, PODC
’87, pages 1–12, 1987.

[12] Z. Drezner and A. Barak. An asynchronous algorithm for
scattering information between the active nodes of a multi-
computer system. J. Par. Distrib. Comp., 3(3):344–351, 1986.

[13] P. Felber and F. Pedone. Probabilistic atomic broadcast. In
Proc. 21st IEEE Symp. on Reliable Distributed Systems, pages
170–179, 2002.

[14] Global Scientific Information and Computing Center. Failure
History of TSUBAME2.0 and TSUBAME2.5, 2014.

[15] J. Gray and L. Lamport. Consensus on transaction commit.
ACM Trans. Database Syst., 31(1):133–160, 2006.

[16] V. Hadzilacos and S. Toueg. Distributed systems (2nd ed.).
chapter Fault-tolerant Broadcasts and Related Problems, pages
97–145. 1993.

[17] V. Hadzilacos and S. Toueg. A modular approach to fault-
tolerant broadcasts and related problems. Technical report,
Cornell Univ., Ithaca, NY, 1994.

[18] T. Herault, A. Bouteiller, G. Bosilca, M. Gamell, K. Teranishi,
M. Parashar, and J. Dongarra. Practical scalable consensus
for pseudo-synchronous distributed systems. In Proc. Int’l
Conf. for High Performance Computing, Networking, Storage
and Analysis, SC ’15, pages 31:1–31:12, 2015.

[19] T. Hoefler, C. Siebert, and W. Rehm. A practically constant-
time MPI Broadcast Algorithm for large-scale InfiniBand
Clusters with Multicast. In Proc. 21st IEEE Int’l Par. &
Distr. Proc. Symp. (CAC’07 Workshop), page 232, 2007.

[20] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard Version 3.0, Sep. 2012.

[21] Q. Sun and D. C. Sturman. A gossip-based reliable multicast
for large-scale high-throughput applications. In Proc. 2000
Int’l Conf. on Dependable Systems and Networks (DSN ’00),
page 347, 2000.

[22] L. G. Valiant. A bridging model for parallel computation.
Comm. ACM, 33(8):103–111, 1990.

[23] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe:
A robust and scalable technology for distributed system
monitoring, management, and data mining. ACM Trans.
Comput. Syst., 21(2):164–206, 2003.

APPENDIX A.
PSEUDO-CODE FOR ALL ALGORITHMS

The following listing shows the OCG algorithm. The
function rand(0..N-1∖i) selects a random node other
than the caller.

Algorithm 1: Opportunistic Corrected-Gossip
1 time = 0; i = my_node_id; off=1;
2 if i != root then
3 wait to receive (time, data);
4 time += L/O+1;
// gossip until time T and then wait L/O+1

5 while time++ < T+L/O+1 do
6 if time < T then send (time, data) to rand({0..N − 1}∖i);
// correction - nodes colored here do not

send
7 while time < C do
8 if time++ < C then send (C, data) to (i + off)%N;
9 if time++ < C then send (C, data) to (i − off)%N;
10 off++;

The following listing shows the CCG algorithm.
Algorithm 2: Checked Corrected-Gossip
// assume ⊳ and ⊲ are special time values

> T
1 time = 0; i = my_node_id; off = 1;
2 if i != root then
3 wait to receive (time, data);

// only g-nodes go to gossip and
correction

4 if time = ⊳ ∨ time = ⊲ then exit;
5 time += L/O+1
// gossip until time T and then wait L/O+1

6 while time++ < T+L/O+1 do
7 if time < T then send (time, data) to rand({0..N − 1}∖i);
// distance of first forward and backward

msgs
8 m⊳ = m⊲ = ∞;
// send further forward or backward

messages
9 s⊳ = s⊲ = true;
10 while (s⊳ ∨ s⊲) do

// do for forward as well as for
backward

11 for dir ∈ {⊳,⊲} do
12 while src = check for receive (id, data) do
13 if t ∈ {⊳,⊲} ∧ mt > �t̄(src) then mt = �t̄(src);
14 if off > mdir then sdir = false;

// ⊳ evaluates to 1 and ⊲ to -1
15 if sdir then send (dir, data) to (i + dir⋅off)%N;

// (analysis assumes we wait O in
else)

// we looped around one full circle
16 if off ≥ N then exit;
17 off++;

For conciseness, we assume in both the CCG and FCG

Algorithms that ⊳ and ⊲ are special time values bigger than
T and that they evaluate to 1 and -1 in multiplications,
respectively. In the FCG Algorithm which follows, we also
assume that false is a special invalid node id which does not
exist in the system and that any valid node id evaluates to
true in conditions; and that the functions �⊳(x) and �⊲(x)
denote the distance between the calling node and x on the
ring either forward or backward, respectively.
Algorithm 3: Failure-proof Corrected-Gossip
// assume ⊳, ⊲, ⋆ are special time values

> T
1 time = 0; i = my_node_id;
// arrays of size f + 1 of known g-nodes

2 k⊲ = k⊳ = k = [false,..,false];
3 if i != root then
4 wait to receive (time, [], data);
5 if time != ⊳ ∧ time != ⊲ ∧ time != ⋆ then time +=

L/O+1;
// gossip until time T and then wait L/O+1

6 while time++ < T+L/O+1 do
7 if time < T then send (time, [], data) to

rand({0..N − 1}∖i);
// SOS handling (both g- and c-nodes)

8 if time = ⋆ then
9 for i ∈ {0..N − 1}∖i do send (⋆, [], data) to i ;
10 exit;

// c-nodes await completion (SOS after
timeout)

11 if time = ⊳ ∨ time = ⊲ then
12 while src = check for receive (id, k, data) do
13 if |k⊳ = src ∪ k ∪k⊳| ≥ f+1 then exit;
14 if time = ⋆ or timeout expired then goto line 9;

// g-nodes enter correction step
15 off⊳ = 1; off⊲ = 1; done = 0;

// sending ⊳ or ⊲ messages
16 s⊳ = true; s⊲ = true;

// sending final-round ⊳ or ⊲ messages
17 f⊳ = false; f⊲ = false;
18 while (s⊳ ∨ s⊲) do
19 for dir ∈ {⊳,⊲} do
20 while src = check for receive (t, k, data) do
21 if t ∈ {⊳,⊲} ∧ !ft then
22 kt̄ = ◿t(src ∪ k ∪ kt̄)[0..f]
23 if t = ⋆ then goto line 9;

// f+1 g-nodes found, start final
phase

24 if |kdir| ≥ f ∧ !fdir then fdir = true; offdir=1;
sdir=true;
// stop if passed f-th g-node in

final
25 if offdir > �dir(◿dir(kdir)[f]) then sdir = false;
26 if sdir ∧ offdir ≤ N then

// ⊳ evaluates to 1 and ⊲ to -1
27 send (dir, kdir, data) to (i + dir⋅offdir)%N

offdir++;

// full loop without f+1 g-nodes: SOS
28 if off⊳ > N ∨ off⊲ > N then goto line 9;

APPENDIX B.
SELECTING THE NUMBER OF GOSSIP STEPS OF FCG

As in OCG and CCG, we select T to minimize the latency.
Each g-node in FCG must fulfill the following tasks:

1) Learn about f+1 g-nodes in ⊳ direction.
2) Learn about f+1 g-nodes in ⊲ direction.
3) Send final messages up to the f+1st ⊳ g-node.
4) Send final messages up to the f+1st ⊲ g-node.
We now provide the intuition for a worst-case analysis of

the runtime of FCG.

Figure 8: Description for FCG analysis

Figure 8 shows how each g-node can be seen as the center
node C between four other g-nodes A, B, D, and E (for f =
1). The values a-d are integers that represent the distances
between neighboring g-nodes, which is the number of c-
nodes between them plus one. Next, we derive an upper
bound on the total number of nodes in the A-E chain.

Bounding the length of a chain of G g-nodes: Let V ≥
2 be an integer. For any G ≥ V , consider a specific node i
out of all N nodes. The probability that i starts a sequence
of G consecutive nodes containing exactly V g-nodes is:

q(G, V) =
c(T + L + O)V (N − c(T + L + O))G−V (G − 2)!

NG(V − 2)!(G − V)!
.

Since there are N possible sequences of V consecutive g-
nodes, assuming independence, the probability that such a
sequence exists is: �G = 1−(1 − q(G, V))N . The probability
qG that the length of the maximal sequence of V consecutive
g-nodes is G, is equal to the probability that such a sequence
of length G exists and longer sequences do not exist: qG =
�G(1 − �G+1)(1 − �G+2)… . Let GV be the smallest value

of G for which
N
∑

i=G+1
qi < �. Note that GV is a function of

N , n, T , L, �, and V .
Bounding the runtime of FCG: We assume Wlog., that

all nodes start the correction phase at time zero; that the
alternating order of message-sending starts to the left (i.e.,
B ← C) then to the right (i.e., C → D); and that f = 1 and
therefore we will be looking at V = 5. To fulfill task 1, C
must receive notice from A. The worst-case for this is when
A is reset to send final messages by learning about f+1 = 2

other g-nodes right before it would send to C. The time for
C to learn about A is thus bounded by T1 ≤ (4(a+b)−3)O+
L+ 2O ≤ 4(GV − 3)O − 3O +L+ 2O = 4GVO +L− 13O.
The argument for E in the forward direction is similar but
starts one O earlier: T2 ≤ 4GVO+L−14O. To achieve task
3, D will reach C after at most (4c − 4)O+ (L+ 2O) and C
will send final messages towards A at least once every two
cycles, which will take at most 2(a + b)O. The total time
T3 = [(4c − 4)O +L+ 2O] + [2(a+ b)O] = 2(a+ b+ c)O +
2cO−4O+L+2O ≤ 2(GV −2)O+2(GV −4)O+L−2O =
4GVO + L − 14O. Task 4 is similar to task 3 except that
B starts backward messages one cycle later, thus, the worst
case is T4 = 4GVO + L − 13O.

The worst-case time is thus T1−4 = 4GVO+L−13O and
the approximated best T to complete FCG for f = 1 is

T FCGopt = argmin
T

(T + 4GVO + L − 13O) . (5)

While several values of T can produce the minimum, we
recommend to select the T that can withstand the largest
reduction in �.

Equation (5) is obviously a theoretical upper-bound. In
practice, it is very rare for FCG to take as long. To analyze
the accuracy of this upper bound, we simulated 106 runs of
FCG with L = O = 1 on N = n = 1, 024 nodes for various
values of T and measured the number of steps to complete
the correction phase. We ran this experiment 10 times and
in Figure 9 we plot (in dots) the maximum of all observed
latencies for each T . The figure also shows (in solid line) the
upper bound for the total time, resulting from Equation (5).
As before, we used � = 6.93 ⋅ 10−7 for our approximations.
While the upper-bound approximation is less accurate than
in CCG and OCG, it can be computed quickly and can be
used to find a good T .

●

● ●
●

●
● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

50

60

25 30 35 40 45
Gossip Time (T)

To
ta

l T
im

e

predicted upper limit

simulated

Figure 9: Failure-proof Corrected-Gossip evaluation

