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Abstract
Driven by ever increasing performance demands of compute-
intensive applications, supercomputing systems comprise
more and more nodes. This growth is a significant burden for
fast group communication primitives and also makes those
systems more susceptible to failures of individual nodes. In
this paper we present a two-phase fault-tolerant scheme for
group communication. Using broadcast as an example, we
provide a full-spectrum discussion of our approach— from
a formal analysis to LogP-based simulations to a message-
passing-based implementation running on a large cluster.
Ultimately, we are able to reduce the complex problem of
reliable and fault-tolerant collective group communication to
a graph theoretical renumbering problem. Both, simulations
and measurements, show our solution to achieve a latency
reduction of 50% with up to six times fewer messages sent
in comparison to existing schemes.
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1 Introduction
With the end of Dennard scaling, more parallel and dis-
tributed applications have to run on multiple nodes to satisfy
their ever increasing computational demands. Those appli-
cations often follow the bulk synchronous parallel (BSP)
execution model [43] and a typical trait of all BSP programs
is a periodic collective communication phase, in which all
processes of the program participate. Many BSP programs
build on a library implementing the Message Passing Inter-
face (MPI) standard [12]. However, MPI libraries are usually
not fault tolerant and therefore not able to complete a col-
lective operation correctly in case of any fault. Instead, the
whole application will either hang or crash. So the overall
system reliability decreases with the growing number of
processes involved in the computation.

Even though first exascale systems are expected to appear
as early as 2020 [37], many challenges, fault tolerance in
particular, still remain to be solved [6]. Technology offers
a multitude of partial solutions to address faults at various
levels of the hardware-software stack [39], often several
approaches need to be combined for maximum efficiency.
For example, a heavy-weight system-level checkpoint-restart
system [31] may create checkpoints less frequently [9], if the
running application employs a cheaper roll-forward recovery
for correcting at least some faults [15].

We propose Corrected Trees, a simple, yet efficient protocol
for fault-tolerant collective group communication. Corrected
Trees split the communication into two phases: dissemina-
tion and correction. Dissemination transfers the data as fast
as possible over a tree structure (parent sends to children).
Tree-based dissemination will, however, miss a large num-
ber of processes if any process close to the tree’s root fails.
Correction reorganises all nodes into a ring (neighbors send
to each other) and ensures that any process not reached by
dissemination is included in the collective. Using these two
basic phases, a variety of reliable MPI collectives can be built,
e. g., applying correction before dissemination allows to cre-
ate a reduction tree. In this paper, we focus on the broadcast
operation, for which dissemination is followed by correction.
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(b) Expected correction time for
64K processes with an in-order bi-
nomial tree and 1, 2, 5 failed pro-
cesses; whiskers show 10% and
90% quantiles, vertical line indi-
cates time for interleaved tree.

Figure 1. Impact of node failures on correction: comparison
of in-order and interleaved dissemination trees.

The mapping between a node’s position in the tree and
the ring influences the impact failures have on the time re-
quired for correction. For simplicity, we always use a linear
ring and reflect the different tree-to-ring mappings with the
tree structure. To highlight the importance of said struc-
ture, consider a binomial tree as implemented in the popular
Open MPI [13] library. This library structures the tree nodes
either in-order (Figure 1a, top) or interleaved (Figure 1a, bot-
tom). A failed process has different effects: For the in-order
tree, the resulting gap of unreached nodes is large and inef-
ficient for correction to cover, whereas an interleaved tree
creates smaller gaps. Figure 1b shows the expected length
of the correction phase for both numbering schemes in a
broadcast with 64K processes. Without faults, the correc-
tion phase would take 8 time steps. When faults do happen,
the expected correction time of an interleaved tree slightly
increases with a higher fault rate, but in this case does not ex-
ceed 10.5 time steps (vertical line). In contrast, the expected
correction time of an in-order tree grows with the absolute
number of faults and takes even longer for the larger trees.
Additionally, a single process failure close to the tree’s root
may result in correction taking orders of magnitude longer
than on average. This shows how node ordering is crucial
for scalability of a fault tolerant tree-base broadcast.
The contributions of this paper are the description and

analysis of the Corrected Tree-based broadcast protocol, a
simulator for LogP-like models with support for correction-
based collectives, and a prototype implementation of our
scheme. We also provide various optimizations of the cor-
rection algorithm and show that interleaving facilitates fast
correction. The resulting protocol (1) tolerates faults, (2) pro-
vides low overhead with and without faults, and (3) does
not impose unnecessary blocking. The simplicity of our ap-
proach is key: It enables an efficient practical implementation
and extensive evaluation of high-performance reliable broad-
casts. Our holistic study indicates substantial improvements
over competing algorithms, both in latency and number of
messages.

2 System Model for Evaluation
For the purpose of analysis, we use the following system
model. In a broadcast operation among P processes, the root
process propagates a message reliably to all other processes.
Without loss of generality we assume the root process to
have rank 0, other processes have ranks 1, . . . , P − 1. We
assume the message size to be small, meaning that it does
not impact latency and messages do not need segmentation.
The usual fault-agnostic way to implement reliable small-
message broadcast is by sending messages along the edges
of a tree [41]. We call processes colored after receiving the
broadcast message, and uncolored otherwise. The root pro-
cess is always said to be colored.

2.1 Failures
In the presence of failing processes, the goal of the broad-
cast is to guarantee information propagation from the root
process to every live process. Within a fault-agnostic setup
a failure of any non-leaf process in the tree results in all its
descendants remaining uncolored. For better comparability
with Corrected Gossip [17] we use the same fail-stop fault
model1: After a failure occurs, the failed process will neither
send nor process any messages. Messages sent to a failed
process thus have no effect, and, barring explicit acknowledg-
ments, the sender cannot tell whether the recipient is alive.
The root node is assumed to be alive, because it initiates the
broadcast. To facilitate analysis, we assume independence
of failures. Even though faults are rarely uncorrelated, in-
dependence can be achieved by numbering tree nodes in
a random manner. Alternatively, the ring used for correc-
tion can be structured in a way that nodes having correlated
failure probabilities stay far away from each other. Detailed
analysis of this problem is out of scope of this paper as is
the removal or reactivation of dead processes, which can be
solved independently [5, 36].
For the purpose of this paper, we consider only a single

execution of a broadcast operation. During this operation
every process is either dead or alive, i. e., a process either
sends all messages required by the protocol or none at all, but
failures can occur anywhere outside of the broadcast. With
failure-proof correction, full coloring can be guaranteed even
if processes fail during the broadcast [17].
In terms of reliability guarantees [1, p. 171] a reliable

broadcast has the following properties:
Integrity every broadcast received was previously sent,
No duplicates a process receives a broadcast message

at most once,
Non-faulty liveness a broadcast initiated by a live root

is either received by all live processes or by none,
Faulty liveness messages broadcast by faulty processes

are either received by all live processes or by none.

1Corrected Trees are likely to maintain their properties with other fault
models as well, but further analysis is required.
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Figure 2. Processes send messages to each other. Receiving
and sending partly overlaps for P1 and P2 failed.

For integrity, we enforce that an uncolored process becomes
colored only by receiving a message from a colored process.
To avoid duplicates for the user we ensure that a colored
process never becomes uncolored again and masks all sub-
sequent messages. Depending on the type of correction al-
gorithm that is used (see Section 3.1), non-faulty liveness is
guaranteed for a limited or unlimited number of faulty pro-
cesses. Faulty liveness is guaranteed due to failed processes
not sending correction messages. The broadcast protocol pre-
sented in this paper is focused on implementing non-faulty
liveness.

2.2 Communication Model
We base the description and analysis of all the algorithms
discussed in this paper on the LogP model [8] (see Figure 2),
which uses the parameters L, o, д, and P to formally describe
a system: The full system comprises P processes, any two of
which may communicate with a uniform maximum latency
of L over a reliable interconnect that neither loses nor re-
orders messages. The transmission of each message incurs a
processing overhead o on both the sending and the receiv-
ing sides. Processes can simultaneously send and receive
at most one message at a time. Send overhead can overlap
with receive overhead on the same process. The parameter
д determines the number of time steps between two con-
secutive send or receive operations on the same process. It
follows from the small message assumption that д ≤ o al-
ways holds and a process can process messages in direct
succession, meaning that we effectively ignore д. We assume
{o, L} ∈ Z+. Failed processes remain completely passive in
this scheme and messages addressed to them are simply
dropped. However, such erroneous communication is indis-
tinguishable from a successful one— sending always takes
time o for the sending process, the message propagates via
the network for L time steps and there is no feedback on
whether the receiver is alive. Similar assumptions are made
in Corrected Gossip [17].

3 Corrected Broadcast
In this section we describe Corrected Tree broadcast in its
various forms. After a short repetition of Corrected Gossip-
based broadcast, we introduce several kinds of trees and
discuss their implementation complexity and latency (due
to differences in height).

3.1 Revisiting Corrected Gossip Broadcast
Hoefler et al. [17] presented a fault-tolerant broadcast algo-
rithm comprising a gossip-based dissemination followed by
correction. The root sends the broadcast payload to a random
subset of other processes. When a new process is thus col-
ored, it starts sending messages as well. This dissemination
runs for a fixed period of time, after which all colored pro-
cesses enter the correction phase. The gossip phase attempts
to color as many processes as possible, but due to potential
failures and the random nature of gossip, the protocol cannot
guarantee that all live processes are actually colored.
The correction phase tries to color these remaining pro-

cesses. For correction, all processes are organized into a
virtual ring according to their ranks (0 to P − 1). Uncolored
processes create gaps, where the maximum gap size is the
length of the longest sequence of uncolored processes. All
colored processes send messages to their neighbors in the
ring. Processes that become colored during correction do
not send any messages. There are three interchangeable cor-
rection algorithms: opportunistic, checked, and failure-proof
with different trade-offs between overhead and reliability
as detailed below. The reliability properties of all correction
schemes have been proven, but to the best of our knowledge
there was no practical implementation of Corrected Gossip.
Opportunistic Correction All processes colored by gos-
sip send correction messages to a small set of neighbors:
Process r sends to processes {r + 1, r − 1, . . . , r + d, r − d},
where d is the correction distance. Any non-colored pro-
cess receiving a correction message becomes colored and
concludes the broadcast. This correction algorithm colors
all processes only if the maximum gap size does not exceed
2d . Due to the probabilistic nature of gossip there are no
absolute guarantees even in the failure-free case.
Checked Correction Each process colored in the gossip
phase starts sending messages to its left and right neighbors,
similar to opportunistic correction. A process stops sending
messages into a particular direction, once it receives a mes-
sage from this direction, from a process it had already sent a
message to. For example, if process 23 received the nearest
correction messages from processes 19 and 28, it continues
sending correction messages, until it finally sent to both 19
and 28. Overall, process 23 sends correction messages to pro-
cesses {22, 24, 21, 25, 20, 26, 19, 27, 28}. Like in opportunistic
correction, processes that get colored by correction do not
send any messages themselves. This algorithm ensures that
all live processes are colored, independently of the maximum
gap size, as long as no failures occur during the correction.
Failure-Proof Correction A generalization of checked
correction that guarantees each process to be colored even
in the presence of failures during correction. We refrain from
discussing this type of correction in detail due to its complex-
ity and high overhead. Please refer to Corrected Gossip [17]
for further details on any of the correction algorithms.
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Figure 3. Binary tree with in-order (left) and interleaved
(right) numbering of processes. Processes 4 and 2, respec-
tively, have failed, thus send no messages and leave their
child processes uncolored after the tree phase. Dashed ar-
rows highlight the chain used during the correction phase.

3.2 Interleaved Trees
Corrected Gossip is extremely robust against a high num-
ber of failures, but sends an excessive amount of messages.
We show how to achieve a comparable level of resilience
by reusing traditional fault-agnostic small-message broad-
cast protocols in combination with a correction phase. The
general scheme stays familiar: first try to color as many pro-
cesses as possible, then run a correction phase to ensure no
live process remains uncolored. In contrast to Corrected Gos-
sip, Corrected Tree-based broadcast requires correction only
to tolerate faults, because non-faulty liveness is guaranteed
in the fault-free case.
To ensure that correction can color uncolored processes

quickly, the maximum gap size ought to be small. A tree
maintaining such a property should have its subtrees spread
across the correction ring to avoid the danger of having
uncolored processes cluster together on the ring. For lower-
ing correction latency multiple small gaps are better than
few large ones. As we outlined in the introduction, an inter-
leaved ordering of tree processes is particularly well suited
for minimizing the maximum gap size. A binary in-order
tree (Figure 3, left) can be constructed by numbering the
processes in the order of depth-first traversal. A single fault
(process 4) will leave two consecutive processes uncolored
after the tree phase. The resulting gap has a size of 2. In
contrast, the interleaved ordering (Figure 3, right) ensures
that no process on level 2 shares a parent with its direct
neighbors on the ring, e. g., process 4 is a child of process 2,
and its direct neighbors 3 and 5 are children of process 1.
The failure of process 2 will thus result in two gaps of size 1.

To define interleaved trees formally, consider a tree Tf ,
where parent-child relationships between tree nodes reflect
sender-receiver relationships between processes. A tree Tf
has a corresponding ring Rf , where the nodes are ordered
according to the process ranks and the immediate neighbors
in the ordering are connected (the first and last node are also
connected). A subtree Ts of an interleaved tree Tf starts at
some node ofTf with all of its descendants. Nodes ofTs map
to a ring Rs , that preserves the original relative order of the
corresponding nodes in Rf . We use root(Tf ) to designate the
root node of Tf .

Definition 1. A treeTf is interleaved iff for any of its subtrees
Ts and a ring Rs comprising the nodes ofTs , any adjacent pair
of distinct nodes in Rs either descend from each other or their
only common ancestor is root(Ts ).

As an example, consider the right-hand tree from Figure 4
as Tf , and node 1 as the root of Ts , the adjacent pairs on the
ring Rs built from Ts are: (1, 3), (3, 5), (5, 7), (7, 1). Looking at
the full tree, we see that for example pairs (5, 6) or (6, 7) are
adjacent on the ring Rf , but descend from different children
of the root. This pattern holds for all subtrees and pairs,
hence the tree is interleaved.

In the remainder of this section, we describe how to con-
struct various interleaved trees. Although we focus on full
trees, our node numbering scheme maintains the interleav-
ing (and therefore the associated resilience properties) also
for incomplete trees.

3.2.1 k-ary Tree
We start with k-ary trees as they are widely used and have
the simplest interleaving scheme. Given the root process
at level 0, a full k-ary tree has kℓ processes at level ℓ, and
kℓ subtrees that have their root process at that level. The
processes in these subtrees can have a distance of kℓ in the
ring. Figure 3 shows an example of this tree for k = 2. In
general, process r has the child processes r ′:

{r ′ | r ′ = r + i · kℓ, 0 < i ≤ k, r ′ < P}

This interleaving ensures that a failing process on level ℓ
leads to every kℓ-th process being uncolored. Thus kℓ −

1 failures on level ℓ or below can be tolerated, and still every
kℓ-th process will be colored after the dissemination.

As an example, assume process 2 of the right-hand tree
in Figure 3 failed. Its children (4 and 6) will not be colored
during the dissemination. Note that these have a distance of
2 = k1 on the ring because the failed process 2 (the root of
the uncolored subtree) is at level 1. The maximum gap size
is 1 and every second process on the ring is colored. With
k − 1 failed processes at least every k-th process is colored
after the dissemination. Thus opportunistic correction with
k − 1 messages sent per process is guaranteed to color all
processes as long as there are less than k failures. No such
guarantee can be given for k or more failures, because in the
(very unlikely) worst case all children of the root process can
fail. The expected size of uncolored gaps grows slowly with
the number of failures (see Section 4.3).

3.2.2 Binomial and Lamé Trees
For describing binomial trees and their interleaving we find
it helpful to use a notation proposed by Takaoka [40]. Specif-
ically, Takaoka defines a linking operation “•” for trees Ta =
Tb •Tc , whereTa is created by linking the root ofTc as a child
to the root ofTb . Consequently, the number of processes |Ta |
in tree Ta is the sum of |Tb | and |Tc |.
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Figure 4. Binomial tree of level 3 with in-order (left) and
interleaved (right) numbering of processes. Different boxes
highlight the recursive construction from (sub) trees of level 2
and 1 respectively.

Figure 4 shows a binomial tree of height 3. The tree is
created by linking the roots of the two trees of height 2, or in
Takaoka notation:T3 = T2•T2. TreeT2, in turn, is represented
as T2 = T1 • T1. Here we use Tt for a full binomial tree of
height t . Binomial trees are widely used for small message
broadcast [23, 41]. A generalization of binomial trees we call
Lamé trees2. A Lamé tree of order k is defined as

Tt = Tt−1 •Tt−k

Withk = 1 the tree is binomial; in Section 3.2.3 we describe
how a Lamé tree can be optimal. As a boundary condition
we maintain thatTt with t < 0 contains a single process. We
build an interleaved tree iteratively. Starting from iteration
t = 0 with one process that is ready to send, each process
ready to send gets assigned a child. Processes created at an
iteration t become ready to send, i. e., can create children, at
iteration t + k . The number of processes ready to send R(t)
is defined as

R(t) =


0 if t < 0,
1 if 0 ≤ t < k,

R(t − 1) + R(t − k) if t ≥ k .

(1)

Before t = k only the root can send messages. At iteration
i = k , the second process can start sending itself. In general,
at iteration t , there are R(k − 1) processes, that have just
finished their last send and can start a new one, in addition
to R(i − k) processes that just finished receiving messages.
To make the tree interleaved, new processes get ranks

assigned in succession. At a given iteration, the children of
the processes with lower ranks are considered to be created
first. After t − 1 iterations a tree can color R(t + k − 1) pro-
cesses, then at iteration t the root will create a child with
rank R(t + k − 1) and the remaining R(t) − 1 ready-to-send
processes create children with subsequent ranks. In overall,
the children are computed as follows:

{r ′ | r ′ = r + R(i + k − 1), i ≥ s ′,R(s ′) > r , r ′ < P} (2)

2Lamé’s sequence is one generalization of the Fibonacci sequence [38], so
Hoefler and Moor [19] refer to these trees as Fibonacci trees.
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Figure 5. Timeline of a Lamé tree, k = 3, P = 9. L = o = 1
chosen to make the tree optimal for this model.

Each process r sends messages to processes r ′, where r ′
is a sum of the process rank and some ready to send number
starting from s ′. Here s ′ is the smallest iteration when rank
r is bigger than some ready-to-send number, i. e., the first
iteration when r can send. Simplifying R(i) for a binomial
tree, the children are computed as follows:

{r ′ | r ′ = r + 2i , i ≥ s ′, 2s
′

> r , r ′ < P}

Lemma 1. A tree constructed by Equation (2) is interleaved.

Proof. The Proof goes by induction.
Base. A tree with a single node is interleaved.
Step. Consider a treeTl+1, constructed from an interleaved

tree Tl . For that, nodes {p | 0 ≤ p < R(l − k + 1)} acquire
nodes {c | R(l) ≤ c < R(l + 1)} as their children.
Now, consider all possible pairs of nodes in Tl+1. Nodes

{0 ≤ i, j < R(l)} do not have a pair that would violate
conditions for an interleaving tree, because Tl is interleaved.
Nodes {R(l) ≤ i, j < R(l + 1)} do not have a pair that would
violate conditions for an interleaving tree, because any pair
(i, j) has nodes with different parents. Nodes i and j preserve
the same relative order on a ring as their parents. The rule
holds for any possible subtree Ts that includes both i and j.
No pair of nodes {(i, j) | 0 ≤ i < R(l),R(l) ≤ j < R(l + 1)}
violates conditions for an interleaving tree, because i is either
ancestor of j; or the only common ancestor of i and j is
root(Ts ) (like for a pair of i and the parent of j). No other
pair exists, thus Tl+1 is also interleaved. □

An example of a Lamé tree is given in Figure 5. At each
iteration i process 0 sends a message to processes with ranks
R(i + 2). Process 1 sends for the first time at iteration 3,
as the smallest iteration when R(s ′) > 1 is s ′ = 3. Then
process 2 can send at iteration 4, since R(4) = 3 and so on.
If L = o = 1, this particular instance guarantees minimal
latency. If network parameters change, the tree structure
stays the same, though the protocol stops being latency-
optimal.
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3.2.3 Optimal Tree
Knowing exact timings of events allows to create a tree
topology that is optimal with regard to latency [8, 26]. A
Lamé tree can constitute an optimal communication topology
when 2o + L = k (see Figure 5). If, for example, the latency is
higher than expected for a given Lamé tree, processes deeper
in the tree will be delayed. As a result many processes will
either wait until the delayed processes can start correction
or start correction early (see Section 3.3).

We can improve the total latency if all processes stop com-
munication approximately at the same time: Processes that
start sending early send out more messages and no process
sends more than one message after the last message of any
other process. With the exact timings of the network model,
it is possible to build an optimal communication graph [26]
that ensures minimum latency.
Building an optimal communication tree Tt is similar to

Lamé. Consider a subtree Tt−2o−L rooted at the recipient of
the first message and a subtree Tt−o that is a complement of
Tt−2o−L in Tt . Then Tt is defined as:

Tt = Tt−o •Tt−2o−L

Here Tt represents an optimal tree using t time steps to
send out messages. The first message ofTt−2o−L starts exactly
o + L time steps later than Tt−o , ensuring both trees finish
simultaneously. Analogous to Equation (1), ready to send
R(t) is defined as

R(t) =


0 if t < 0,
1 if 0 ≤ t < 2o + L,
R(t − o) + R(t − 2o − L) if t ≥ 2o + L.

For an interleaved ordering, the children of r are deter-
mined similarly to Equation (2):

{r ′ | r ′ = r + R(i + o + L), i ≥ s ′,R(s ′) > r , r ′ < P}

3.3 Correction with Trees
A correction phase follows the dissemination phase and is
independent of the tree type. The correction phase ensures
coloring of the processes that the dissemination phase left
uncolored due to failures. All three correction algorithms
presented in Corrected Gossip [17] and summarized in Sec-
tion 3.1 are directly applicable.
Synchronized and Overlapped Correction The correc-
tion phase of Corrected Gossip starts at a pre-specified mo-
ment in time simultaneously on all processes. We call this
mode of correction synchronized. The correction is over-
lapped, if a process running Corrected Tree-based broadcast,
starts correction immediately after the dissemination phase.
With overlapped correction, a correction message is early if
a process is reached by the correction message, before a tree
message. After receiving an early correction, a process still

sends tree messages to its children. Early correction mes-
sages from opportunistic correction decrease latency. For
checked correction, our experiments (omitted due to space
constraints) have shown that early correction can both in-
crease or decrease the latency. The latency may increase, if
processes receiving early correction do not participate in the
correction phase themselves, meaning that the processes par-
ticipating in the correction phase are stopped later. The exact
behavior is very sensitive to concrete timing characteristics,
network model parameters, and tree type.
Optimized Opportunistic Correction Overlapping op-
portunistic correction from Corrected Gossip is straightfor-
ward to reuse: A process sends d correction messages in each
direction on the ring immediately after sending tree mes-
sages. Tree-based dissemination allows a simple optimiza-
tion of opportunistic correction that preserves non-faulty
liveness. Given processes i and j, such that j − d < i < j,
assume i receives a message from j. Process i can be sure
that j also covers processes j − d, . . . , i + d with correction
messages. Now, i has to send correction messages only to
processes i − d, . . . , j − d − 1. For example, process 19 re-
ceives a correction message from process 23. With d = 8, 23
surely sends messages to processes 22, . . . , 15, so 19 has to
send only to processes 14, . . . , 11. For the rest of the paper
Corrected Trees use optimized opportunistic correction.
Delayed Correction Guaranteed full process coloring in
the fault-free case with tree-based dissemination enables an
additional optimization, that minimizes the number of mes-
sages. For that, a node participating in the correction waits
out a delay after sending the first correction message to the
left. After a delay, a process expects to receive a correction
message from the right. If no message has been received, the
process starts sending messages to the right until a message
from the right eventually arrives. If a process colored by
dissemination receives a message from the left, it immedi-
ately replies to stop the sender. The delay should be short
enough, so that a process must not suspect a neighbor to be
faulty, if a correction message is missing. As result, the delay
does not introduce a failure detector, although non-faulty
liveness and termination are still guaranteed. The reduced
overhead in the fault-free case comes at the cost of a higher
latency when a failure does occur or when a live process
sends a correction message too late. We do not evaluate de-
layed correction further, because the appropriate delay is
application-specific.

4 Evaluation and Analysis
In this section we evaluate the performance of the Corrected
Tree-based broadcast. We look at the two most important
performance metrics: latency and network load. We define
coloring latency as an interval between the time when the
root starts sending the first message and the last process
becomes colored. We also define quiescence latency as an
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Figure 6. Average number of messages per process. Oppor-
tunistic Corrected Gossip sends more messages to color all
the processes. A traditional tree-based broadcast first sends
the payload (solid line), then it sends an acknowledgment in
a second message (dashed line). Corrected Trees send fewer
messages than gossip and still color all the processes reliably.

interval between the moment when the root starts sending
the first message and the moment when all activity related
to the broadcast operation is over. We measure network load
by the number of messages sent.

For experiments, we developed a discrete event simulator3

to study collective operations with LogP-like models and
an MPI-based implementation to evaluate the algorithms
on a real system. Two main features of the simulator are
the possibility to model faults and run collectives with a dy-
namically changing communication graph (used for checked
correction). All our simulations are fully reproducible as we
keep the random generator seed of every experiment. We ex-
perimented with around 50 different broadcast variants and
various model parameters, but here we show only the subset
we deemed to be representative. Unless specified otherwise,
we model the following system parameters. For LogP, we
use L = 2,o = 1, which corresponds to the range of LogP
parameters measured on real systems [18, 28, 34]. For the
Lamé tree, we chose k = 2. These parameters result in a
tree structure in-between a binomial and an optimal tree.
Opportunistic correction will send up to 4 messages in each
direction.
Section 4.1 discusses corrected tree- and gossip-based

broadcast in the failure-free case. In Section 4.2 we focus
on the correction phase. Section 4.3 compares how perfor-
mance changes for Corrected Tree and Gossip-based broad-
cast when some processes fail. Section 4.4 presents the results
of our MPI implementation.

4.1 Failure-Free Operation
Figure 6 shows the average number of messages a process
sends during a broadcast. We present each tree from Sec-
tion 3.2 with synchronized checked correction and optimized
3https://github.com/TUD-OS/flogsim
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Figure 7. Quiescence latency in fault-free case. Gray ribbon
shows 5% and 95% percentiles for checked Corrected Gossip.
Solid lines stand for trees with acknowledgments. Dashed
lines represent Corrected Tree-based broadcast.

overlapped opportunistic correction. Additionally, we show
checked and opportunistic Corrected Gossip. We picked the
smallest gossiping time for opportunistic Corrected Gossip
where we observed no uncolored processes in 105 simula-
tions with 64K processes. For checked Corrected Gossip
we optimized gossiping time for the lowest latency. For the
trees, average number of message does not depend on the
number of processes. Corrected Trees require significantly
less messages for correction than Corrected Gossip. Oppor-
tunistic Correction allows Corrected Tree-based broadcast
to save even more on messages in exchange for lower re-
liability guarantees. The dashed line at two messages per
process represents a broadcast with acknowledgments or op-
portunistic Correction with only one correction message in
one direction. Despite stochastic nature of Corrected Gossip,
variation in the average number of messages was negligible,
given a concrete number of processes. Optimized opportunis-
tic correction sends at most as many messages as checked
correction. If some tree processes finish earlier, the average
number of messages decreases further, but the effect of op-
timization reduces with smaller correction radius d . With
synchronized checked correction, all trees exhibit the same
behavior and since there are no faulty processes, each of them
sends 5 correction messages (more detail in Section 4.2).
Figure 7 shows the quiescence latency of each broadcast

operation, depending on the number of participating pro-
cesses. We omit 4-ary tree (its latency lies between the bi-
nomial and Lamé) and opportunistic Corrected Gossip (it is
generally slower than checked Corrected Gossip and does
not guarantee full coloring) for readability. For each process
count, we empirically found gossiping time with a minimum
average latency in the fault-free case. The latency of a tree-
based broadcast is exact, but the latency of a gossip-based
broadcast shows small statistical variation even in the failure-
free case. Independent of tree type, checked correction lasts
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8 time steps. Gossip shows low latency, as it sends more mes-
sages and keeps significantly more processes busy during the
dissemination, whereas processes relying on trees mostly
send few messages before becoming silent until a correc-
tion phase. Consider an example when dissemination lasts
30 time steps; each non-leaf process in a 4-ary tree sends at
most 4 messages. At the same time, gossiping processes will
send 30− tc ≫ 4 messages during the same period, where tc
is the time when a process was colored by a gossip message.
Still, in a later stage of dissemination, gossip suffers from re-
dundancy by sending messages to already colored processes.
As Section 3.3 mentions, opportunistic correction may speed
up coloring and a binomial tree benefits the most. Acknowl-
edgments is a traditional approach for fault tolerance (used
among others, by Buntinas [5]) are sent along the same tree
as for dissemination. A process sends an acknowledgment
to the parent after receiving all acknowledgments from the
immediate children.

4.2 Correction Phase
Choice of a specific correction type creates a trade-off be-
tween overhead and resilience guarantees. Synchronized
checked correction guarantees full coloring independent
of the number of failures happening before the correction
phase [17]. Optimized opportunistic correction, as shown in
Section 4.1, requires less messages than checked and does
not depend on precise timing.

Lemma 2. In the failure-free case the quiescence latency of
synchronized checked correction LFFSCC is

LFFSCC = 4o + L +
⌊
L

o

⌋
· o

Proof. A process stops sending messages when it receives a
message from each direction on the ring. If processes send
the first message to the left, then the message to the right
is sent after o time steps. Each process receives the second
message after o + 2o + L time steps. A process sends the last
message at time no, where no ≤ 3o + L < (n + 1)o, and after
additional L+o time steps, themessage is finally received. □

Corollary 1. In the fault-free case the number of messages
sent per process in synchronized checked correctionMSCC is

MSCC = 3 +
⌊
L

o

⌋
When some processes fail, live processes may stay un-

colored after dissemination. Then the quiescence latency is
limited by the maximum gap size дmax.

Lemma 3. Given the presence of failed processes and дmax
(assuming P ≫ дmax), the quiescence latency of a synchronized
checked correction LSCC is bounded as follows

LFFSCC + дmax · o ≤ LSCC ≤ LFFSCC + (2дmax + 1) · o
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Figure 8. Average quiescence latency grows with fault rate
(whiskers show 5% and 95% percentiles)

With failures, the total number of messages depends on
the number of gaps (not size): given дmax, the more gaps
there are, the fewer messages are sent. With an overlapped
correction, the quiescence latency depends additionally on
the latency of the dissemination phase. Opportunistic cor-
rection guarantees full node coloring, if the number of faults
is small enough not to disconnect the root from its children.
For example, in a k-ary tree opportunistic correction with
d ≥ k is guaranteed to tolerate at least up to k − 1 failures.

4.3 Resilience
In this section we explore resilience of corrected broadcast
to process failures. We ran fault injection experiments in
the simulator. After deciding on the fraction of failed pro-
cesses (0.01%–4%), we randomly select a list of processes to
be marked as “failed” and are not allowed to send messages.
Other processes were running the communication protocol
without rising any suspicion about the failed ones. We sim-
ulated 105 broadcasts of every type on 64K processes. We
picked large fault rates (≥ 1%), because the impact of failures
at small fault rates is negligible.
Latency In Figure 8 we show how the quiescence latency
changes as more and more processes are going down. The av-
erage latency of all Corrected Tree-based broadcast schemes
degrades proportionally by 12–14% from 0.01% to 4% fault
rate. With the same change of fault rates, latency of Cor-
rected Gossip degrades only by 4%. At the same time differ-
ent trees behave differently with regard to latency variation
with increased fault rates: the standard deviation of the aver-
age latency is 17 times higher at 4% fault rate than at 0.01%
for a binomial tree and only 10 times higher for the optimal
one. The difference appears because slower trees have larger
height and lower average fan-out at the same process count.
This means that starting from the children of the root, non-
leaf processes in slower trees are ancestors to more processes
in comparison to an optimal tree. Failure of a process with
more ancestors may create a higher impact on the state after
dissemination.
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Figure 9. Average number of messages goes down with
higher fault rate (whiskers show 5% and 95% percentiles)

Both mean latency and latency variation of Corrected
Gossip-based broadcast change very little in comparison to
tree-based broadcast, proving high stability of gossip even
in the presence of failures. We observed that even for higher
error rates (≈ 10%), latency of gossip-based broadcast could
be even less than for an optimal tree, because gossip has
the freedom to increase gossiping time to compensate for
a higher process failure rate. We think this scenario is less
realistic, as with such a high fraction of failed processes, the
latency surely is not the biggest concern.
Messages The real difference between tree and gossip-
based broadcast appears in the number of messages each of
these broadcast operations creates. Again, a small number of
faults has very little impact on the number of messages (Fig-
ure 9) in comparison to the fault-free case. With more faults,
the number of messages drops for all types of collectives,
and the variation in messages per process grows, but Cor-
rected Tree-based broadcast still maintains a significantly
lower number of messages than Corrected Gossip. A drop in
network activity is rather an unintended side effect of the
lower number of colored processes after dissemination and
of the fact that only processes colored during dissemination
participate in correction.
Checked Correction For a broadcast with checked cor-
rection, dissemination time stays constant and correction
time is the variable part of the overall quiescence latency.
We decided to look into the correction phase of a tree-based
broadcast in more detail. In Figure 10 we marked all unique
pairs (дmax, LSCC ) we observed across two million simula-
tions for all combinations of tree types and fault rates. Fig-
ure 10 present distribution of gap sizes observed in simu-
lations from Section 4.3. Each point represents at least one
simulation. Most large gaps happened only for binomial trees
(red crosses), confirming the observation that binomial trees
have a tendency to degrade more with an increased failure
rate. Still, the disadvantages of binomial trees are marginal:
at lower and more realistic fault rates дmax and correction
time stay low (see Table 1) for all trees. Upper and lower
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Figure 10. Simulations agree with analysis on the relation
between дmax and correction time

F (%) дmax (Percentile) LSCC (Percentile)
99% 99.9% max 99% 99.9% max

0.01 1 2 3 10 12 14
0.1 2 3 6 12 13 16
1 5 7 19 16 19 32
2 8 11 35 19 24 56
4 13 20 55 26 34 86

Table 1. Cost of correction under faults aggregated for all
tree types (with no faults дmax = 0 and LSCC = 8)

bounds from Section 4.2 surround the data points obtained
from simulation tightly, showing that simulation and anal-
ysis agree in this aspect and the maximum gap size is an
adequate proxy for correction latency. The density of points
is much lower for дmax greater than 20, because with inter-
leaved trees, the probability of having a big дmax is extremely
low. In fact, only less than 1% of all simulations ended up
having a maximum gap size greater than 10, with the vast
majority of these gaps coming from 4% fault rate.
Opportunistic Correction With less than 1% of failed
processes, Corrected Trees with opportunistic correction
colored all the processes and was indistinguishable in la-
tency and the number of messages from the failure-free case.
A single unreached process appeared approximately every
105 simulations with 1% of failed processes, two with 2%
failed processes and three with 4% failed processes. The to-
tal number of not fully coloring broadcast operations was
around 2, 600 out of two million simulations. More than 90%
of the simulations with uncolored processes came at 4% fail-
ure rate leaving a single uncolored process.

4.4 MPI-Based Implementation
We created a prototype implementation4 of Corrected Trees
and Corrected Gossip to run it on a petascale supercomputer.
For simplicity, we implemented only optimized overlapped

4https://github.com/TUD-OS/dying-tree
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Figure 11. Broadcast median latency. Our implementation is
very similar in performance to Cray’s implementation with
shared memory disabled.

opportunistic correction that is always sending messages
in a single direction. Faults were emulated as crash failures
and deadlocks without noticeable differences between the
two. As our prototype only features a fault-tolerant broad-
cast implementation at this point, we applied a wrapper
that hides the “failed” processes from any other collective
operation used by the benchmarks. Processes “failed” dur-
ing benchmark initialization and stayed as such during the
whole benchmark run.

We used the MPI broadcast benchmark from version 5.4.1
of the OSU benchmark suite [29]. This benchmark repeatedly
executes MPI_Bcast and measures its runtime across all the
processes of the application. To reduce the impact of system
noise, we ran each test configuration 10 times. We ran the ex-
periments at different node counts and, to not leave reserved
resources idle, within several allocations. As a consequence,
measurements at varying process counts were subject to
different network background noise from the workloads of
other users. Variation within an allocation turned out to be
mostly small.

We ran the experiments on “Piz Daint”5, a petascale super-
computer that comprises Cray XC40 racks and Cray Aries
Dragonfly network. A rack has up to 384 two-socket, 18-core,
hyperthreading-enabled compute nodes with 64GiB of RAM.
In total, we used up to 512 nodes with 72 MPI processes
each. Because only Cray MPI, a proprietary modification of
MPICH [14], was available, we implemented the prototype
on top of MPI.

First, we validated our prototype implementation against
the binomial broadcast implementation provided by Cray.
Cray MPI uses shared memory for node local communica-
tion by default, so for a more comparable evaluation we
also show line for Cray MPI without shared memory. Fig-
ure 11 shows the median of the average broadcast latency
in the fault-free case; ribbons show the range between 25-th

5https://www.cscs.ch/computers/piz-daint/
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Figure 12. Broadcast median latency. Binomial trees outper-
form Lamé trees and faults have a negligible effect on the
latency.

and 75-th percentiles of average latency. Indeed, our imple-
mentation shows comparable performance, especially up
to 128 nodes. The lower scalability is caused by the higher
complexity of our code, as it is generic and also used for
Lamé trees and Corrected Gossip. Corrected Gossip we im-
plemented by fixing the number of rounds the gossip phase
lasts, instead of setting a wall clock time limit. The latter
would be problematic due to limited clock synchronisation
precision. Each message carries the current gossip round,
which gets incremented each time a message is sent. When a
node receives a message with the gossip round equal to the
predefined limit, it enters the correction phase. To save on
expensive communication channel establishment, we set up
(random) communication partners for each node once during
initialization. Fixing the number of correction messages to
four, we empirically selected a number of gossip rounds that
resulted in the lowest latency. Nevertheless, the performance
of Corrected Gossip turned out to be consistently worse than
trees. We presume the reason for that is the complex and
irregular communication pattern of Gossip.

For the second set of experiments (see Figure 12), we stud-
ied variations of Corrected Trees, having our implementation
of the binomial broadcast without correction as a baseline.
Again, we saw significant variation between different pro-
cess counts 6, because of running in different allocations. Still,
relative performance of different methods stayed consistent.
In contrast to the simulations but in accordance with anec-
dotal experience of others we saw almost no performance
improvement from Lamé trees (we experimented with vari-
ous values for the parameter k). Overall, a single correction
message introduced slight performance overhead and the
second one added even more, but granted fault tolerance in
return. For a binomial tree sending two correction messages
we additionally emulated failures of 72 randomly chosen
processes and saw no change in the latency.

6Note that this time our binomial tree implementation is almost twice as
fast as in the previous figure.
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5 Related Work
We target our algorithm at the high performance computing
domain where fault tolerant communication still remains an
underexplored topic. Whereas the current MPI standard does
not provide fault-tolerance capabilities whatsoever, the next
version is expected to. ULFM [3, 4], one of the most promi-
nent proposals, includes fault tolerant collective operations.
The standard will only specify the high-level interface/se-
mantics though and actual implementations will require
fault-tolerant algorithms. Hursey and Graham considered
various collective operations in general, and evaluated a
fault-tolerant broadcast that, in contrast to our work, relies
on a fault detector [22].
Using unreliable communication [44] or gossip [2] for

reliable broadcast was already known and even used to im-
plement atomic broadcast [10]. Unfortunately, the guaran-
tees provided by these protocols are often only probabilistic.
Hoefler et al. proposed the use of correction to transform an
unreliable hardware multicast into a reliable broadcast [21].
Corrected Gossip [17] combined correction and gossip in
two strictly separate phases to build a reliable broadcast. We
build on this work, replacing the non-deterministic gossip
algorithm with various deterministic trees, improving the
overall efficiency of the reliable broadcast. We provide an
analysis and evaluation of our algorithm, assuming reliable
point-to-point communication, as provided by TCP or Infini-
Band [33].
Other reliable broadcast and multicast protocols rely on

fault detection combined with tree restructuring [2, 5, 11,
16, 25, 30, 32, 35]. Fault detection is implemented via ex-
plicit (positive or negative) acknowledgments to the parent
process. Such broadcasts achieve reliability by effectively
traversing the communication tree down and up. Even in
the fault-free case the tree has to be traversed twice, effec-
tively doubling the latency in comparison to a non-resilient
algorithm. In contrast, we built redundancy into the commu-
nication topology to tolerate faults pro-actively and without
the need for acknowledgments.

Multi-tree approaches [7, 24] disseminate information con-
currently over several trees, such that non-leaf nodes of dif-
ferent trees do not map to the same processes. To tolerate
multiple faults, multi-trees rely on trees with higher fan-
out. As a consequence, optimizing the tree structure for low
latency often becomes impossible.
We implemented a simulator that is in principle similar

to LogGOPSim [20]. We decided for a custom simulator be-
cause the existing one can simulate only static communi-
cation, where all messages sent and received have to be
known a priori. However, dynamic communication is neces-
sary to simulate gossip and checked correction. Additionally,
LogGOPSim does not have fault injection capabilities and
misses some additional configuration parameters for its sys-
tem model.

6 Conclusion
We introduced Corrected Trees as a simple, yet powerful
idea that allows to build a low-latency reliable broadcast that
comprises two separate phases: An unreliable dissemination
phase efficiently spreads the information in the network and
is followed by a reliable correction that ensures all processes
are reached. Unlike similar probabilistic algorithms [17, 27],
Corrected Trees feature a stable communication pattern that
can be tuned to the topology of the underlying network [42].

In our analysis, simulation, and evaluation we found that
Corrected Trees provide reliable low latency broadcast. Un-
like other approaches, we avoid costly requirements such
as the need for a failure detector or establishing (often su-
perfluous) global knowledge of failed processes. Based on a
tree numbering scheme at their core, Corrected Trees can
be used to implement other collective communication primi-
tives as well. As an additional method to reduce system noise,
fault tolerant collectives are important for allowing future
latency-sensitive applications to efficiently run on exascale
high-performance computing systems.
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