
DARE: High-Performance State Machine Replication on
RDMA Networks

Marius Poke
Department of Computer Science

ETH Zurich
marius.poke@inf.ethz.ch

Torsten Hoefler
Department of Computer Science

ETH Zurich
htor@inf.ethz.ch

ABSTRACT
The increasing amount of data that needs to be collected
and analyzed requires large-scale datacenter architectures
that are naturally more susceptible to faults of single com-
ponents. One way to offer consistent services on such unre-
liable systems are replicated state machines (RSMs). Yet,
traditional RSM protocols cannot deliver the needed latency
and request rates for future large-scale systems. In this pa-
per, we propose a new set of protocols based on Remote
Direct Memory Access (RDMA) primitives. To asses these
mechanisms, we use a strongly consistent key-value store;
the evaluation shows that our simple protocols improve RSM
performance by more than an order of magnitude. Further-
more, we show that RDMA introduces various new options,
such as log access management. Our protocols enable op-
erators to fully utilize the new capabilities of the quickly
growing number of RDMA-capable datacenter networks.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes;
Fault tolerance

Keywords
Replicated State Machine; RDMA; Performance; Reliability

1. INTRODUCTION
The rapid growth of global data-analytics and web-services

requires scaling single logical services to thousands of phys-
ical machines. Given the constant mean time between fail-
ures per server (≈2 years in modern datacenters [39]) the
probability of a single-server failure grows dramatically; for
example, a system with 1,000 servers would fail more than
once a day if a single server failure causes a global system
outage.

Replicated state machines (RSMs) prevent such global
outages and can hide server failures while ensuring strong
consistency of the overall system. RSMs are often at the
core of global-scale services (e.g., in Google’s Spanner [9]

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
HPDC’15, June 15–19, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3550-8/15/06 ...$15.00.
http://dx.doi.org/10.1145/2749246.2749267.

or Yahoo!’s Zookeeper [20]). However, typical RSM request
rates are orders of magnitude lower than the request rates
of the overall systems. Thus, highly scalable systems typi-
cally utilize RSMs only for management tasks and improve
overall performance by relaxing request ordering [11] which
implicitly shifts the burden of consistency management to
the application layer. Yet, many services, such as airline
reservation systems, require a consistent view of the com-
plete distributed database at very high request rates [41].

To ensure strong consistency, RSMs usually rely on
a distinguished server—the leader—to order incoming re-
quests [20, 29, 35]. Moreover, before answering a request,
the leader must replicate the enclosed state machine update
on the remote servers; thus, efficient replication is critical
for high performance. Existing TCP or UDP-based RSMs
perform these remote updates through messages; thus, the
CPUs of the remote servers are unnecessarily involved into
the replication process. A more fitting approach is to use
remote direct memory access (RDMA): RDMA allows the
leader to directly access the memory of the remote servers
without involving their CPUs. The benefit of bypassing the
remote CPUs is twofold: (1) the synchronization between
the leader and the remote servers is reduced; and (2) while
the leader handles requests, the remote servers can perform
other operations, such as tacking checkpoints.

In this work, we utilize RDMA networking to push the
limits of reliable high-performance RSM implementations by
more than an order of magnitude. High-performance RDMA
network architectures such as InfiniBand or RDMA over
Converged Ethernet (RoCE) are quickly adopted in data-
center networking due to their relatively low cost and high
performance. However, to exploit the whole potential of
RDMA-capable networks, new algorithms need to be care-
fully designed for remote memory access. Indeed, simply em-
ulating messages over RDMA (e.g., using the IPoIB proto-
col) leaves most of the performance potential untapped [16].
Our main contribution is a set of protocols for implement-
ing high-performance RSMs by using RDMA techniques in
unconventional ways.

We design a novel wait-free direct access protocol, called
DARE (Direct Access REplication), that uses RDMA fea-
tures such as QP disconnect (§ 3.2.1) and QP timeouts (§ 3.4,
§ 4), in atypical ways to ensure highest performance and re-
liability. For performance, DARE replicates state machine
updates entirely through RDMA (§ 3.3.1); also, it proposes
efficient RDMA algorithms for leader election and failure de-
tection. For reliability, DARE builds on a detailed failure-
model for RDMA networks that considers CPU, NIC, net-

work, and memory failures separately (§ 5). Our implemen-
tation of DARE improves the latency compared to existing
RSM protocols by up to 35 times and continues operation
after a leader failure in less than 35ms.

In summary, our work makes the following contributions:

• a complete RDMA RSM protocol and open-source ref-
erence implementation using InfiniBand (§ 3);

• an RDMA performance model of DARE in a failure-
free scenario (§ 3.3.3);

• a failure model for RDMA systems in which we analyze
both the availability and reliability of DARE (§ 5);

• a detailed performance analysis showing that our pro-
tocol has between 22 and 35 times lower latency than
existing approaches (§ 6);

• a demonstration how DARE can be used to implement
a strongly-consistent key-value store (§ 6).

2. BACKGROUND
Replicated state machines (RSMs) [40] provide reliable

distributed services [24]. They replicate a (potentially in-
finite) state machine (SM), such as a key-value store, over a
group of servers. A server consists of one or more processors
that share the same volatile memory; also, it acts as an end-
point in the system’s interconnection network. The servers
update their SM replicas by applying RSM operations. Usu-
ally, they store the RSM operations into buffers—the local
logs. Then, they apply each operation in order. For con-
sistency, the logs must contain the same sequence of opera-
tions. Thus, the servers must agree on each RSM operation’s
position in the log; that is, they need to reach consensus.

2.1 Consensus
We consider a group of P servers out of which at most

f are faulty. We assume a fail-stop model: A faulty server
operates correctly until it fails and once it fails, it can no
longer influence the operation of other servers in the group.
A server that did not fail is called non-faulty.

In the consensus problem, each server has an input and
an initially unset output. The servers propose their inputs;
then, they irreversibly decide upon a value for the outputs
such that three conditions are satisfied—agreement, validity
and termination. Agreement requires any two non-faulty
servers to decide the same; validity requires that if all the
inputs are the same the value decided upon is the common
input; and termination requires that any non-faulty server
decides. The three conditions ensure the main properties of
consensus: safety and liveness [26]. Safety is provided by
agreement and validity; liveness is provided by termination.
Also, it is common for consensus protocols to adopt a leader-
based approach [20, 26, 29, 35]. Leader-based consensus pro-
tocols delegate the proposal and decision to a distinguished
leader. The leader can both propose and decide upon values
until the other servers decide to elect a new leader (§ 3.2).

The impossibility result of Fischer, Lynch, and Paterson,
states that liveness cannot be ensured in an asynchronous
model where servers can fail [14]. To overcome this result, we
augment a synchronous model by a failure detector (FD)—a
distributed oracle that provides (possible incorrect) informa-
tion about faulty servers [6]. In particular, we use a �P FD,
which satisfies both strong completeness and eventual strong

RDMA/rd RDMA/wr UD
op = 0.07µs inline inline
o [µs] 0.29 0.26 0.36 0.62 0.47
L [µs] 1.38 1.61 0.93 0.85 0.54
G [µs/KB] 0.75 0.76 2.21 0.77 1.92
Gm [µs/KB] 0.26 0.25 - - -

Table 1: LogGP parameters on our system.

accuracy. Strong completeness requires that eventually ev-
ery faulty server is suspected to have failed by every non-
faulty server. Eventual strong accuracy requires that even-
tually every non-faulty server is trusted by every non-faulty
server. A �P FD guarantees the termination of leader-based
consensus only if a majority of the servers are non-faulty [6].
Therefore, for the remainder of the paper, we consider a
group of P servers, out of which up to f =

⌊
P−1
2

⌋
can fail.

2.2 RDMA overview
Remote Direct Memory Access is an interface that allows

servers to access memory in the user-space of other servers.
To enable this mechanism, two user-space processes estab-
lish so called Queue Pairs (QPs) and connect them; each
QP is a logical endpoint for a communication channel. The
remote access is fully performed by the hardware (using a
reliable transport channel) without any interaction with the
OS at the origin or target of the access. In this way, the NIC
can be seen as a separate but limited processor that enables
access to remote memory. This mechanism is fundamentally
different from existing message-passing mechanisms where
messages are processed by the main CPU. Thus, RDMA
changes the system’s failure-characteristics: a CPU can fail
but its memory is still remotely accessible (see Section 5).

Modern networks, such as InfiniBand, also offer unreliable
datagram (UD) messaging semantics that support multicast.
We use these to simplify non-performance-critical parts of
our protocol such as setup and interaction with clients.

2.3 Modeling RDMA performance
We estimate the performance of RDMA operations

through a modified LogGP model [2]. The LogGP model
consist of the following parameters: the latency L; the over-
head o; the gap between messages g; the gap per byte for
long messages G; and the number of processes (or servers)
P . We make the common assumption that o > g [2]; also,
we assume that control packets, such as write acknowledg-
ments and read requests, are of size one byte. Moreover, we
readjust the model to fit the properties of RDMA commu-
nication. In particular, we make the following assumptions:
(1) the overhead of the target of the access is negligible; (2)
the latency of control packets is integrated into the latency
of RDMA accesses; (3) for large RDMA accesses, the band-
width increases after transferring the first MTU bytes; (4)
for RDMA write operations, L, G, and o depend on whether
the data is sent inline; and (5) op is the overhead of polling
for completion. Table 1 specifies the LogGP parameters for
our system, i.e., a 12-node InfiniBand cluster (§ 6).

According to the assumptions above, the time of either
writing or reading s bytes through RDMA is estimated by

oin + Lin + (s− 1)Gin + op if inline

o+ L+ (s− 1)G+ op if s ≤ m

o+ L+ (m − 1)G+ (s−m)Gm + op if s > m,

(1)

leader election § 3.2 normal operation § 3.3

leadership

idle

start
election

wait for
votes commit

wait for

timeout
term++

@ leader
send vote
requests

receive
RSM op
replicate

commit
send
reply

receive votes
—

∃ leader
—

@ leader
term++

outdated
update term

outdated
update term

Figure 1: Outline of both leader election and normal opera-
tion protocols of DARE. Solid boxes indicate states; arrows
indicate transitions. Each transition is described by its pre-
condition (top) and postcondition (bottom).

where m is the MTU of the system, G is the gap per byte
for the first m bytes, and Gm is the gap per byte after the
first m bytes. Besides RDMA operations, DARE uses also
unreliable datagrams (UDs). To estimate the time of UD
transfers, we use the original LogGP model; thus, the time
of sending s bytes over UD is{

2oin + Lin + (s− 1)Gin if inline

2o+ L+ (s− 1)G otherwise.
(2)

Both RDMA and UD models fit the data on our system with
coefficients of determination larger than 0.99.

3. THE DARE PROTOCOL
DARE is an RSM protocol that solves consensus through

a leader-based approach: A distinguished leader acts as the
interface between clients and the SMs. When the leader is
suspected to have failed, the servers elect another leader.
Each election causes the beginning of a new term—a period
of time in which at most one leader exits. A server that
wins an election during a term becomes the leader of that
term. Furthermore, to make progress, DARE requires the
existence of a quorum; that is, at least q =

⌈
P+1
2

⌉
servers

must “agree” on the next step. This ensures that after any
f =

⌊
P−1
2

⌋
failures there is still at least one non-faulty server

that is aware of the previous step (since q > f). That server
guarantees the safe continuation of the protocol.

Existing leader-based RSM protocols and implementa-
tions rely on message passing, often implemented over UDP
or TCP channels [9,20,29,35]. DARE replaces the message-
passing mechanism with RDMA; it assumes that servers
are connected through an interconnect with support for
RDMA, such as InfiniBand. To our knowledge, DARE is
the first RSM protocol that can exploit the whole potential
of RDMA-capable networks. All of the main sub-protocols
(see below) entail the design of special methods in order to
support remotely accessible data structures; we detail the
design of these methods in the following subsections.

DARE outline. We decompose the DARE protocol into
three main sub-protocols that contribute to the implemen-
tation of an RSM:

• Leader election: the servers elect a distinguished
server as their leader (§ 3.2).

• Normal operation: the leader applies RSM opera-
tions in a consistent manner (§ 3.3).

• Group reconfiguration: either the group’s member-
ship or size changes (§ 3.4).

(1) SM (2) log

(4) control data(3) configuration

Remote
serverClient

UD

QP

RC

QPs

RC

QPs

RC

QPs

RC

QPs

head

apply

commit

tail

P ′

P

STATE

BITMASK

R

D

M

A

read
UD

QP

replication

write apply append

heartbeat
array

private data
array

Figure 2: The internal state and interface of a DARE server.

The first two sub-protocols—leader election and normal op-
eration—are the essence of any leader-based RSM protocol;
group reconfiguration is an extension that enables DARE to
change the set of servers in the group. Figure 1 shows an
outline of both leader election and normal operation.

All servers start in an idle state, in which they remain as
long as a leader exists. When a server suspects the leader
to have failed it starts a new election (left side of Figure 1).
First, it proposes itself as the leader for the subsequent term
by sending vote requests to the other servers. Then, the
server either becomes leader after receiving votes from a
quorum (itself included) or it starts a new election after
timing out (§ 3.2). Note that if another server becomes
leader, the server returns to the idle state.

Once a server becomes leader, it starts the normal op-
eration protocol (right of Figure 1). In particular, it must
ensure the consistency of the SM replicas. Thus, when it re-
ceives an RSM operation the leader replicates it on the other
servers with the intention to commit it; for safety, an RSM
operation is committed when it resides on at least a major-
ity of servers. After an RSM operation is committed, the
leader sends a reply to the client that sent the operation.
Finally, a leader returns to the idle state if it is outdated.
An outdated leader is a server that regards itself as leader,
although another leader of a more recent term exists; for ex-
ample, a temporary overload on the current leader can cause
a majority of the servers to elect a new leader.

In the remainder of this section, we first present the basics
of the DARE protocol (§ 3.1): we specify the internal state
of a server; and we outline how both clients and servers
interact with each other. Then, we describe in detail the
three main sub-protocols of DARE: leader election; normal
operation; and group reconfiguration.

3.1 DARE basics
3.1.1 Server internal state

The internal state of each server consists of four main data
structures depicted in Figure 2: (1) the client SM; (2) the
log; (3) the configuration; and (4) the control data. The
SM is an opaque object that can be updated by the server
through RSM operations received from clients. For consis-
tency, servers apply the RSM operations in the same order;
this is achieved by first appending the operations to the log.

The log is a circular buffer composed of entries that have
sequential indexes; each entry contains the term in which
it was created. Usually, log entries store RSM operations
that need to be applied to the SM; yet, some log entries
are used by DARE for internal operations, such as log prun-
ing (§ 3.3.2) and group reconfiguration (§ 3.4). Similar to

RSM operations, log entries are called committed if they re-
side on a majority of servers. The log is described by four
dynamic pointers, which follow each other clockwise in a
circle:

• head points to the first entry in the log; it is updated
locally during log pruning (§ 3.3.2);

• apply points to the first entry that is not applied to
the SM; it is updated locally;

• commit points to the first not-committed log en-
try; it is updated by the leader during log replica-
tion (§ 3.3.1);

• tail points to the end of the log; it is updated by the
leader during log replication (§ 3.3.1).

The configuration data structure is a high level description
of the group of servers. It contains four fields: the current
group size P ; a bitmask indicating the active servers; the
new group size P ′; and an identifier of the current state.
Section 3.4 describes in details the role of these fields in
DARE’s group reconfiguration protocol.

Finally, the control data consists of a set of arrays that
have an entry per server. One such array is the private data
array that is used by servers as reliable storage (§ 3.2.3).
Another example is the heartbeat array used by the leader
to maintain its leadership (§ 4). We specify the rest of the
arrays as we proceed with the description of the protocol.

In-memory data structures: benefits and chal-
lenges. The internal state of a DARE server consists of
in-memory data structures. The benefit of an in-memory
state is twofold. First, accessing in-memory data has lower
latency than accessing on-disk data. Second, in-memory
data structures can be remotely accessed through RDMA.
In particular, in DARE, the leader uses the commit and
tail pointers to manage the remote logs directly through
RDMA. Thus, since the target servers are not active, they
can perform other operations such as saving the SM on sta-
ble storage for higher reliability. Also, RDMA accesses are
performed by the hardware without any interaction with the
OS; this often leads to higher performance as compared to
message passing [16].

Yet, the in-memory approach entails that the entire state
is volatile; thus, when high reliability is required, DARE uses
raw replication. Raw replication makes an item of data reli-
able by scattering copies of it among different nodes. Thus,
this approach can tolerate a number of simultaneous node
failures equal to the numbers of copies. In Section 5, we
discuss reliability in more details.

3.1.2 Communication interface
DARE relies on both unreliable and reliable communica-

tion. Unreliable communication is implemented over UD
QPs, which support both unicast and multicast transfers.
The multicast support makes UD QPs practical in the con-
text of a dynamic group membership, where the identity
of the servers may be unknown. Thus, we implement the
interaction between group members and clients over UD
QPs. Note that new servers joining the group act initially
as clients and, thus, they also use the UD QPs to access the
group (§ 3.4).

The InfiniBand architecture specification’s Reliable Con-
nection (RC) transport mechanism does not lose pack-
ets [21]; therefore, DARE implements reliable communica-
tion over RC QPs. Since the servers need remote access

Legend:

log replication
(§ 3.3.1)

log
replication

p0 − p2

leader

exclusive
log access

p0

p1

p2

candidate

servers

RDMA write

revoke access

restore access

vote
request vote

check
p1’s log

votevote
request

check
p1’s log

Figure 3: The voting mechanism during leader election.

to both the log and the control data, any pair of servers is
connected by two RC QPs: (1) a control QP that grants
remote access to the control data; and (2) a log QP that
grants remote access to the local log (see Figure 2).

3.2 Leader election
We adopt a traditional leader election protocol to RDMA

semantics: A server sends vote requests and it waits for votes
from at least bP/2c servers, before it becomes the leader. In
addition, a server cannot vote twice in the same term. Thus,
DARE guarantees at most one leader per term.

In the remainder of this section, we describe our RDMA
design of the voting mechanism. Figure 3 outlines this mech-
anism during a successful leader election in a group of three
servers. Although our approach is similar to a message-
passing one, it requires special care when managing the
log accesses. In particular, by using RDMA semantics, the
leader bypasses the remote CPUs when accessing their logs;
as a result, the servers are unaware of any updates of their
logs. This hinders the ability of a server to participate in
elections. Thus, we first outline how DARE uses QP state
transitions to allow servers to manage the remote access to
their own memory; then, we describe the voting mechanism.

3.2.1 Managing log access
Once a QP is created, it needs to be transitioned through

a sequence of states to become fully operational; moreover,
at any time the QP can be locally reset to the original state,
which is non-operational. Thus, DARE servers can decide
on either exclusive local access or shared remote access. For
exclusive local access, the QP is reset to the original non-
operational state; while for remote log access, the servers
move the QP in the ready-to-send state [21], which is fully-
operational. Besides managing access to their logs, DARE
servers use QP state transitions for both connecting and
disconnecting servers during group reconfiguration (§ 3.4).

3.2.2 Becoming a candidate
The leader election protocol starts when a server suspects

the leader to have failed. In Figure 3, server p1 starts an elec-
tion by revoking remote access to its log; this ensures that an
outdated leader cannot update the log. Then, it proposes
itself as a candidate for the leadership of the subsequent
term. That is, it sends vote requests to the other servers:
It updates its corresponding entry in the vote request array
(one of the control data arrays) at all other servers by issu-
ing RDMA write operations (see Figure 3). An entry in the
vote request array consists of all the information a server
requires to decide if it should vote for the candidate: the
candidate’s current term and both the index and the term
of the candidate’s last log entry (see Section 3.2.3).

Depending on the internal state of the candidate, we dis-
tinguish between three possible outcomes (depicted in the

left side of Figure 1): (1) the candidate becomes leader if
it receives the votes from at least bP/2c servers; (2) it de-
cides to support the leadership of another candidate more
suited to become leader (§ 3.2.3); or (3) otherwise, it starts
another election after a timeout period. Note that the can-
didate restores remote log access for every server from which
it received a vote; this ensures that a new leader can proceed
with the log replication protocol (§ 3.3.1).

3.2.3 Answering vote requests
Servers not aware of a leader periodically check the vote

request array for incoming requests. They only consider
requests for the leadership of a higher (more recent) term
than their own; on receiving a valid request, the servers
increase their own term. In Figure 3, servers p0 and p2
receive vote requests from candidate p1. Both servers grant
their vote after first checking that the candidate’s latests
log entry is at least as recent as their own; an entry is more
recent than another if it has either a higher term or the same
term but a higher index [35]. Checking the candidate’s log
is essential for DARE’s safety; it ensures that the log of
a leader contains the most recent entry among a majority
of servers. Also, note that while performing the check, both
servers need exclusive access to their own logs (see Figure 3).

A server’s volatile internal state introduces an additional
challenge. The server may fail after voting for a candidate,
and then, recover during the same term. If after recovery, it
receives a vote request from another candidate, but for the
same term, the server could grant its vote. Thus, two servers
may become leaders during the same term, which breaks
the safety of our protocol. To avoid such scenarios, prior
to answering vote requests, each server makes its decision
reliable by replicating it via the private data array (§ 3.1.1).

RDMA vs. MP: leader election. Our RDMA design
of leader election increases DARE’s availability. When the
leader fails, the RSM becomes unavailable until a new leader
is elected. First, for leader election to start, the servers
need to detect the failure (§ 4). Then, the election time
depends on the period a candidate waits for votes before
restarting the election. This period needs to be large enough
for the vote requests to reach the servers and at least bP/2c
votes to arrive back at the candidate. The RDMA-capable
interconnect allows us to reduce this period; thus, our design
increases the RSM’s availability.

3.3 Normal operation
The normal operation protocol entails the existence of a

sole leader that has the support of at least a majority of
servers (including itself). The leader is responsible for three
tasks: serving clients; managing the logs; and, if needed, re-
configuring the group. In the remainder of this section, we
describe the first two tasks; we defer the discussion of group
reconfiguration to Section 3.4. First we specify how clients
interact with DARE. Then, we present a log replication pro-
tocol designed entirely for RDMA (§ 3.3.1); also, we outline
a log pruning mechanism that prevents the overflowing of
the logs. Finally, we provide an RDMA performance model
of DARE during normal operation.

Client interaction. Clients interact with the group of
servers by sending requests through either multicast or uni-
cast. To identify the leader of the group, clients send their
first request via multicast. Multicast requests are consid-
ered only by the leader. Once the leader replies, clients send

subsequent requests directly to the leader via unicast. How-
ever, if the request is not answered in a predefined period
of time, clients re-send the request through multicast. Also,
the current implementation assumes that a client waits for
a reply before sending the subsequent request. Yet, DARE
handles different clients asynchronously: The leader can ex-
ecute, at the same time, requests from multiple clients. This
increases the protocol’s throughput (see Figure 7b).

Write requests. Regardless of the nature of the SM,
clients can send either write or read requests. Write requests
contain RSM operations that alter the SM. Such operations
need to be applied to all SM replicas in the same order.
Therefore, when receiving a write request, the leader stores
the RSM operation into an entry that is appended to the
log. Then, it replicates the log entry on other servers with
the purpose to commit it (see Section 3.3.1). As a safety re-
quirement, each DARE server applies only RSM operations
stored in committed log entries.

Write requests may contain RSM operations that are not
idempotent (i.e., they change the SM replicas every time
they are applied). DARE ensures that each RSM operation
is applied only once by enforcing linearizable semantics [19]
through unique request IDs (as other RSM protocols). Fur-
thermore, to increase the throughput of strongly consistent
writes, DARE executes write requests in batches: The leader
first appends the RSM operations of all consecutively re-
ceived write requests to the log; then, it replicates all the
entries at once.

Read requests. Read requests contain RSM operations
that do not alter the SM. For such operations, replication
is not required: For efficiency, the leader answers read re-
quests directly from the local SM. Yet, to ensure that reads
do not return stale data, DARE imposes two constraints:
(1) an outdated leader cannot answer read requests; and
(2) a leader with an outdated SM cannot answer read re-
quests.

First, to verify whether a leader is outdated, DARE uses
a property of leader election—any successful election re-
quires at least a majority of servers to increase their terms
(cf. § 3.2.3). Therefore, before answering a read request, the
leader reads the term of at least bP/2c servers; if it finds no
term larger than its own, then it can safely answer the read
request. As an optimization, the leader verifies whether it
is outdated only once for a batch of consecutively received
read requests; thus, DARE’s read throughput increases.

Second, before answering a read request, the leader must
ensure that all RSM operations stored in committed log en-
tries are applied to the local SM. DARE guarantees that
the leader’s log contains all the committed entries that
store RSM operations not yet applied by all non-faulty
servers (§ 4). However, a new leader may not be aware
of all the committed entries (§ 3.3.1); thus, the local SM is
outdated. As a solution, a new leader appends to its log an
entry with no RSM operation. This starts the log replication
protocol that commits also all the preceding log entries.

3.3.1 Log replication
The core of the normal operation protocol is log repli-

cation—the leader replicates RSM operations on the other
servers with the intention to commit them (see right side of
Figure 1). In DARE, log replication is performed entirely
through RDMA: The leader writes its own log entries into
the logs of the remote servers. Yet, after a new leader is

leader

Legend:

committed

not
committed

(a) p0
p1
p2

(b) p0
p1
p2

servers

write offset

p0 − p2

Figure 4: The logs in a group of three servers: (a) after
server p1 is elected leader; and (b) after log adjustment. For
clarity, the apply pointers are omitted.

elected, the logs can contain not-committed entries. These
entries may differ from the ones stored at the same posi-
tion in the leader’s log; for example, Figure 4a shows the
logs after server p1 becomes the leader of a group of three
servers. Before a newly elected leader can replicate log en-
tries, it must first remove all the remote not-committed en-
tries. Therefore, we split the log replication protocol into
two phases: (1) log adjustment; and (2) direct log update.

Log adjustment. One näıve approach to adjust a re-
mote log is to set its tail pointer to the corresponding com-
mit pointer. However, this may remove committed entries
(see server p0’s log in Figure 4a); as a result, a committed
entry may no longer be replicated on a majority of servers,
which breaks the safety of our protocol. A correct approach
sets the remote tail pointer to the first not-committed entry;
note that due to the “lazy” update of the commit pointers
(see below), a server may not be aware of all its committed
log entries. Thus, to adjust a remote log, the leader per-
forms two subsequent RDMA accesses (labeled by a and b

in Figure 5): (1) it reads the remote not-committed entries;
and (2) it sets the remote tail pointer to the offset of the first
non-matching entry when compared to its own log. In addi-
tion, the leader updates its own commit pointer. Figure 4b
shows the logs of the three servers after the log adjustment
phase is completed.

Direct log update. The second phase of log replica-
tion consists of three RDMA accesses (labeled by c, d and e

in Figure 5). First, for each adjusted remote log, the leader
writes all entries between the remote and the local tail point-
ers. Second, the leader updates the tail pointers of all the
servers for which the first access completed successfully. To
commit log entries, the leader sets the local commit pointer
to the minimum tail pointer among at least a majority of
servers (itself included). Finally, for the remote servers to
apply the just committed entries, the leader “lazily” updates
the remote commit pointers; by lazy update we mean that
there is no need to wait for completion.

Asynchronous replication. During log replication, the
leader handles the remote logs asynchronously. Figure 5
shows the RDMA accesses during log replication in a group
of three servers. Once the leader receives the confirmation
that server p0’s log is adjusted, it starts updating it, al-
though it is not yet aware that server p2’s log is adjusted
(the access is delayed). When the delayed access completes,
the leader can also start the direct log update phase for
server p2. Furthermore, the leader commits its log entries
after updating the tail pointer of server p0 (since P = 3).

RDMA vs. MP: log replication. Replicating the logs
through RDMA has several benefits over the more tradi-
tional message-passing approach. RDMA accesses remove
the overhead on the target, which has two consequences:

Legend:

p0 − p2

p0

p1

p2

commitlog adjustment

log adjustment

leader

servers

direct log update

direct log update

RDMA
accesses

a b c d e c

a b c d e c

Figure 5: The RDMA accesses during log replication: (a)
read the remote not-committed entries; (b) write the remote
tail pointer; (c) write the remote log; (d) write the remote
tail pointer; and (e) write the remote commit pointer.

first, the leader commits RSM operations faster; and sec-
ond, the servers are available for other tasks, such as re-
covery (§ 3.4). Moreover, RDMA allows for servers with a
faulty CPU, but with both NIC and memory working, to be
remotely accessible during log replication, hence, increasing
both availability and reliability (§ 5). Finally, RDMA al-
lows for efficient log adjustment. In DARE, log adjustment
entails two RDMA accesses regardless of the number of non-
matching log entries; yet, in Raft [35] for example, the leader
must send a message for each non-matching log entry.

3.3.2 Log pruning: removing applied entries
Every server applies the RSM operations stored in the

log entries between its apply and commit pointers; once an
operation is applied, the server advances its apply pointer.
When an RSM operation is applied by all the non-faulty
servers in the group, the entry containing it can be removed
from the log. Thus, the leader advances its own head pointer
to the smallest apply pointer in the group; then, it appends
to the log an HEAD entry that contains the new head pointer.
Servers update their head pointer only when they encounter
a committed HEAD entry; thus, all subsequent leaders will be
aware of the updated head pointer. Furthermore, when the
log is full the leader blocks until the remote servers advance
their apply pointers. To avoid waiting, the leader can remove
the server with the lowest apply pointer on the grounds that
it hinders the performance of the entire group (cf. [10]).

3.3.3 An RDMA performance model
DARE is designed as a high-performance RSM protocol.

Its performance is given by the request latency—the amount
of time clients need to wait for requests to be answered.
Client requests have two parts: (1) the UD transfer, which
entails both sending the request and receiving a reply; and
(2) the RDMA transfer, which consist of the leader’s remote
memory accesses. We use Equations (1) and (2) from Sec-
tion 2.3 to estimate the latency of both UD and RDMA
transfers; for readability, we consider the gap per byte G
only for the s bytes of either the read or written data.

The UD transfer entails two messages: one short that is
sent inline (request for reads and replies for writes); and one
long that transfers the data. Thus, the latency of the UD
transfer is bounded (due to the above simplification) by

tUD ≥ 2oin + Lin +

{
2oin + Lin + (s− 1)Gin if inline

2o+ L+ (s− 1)G otherwise
.

The latency introduced by RDMA accesses depends on the
request type. For read requests, the leader needs to wait for
at least q− 1 RDMA reads to complete (q =

⌈
P+1
2

⌉
). Thus,

the latency of the RDMA transfer in case of read requests
is bounded by

tRDMA/rd ≥ (q − 1)o+ max{fo, L}+ (q − 1)op,

where f is the maximum number of faulty servers; also, the
max function indicates the overlap between the overhead of
issuing the last f reads and the latency of the (q− 1)st one.

For write requests, the leader needs to go through the
steps of log replication. Yet, the logs are adjusted only once
per term; thus, assuming a fairly stable leader, the latency
of log adjustment is negligible. During the direct log update
phase, the leader accesses the logs of at least q − 1 servers;
for each, it issues three subsequent RDMA write operations
(see Figure 5). Thus, the latency of the RDMA transfer in
case of a write request is bounded by

tRDMA/wr ≥ 2(q − 1)oin + Lin + 2(q − 1)op+{
(q − 1)oin + max{foin , Lin + (s− 1)Gin} if inline

(q − 1)o+ max{fo, L+ (s− 1)G} otherwise
,

where similar to read requests, the max function indicates
the overlap between the last f log update operations and
the latency of the (q − 1)st one. Figure 7a compares these
bounds with measurements gathered on our system (§ 6).

3.4 Group reconfiguration
DARE is intended for dynamical environments where

servers can fail at any time. Thus, the group of servers can
modify both its membership and its size; we refer to this
as group reconfiguration. DARE handles group reconfigu-
rations through the configuration data structure (§ 3.1.1).
A configuration can be in three states: a stable state that
entails a group of P servers with the non-faulty servers in-
dicated by a bitmask; an extended state used for adding
servers to a full group (see below); and a transitional state
that allows for the group to be resized without interrupting
normal operation [35]. The last two states require the new
group size P ′ to be set.

We define three operations that are sufficient to describe
all group reconfiguration scenarios: (1) remove a server; (2)
add a server; and (3) decrease the group size. For example,
since a server’s internal state is volatile, a transient failure
entails removing a server followed by adding it back; also,
increasing the size entails adding a server to a full group.
The three operations can be initiated only by a leader in
a stable configuration. Each operation may entail multiple
phases. Yet, each phase contains the following steps: the
leader modifies its configuration; then, it appends to the log
an entry that contains the updated configuration (a CONFIG

entry); and once the CONFIG entry is committed, the phase
completes and a possible subsequent phase can start. Note
that when a server encounters a CONFIG log entry, it updates
its own configuration accordingly regardless of whether the
entry is committed. In the remainder of this section, we first
describe how DARE implements the three operations; then,
we outline how a server recovers its internal state. If not
stated otherwise, we assume all configurations to be stable.

Removing a server. A server may be removed in
one of the following cases: the log is full and cannot be
pruned (§ 3.3.2); the group size is decreased; or the leader
suspects the server to have failed. The leader detects failed
(or unavailable) servers by using the QP timeouts provided
by the RC transport mechanism [21]. In all cases, removing

a server is a single-phase operation. First, the leader dis-
connects its QPs (§ 3.2.1) with the server. Then, it updates
the bitmask of its configuration accordingly; also, it adds a
CONFIG log entry with the updated configuration. Finally,
once the log entry is committed, the server is removed.

Adding a server. Adding a server to a group is similar
to removing a server; the only difference is that the QPs with
the server must be connected instead of disconnected. Yet,
if the group is full, adding a server requires first to increase
the group size, which, without previously adding a server,
decreases the fault-tolerance of the group. Intuitively, this is
because the new group starts already with a failure since the
new server is not yet added. Thus, adding a server to a full
group is a three-phase operation: (1) adding the server; (2)
increasing the group size; (3) stabilizing the configuration.

First, the leader establishes a reliable connection with
the server; also, it creates an extended configuration with
P ′ = P + 1. This configuration allows the added server
to recover; yet, the server cannot participate in DARE’s
sub-protocols. Second, the leader increases the group size
without interrupting normal operation [35]. In particular,
it moves the configuration to a transitional state, in which
all servers are participating in DARE’s sub-protocols. The
servers form two groups—the original group of P server and
the new group of P ′ servers; majorities from both groups
are required for both electing a leader and committing a log
entry. Finally, the leader stabilizes the configuration: It sets
P to the new size P ′ and it moves back into the stable state.

Decreasing the group size. Usually, adding more
servers leads to higher reliability (see Figure 6); yet, it also
decreases the performance, since more servers are required
to form a majority. Thus, DARE allows the group size to
be decreased. Decreasing the group size is a two-phase op-
eration: first, the leader creates a transitional configuration
that contains both the old and the new sizes; and then, it
stabilizes it by removing the extra servers from the end of
the old configurations.

Recovery. When added to the group, a server needs to
recover its internal state before participating in DARE’s sub-
protocols; in particular, it needs to retrieve both the SM and
the log. To retrieve the SM, the new server asks any server,
except for the leader, to create a snapshot of its SM; then,
it reads the remote snapshot. Once the SM is recovered, the
server reads the committed log entries of the same server.
After it recovers, the server sends a vote to the leader as a
notification that it can participate in log replication. Note
that the recovery is performed entirely through RDMA.

RDMA vs. MP: recovery. Our RDMA approach re-
duces the impact of recovery on normal operation. The rea-
son for this is twofold. First, contrary to message-passing
RSMs, in DARE, the leader manages the logs directly with-
out involving the CPUs of the remote servers; thus, servers
can create a snapshot of their SM without interrupting nor-
mal operation. Second, the new server can retrieve both the
SM and the log of a remote server directly through RDMA.

4. DARE: SAFETY AND LIVENESS
Safety argument. In addition to the safety requirement

of consensus (§ 2.1), DARE guarantees the RSM safety prop-
erty: each SM replica applies the same sequence of RSM op-
erations. DARE exhibits similar properties as existing RSM
protocols. In particular, DARE satisfies two properties: (1)
two logs with an identical entry have all the preceding en-

tries identical as well; and (2) every leader’s log contains all
already-committed entries. The two properties are sufficient
to argue the RSM safety property [35]. We omit the details
because of space limitations; yet, they are available in an
extended technical report [38].

Liveness argument. DARE guarantees liveness. Our
argument relies on the following properties: (1) a quorum is
always possible, since at most

⌊
P−1
2

⌋
servers are faulty; and

(2) faulty-leaders are detected through a �P FD (i.e., even-
tual strong accuracy and strong completeness [6]). Thus,
eventually, a non-faulty leader is not suspected for suffi-
ciently long so that it can make progress. Also, a faulty-
leader is eventually detected by all the non-faulty servers;
thus, a leader election starts. By using randomized timeouts
for restarting the election [35], DARE ensures that a leader
is eventually elected. For details, we refer the reader to the
technical report [38]. Further, we describe how we utilize
InfiniBand’s timeout mechanisms [21] to obtain a model of
partial synchrony [6] required by a �P FD. Also, we outline
how to implement a �P FD with RDMA-semantics.

Synchronicity in RDMA networks. Synchronicity in
the context of processors implies that there is a fixed bound
on the time needed by a processor to execute any operation;
intuitively, this guarantees the responsiveness of non-faulty
processors. Since DARE uses RDMA for log replication,
the processors are the NICs of the servers. These NICs
are special-purpose processors that are in charge solely of
the delivery of network packets at line-rate; that is, NICs
avoid nondeterministic behavior, such as that introduced by
preemption in general-purpose CPUs. Therefore, we can
assume a bound on the execution time of NIC operations.

Synchronous communication requires a bound on the time
within which any packet is delivered to a non-faulty server.
Time can generally not be bound in complex networks, how-
ever, datacenter networks usually deliver packets within a
tight time bound. InfiniBand’s reliable transport mecha-
nism does not lose packets and notifies the user if the trans-
mission experiences unrecoverable errors [21]: It uses Queue
Pair timeouts that raise unrecoverable errors in the case of
excessive contention in the network or congestion at the tar-
get. Thus, the RC service of InfiniBand offers a communi-
cation model where servers can ascertain deterministically
if a packet sent to a remote server was acknowledged within
a bounded period of time.

Leader failure detection. The �P FD used by DARE
to detect failed leaders is based on an heartbeat mechanism
implemented with RDMA semantics. Initially, every server
suspects every other server to have failed. Then, the leader
starts sending periodic heartbeats by writing its own term
in the remote heartbeat arrays (§ 3.1.1). Every other server
checks its heartbeat array regularly, with a period ∆: First,
it selects the heartbeat with the most recent term; then, it
compares this term with its own. If the terms are equal, then
the leader is non-faulty; thus, the server extends its support.
If its own term is smaller, then a change in leadership oc-
curred; thus, the server updates its own term to indicate
its support. Otherwise, the server assumes the leader has
failed; thus, the strong completeness property holds [6].

In addition, when a server finds an heartbeat with a term
smaller than its own, it first increments ∆ to ensure that
eventually a non-faulty leader will not be suspected; thus,
the eventual strong accuracy property holds [6]. Then, it

Component AFR MTTF Reliability
Network [12,17] 1.00% 876, 000 4-nines
NIC [12,17] 1.00% 876, 000 4-nines
DRAM [18] 39.5% 22, 177 2-nines
CPU [18] 41.9% 20, 906 2-nines
Server [17,39] 47.9% 18, 304 2-nines

Table 2: Worst case scenario reliability data. The reliability
is estimated over a period of 24 hours and expressed in the
“nines” notation; the MTTF is expressed in hours.

informs the owner of the heartbeat that it is an outdated
leader, so it can return to the idle state (see Figure 1).

5. FINE-GRAINED FAILURE MODEL
As briefly mentioned in Section 2.2, RDMA requires a

different view of a failing system than message passing. In
message passing, a failure of either the CPU or OS (e.g., a
software failure) disables the whole node because each mes-
sage needs both CPU and memory to progress. In RDMA
systems, memory may still be accessed even if the CPU is
blocked (e.g., the OS crashed) due to its OS bypass nature.

To account for the effects of RDMA, we propose a fail-
ure model that considers each individual component—CPU,
main memory (DRAM), and NIC—separately. We make
the common assumption that each component can fail inde-
pendently of the other components in the system [5,33]; for
example, the CPU may execute a failed instruction in the
OS and halt, the NIC may encounter too many bit errors to
continue, or the memory may fail ECC checks. We also make
the experimentally verified assumption that a CPU/OS fail-
ure does not influence the remote readability of the memory.
Finally, we assume that the network (consisting of links and
switches) can also fail.

Various sources provide failure data of systems and system
components [12, 18, 31, 36]. Yet, systems range from very
reliable ones with AFRs per component below 0.2% [31] to
relatively unreliable ones with component failure log events
at an annual rate of more than 40% [18] (here we assume
that a logged error impacted the function of the device).
Thus, it is important to observe the reliability of the system
that DARE is running on and adjust the parameters of our
model accordingly. For the sake of presentation, we pick
the worst case for DARE, i.e., the highest component errors
that we found in the literature. Table 2 specifies this for the
main components over a period of one 24 hours.

Availability: zombie servers. We refer to servers with
a blocked CPU, but with both a working NIC and mem-
ory as zombie servers. Zombie servers account for roughly
half of the failure scenarios (cf. Table 2). Due to their non-
functional CPU, zombie servers cannot participate in some
protocols, such as leader election. Yet, DARE accesses re-
mote memory through RDMA operations that consume no
receive request on the remote QP, and hence, no work com-
pletions [21]. Therefore, a zombie server’s log can be used
by the leader during log replication increasing DARE’s avail-
ability. Note that the log can be used only temporarily since
it cannot be pruned and eventually the leader will remove
the zombie server. Moreover, even in case of permanent
CPU failures, zombie servers may provide sufficient time for
recovery without losing availability.

Reliability. As briefly mentioned in Section 3.1.1, our
design exploits the concept of memory reliability through

AFR/disk = 1.7%

RAID−6

AFR/disk = 8.6%

AFR/disk = 1.7%

RAID−5

AFR/disk = 8.6%

●

●
●

●
●

●
●

●
●

●
●

DRAM: AFR = 39.5%

14

12

10

8

6

4

1 3 5 7 9 11
Group size

R
el

ia
bi

lit
y

(#
 o

f n
in

es
)

Figure 6: DARE’s reliability over a period of 24 hours. Also,
the reliability achieved by disks with RAID technologies.

raw replication. In particular, DARE uses raw replication
in two situations: (1) explicitly by a server before answer-
ing a vote request during leader election; and (2) implicitly
by the leader during log replication. In both situations, at
least q =

⌈
P+1
2

⌉
replicas are created. Thus, DARE’s reli-

ability is given by the probability that no more than q − 1
servers experience a memory failure (cf. Table 2, the failures
probabilities of both NIC and network are negligible).

We propose a model that considers the components as
part of non-repairable populations: Having experienced a
failure, the same component can rejoin the system; yet, it
is treated as a new individual of the population. We use
basic concepts of probability to estimate the likelihood that
no more than q − 1 out of P components are unavailable;
for details see [38]. To estimate DARE’s reliability, we use
the data from Table 2 under the assumption that all com-
ponents are modeled by exponential LDMs. Figure 6 plots
the reliability as a function of the group size. Of particular
interest is the decrease in reliability when the group size in-
creases from an even to an odd value. This is expected since
the group has one more server, but the size of a quorum
remains unchanged. Also, Figure 6 compares the reliability
of our in-memory approach with the one achieved by stable
storage; the disk AFRs are according to [36]. We observe
that for a group size of 7, DARE can achieve higher reliabil-
ity than disks with RAID-5 [7], while 11 servers are sufficient
to overpass the reliability of disks with RAID-6 [37].

6. EVALUATION
We evaluate the performance of DARE in a practical set-

ting. We use a 12-node InfiniBand cluster; each node has
an Intel E5-2609 CPU clocked at 2.40GHz. The cluster is
connected with a single switch using a single Mellanox QDR
NIC (MT27500) at each node. Moreover, the nodes are run-
ning Linux, kernel version 3.12.18. DARE is implemented1

in C and relies on two libraries: libibverbs, an implementa-
tion of the RDMA verbs for InfiniBand; and libev, a high-
performance event loop. Each server runs an instance of
DARE; yet, each server is single-threaded. Finally, to com-
pile the code, we used gcc version 4.8.2.

We consider a key-value store (KVS) as the client SM:
Clients access data through 64-byte keys. Moreover, since
clients send requests through UD, the size of a request is
limited by the network’s MTU (i.e., 4096 bytes). Henceforth,
we only state the size of the data associated with a key.
The structure of this section is as follows: first, we evaluate
both the latency and the throughput of DARE; then we

1DARE: http://spcl.inf.ethz.ch/Research/Parallel_
Programming/DARE

analyze the throughput for different workloads; finally, we
compare the performance of DARE with other protocols and
implementations, such as ZooKeeper [20].

Latency. DARE is designed as a high-performance RSM.
Figure 7a shows the latency of both write and read requests
(gets and puts in the context of a KVS). In the benchmark, a
single client reads and writes objects of varying size to/from
a group of five servers. Each measurement is repeated 1,000
times; the figure reports the median and both the 2nd and
the 98th percentiles. DARE has a read latency of less than
8µs; the write latency is, with 15µs, slightly higher because
of the higher complexity of log replication. Also, Figure 7a
evaluates the model described in Section 3.3.3. Of particular
interest is the difference between our model and the mea-
sured write latency. In practice, the small RDMA overhead
(≈ 0.3µs) implies that a slight computational overhead may
cause more than bP/2c servers to go through log replication;
as a result, the write latency increases.

Throughput. We analyze DARE’s throughput in a
group of three servers that receives requests from up to nine
clients. We calculate the throughput by sampling the num-
ber of answered requests in intervals of 10ms. For 2048-byte
requests, DARE achieves a maximum throughput of 760
MiB/s for reads and 470 MiB/s for writes. Furthermore,
Figure 7b shows how the throughput (for 64-byte requests)
increases with the number of clients. The reason for the
increase is twofold: (1) DARE handles requests from differ-
ent clients asynchronously; and (2) DARE batches requests
together to reduce the latency. Therefore, with 9 clients,
DARE answers over 720.000 read requests per seconds and
over 460.000 write requests per second.

Further, we study the effect of a dynamic group mem-
bership on DARE’s performance. In particular, Figure 8a
shows the write throughput (for 64-byte requests) during a
series of group reconfiguration scenarios. First, two servers
are subsequently joining an already full group causing the
size to increase; this implies that more servers are needed
for a majority; hence, the throughput decreases. Also, note
that the two joins cause a brief drop in throughput, but no
unavailability. Then, the leader fails causing a short period
of unavailability (i.e., around 30ms) until a new leader is
elected; this is followed by a brief drop in performance when
the leader detects and removes the previously failed leader.

Next, a server fails; the leader handles the failure in two
steps, both bringing an increase in throughput. First, it
stops replicating log entries on the server since its QPs are
inaccessible; second, after a number of failed attempts to
send an heartbeat (we use two in our evaluation), the leader
removes the server. The removal of the failed server is fol-
lowed by two other servers joining the group; note that these
joins have similar effects as the previous ones. Once the
group is back to a full size, the leader receives a request to
decrease the size, which implies an increase in throughput.

In the new configuration, the leader fails again having
a similar effect as the previous leader failure. After a new
leader is elected, another server joins the group. Finally, the
new leader decreases the group size to three. However, this
operations entails the removal of two servers, one of them
being the leader. Thus, the group is shortly unavailable until
a new leader is elected.

Workloads. The results of Figure 7b are valid for ei-
ther read-only or write-only client SMs; yet, usually, this is
not the case. Figure 7c shows DARE’s throughput when

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

3

6

9

12

15

8 32 128 512 2048
Size [bytes]

La
te

nc
y

[µ
s]

Data/wr
Model/wr

Data/rd
Model/rd

(a) Write (/wr) and read (/rd) latency

1 client

9 clients

more clients

0K

100K

200K

300K

400K

500K

600K

700K
750K

2 4 6 8 10
Time [sec]

T
hr

ou
gh

pu
t [

re
qu

es
ts

 /
se

c]

write
read

(b) Write and read throughput

1 client

9 clients
more clients

0K

100K

200K

300K

400K

500K

600K

700K
750K

2 4 6 8 10
Time [sec]

T
hr

ou
gh

pu
t [

re
qu

es
ts

 /
se

c]

update−heavy
read−heavy

(c) Real-world inspired workloads

Figure 7: Evaluation of DARE

size = 5

size = 7

size = 5

size = 3

add
server

leader
failure

remove
failed leader

server
failure

add
server

decrease
size

leader
failure

add
server

decrease
size

0K

20K

40K

60K

80K

100K

120K

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Time [sec]

W
rit

e
th

ro
ug

hp
ut

 [r
eq

ue
st

s
/ s

ec
]

(a)

read: 22x write: 35x

etcd/wr

PaxosSB/wr
etcd/rd

ZK/wr
Libpaxos/wr

ZK/rd

DARE/wr

DARE/rd

1µs

10µs

100µs

1 ms

10 ms

100 ms

8 32 128 512 2048
Size [bytes]

La
te

nc
y

(b)

Figure 8: (a) DARE’s write throughput during group reconfiguration. (b) DARE and other RSM protocols: write (/wr) and
read (/rd) latency.

applying real-world inspired workloads to a group of three
servers. In particular, we use two workloads: read-heavy
and update-heavy [8]. The read-heavy workload consist of
95% reads; it is representative for applications such as photo
tagging. The update-heavy workload consist of 50% writes;
it is representative for applications such as an advertisement
log that records recent user activities. For read-heavy work-
load, the throughput slightly fluctuates when more than one
client sends requests. This is because DARE ensures lin-
earizable semantics [19]; in particular, the leader cannot an-
swer read requests until it answers all the preceding write re-
quests. Also, by interleaving read and write requests, DARE
cannot take advantage of batching; thus, for update-heavy
workloads, the throughput saturates faster.

DARE vs. other RSMs. We conclude DARE’s eval-
uation by comparing it with other state of the art RSM
protocols and implementations. In particular, we measure
the latency of four applications: ZooKeeper (ZK), a service
for coordinating processes of distributed applications [20];
etcd2, a key-value store that uses Raft [35] for reliability;
and PaxosSB [23] and Libpaxos3, both implementations of
the Paxos protocol [25,26], providing support only for writes.

For each application, we implemented a benchmark that
measures the request latency in a similar manner as for
DARE—a single client sends requests of varying size to a
group of five servers. All applications use TCP/IP for com-
munication; to allow a fair comparison, we utilize TCP/IP

2
etcd version 0.4.6: https://github.com/coreos/etcd

3Libpaxos3: https://bitbucket.org/sciascid/libpaxos.git

over InfiniBand (“IP over IB”). Also, for the applications
that rely on stable storage, we utilize a RamDisk (an in-
memory filesystem) as storage location. Figure 8b shows the
request latency of the four applications on our system. For
ZooKeeper, we observe a minimal read latency of ≈ 120µs;
the put performance depends on the disk performance, and
with a RamDisk, it oscillates around 380µs. In the case of
etcd, a read requests takes around 1.6ms, while a write re-
quest takes almost 50ms. For both PaxosSB and Libpaxos,
we measured only the write latency. While PaxosSB answers
a write requests in around 2.6ms, Libpaxos, with around
320µs, attains a write latency lower than ZooKeeper.

In addition, Figure 8b compares our protocol against all
four applications. The latency of DARE is at least 22 times
lower for read accesses and 35 times lower for write ac-
cesses. Also, we evaluate DARE’s write throughput against
ZooKeeper; in particular, we set up an experiment were 9
clients send requests to a group of three servers. With a
write throughput of ≈ 270 MiB/s, ZooKeeper is around 1.7x
below the performance achieved by DARE. Finally, we com-
pare DARE with the Chubby lock service [4]. Yet, since we
cannot evaluate it on our system, we use the latency mea-
surement from the original paper [4]. Chubby achieves read
latencies of under 1 ms and write latencies of around 5-10
ms. Thus, DARE’s performance is more than two orders of
magnitude higher.

7. RELATED WORK
The importance of practical resilient services sparked nu-

merous proposals for protocols and implementations so that

we can only discuss the most related approaches here. Start-
ing from Lamport’s original works on Paxos for solving
consensus [25, 26], several practical systems have been pro-
posed [9, 23]. Although the Paxos protocol ensures both
safety and liveness, it is difficult both to understand and
to implement. This led to a series of practical RSM proto-
cols and implementations, that are at their heart similar
to Paxos but simplify the protocol to foster understand-
ing and implementability, such as Viewstamped Replica-
tion [29], Raft [35], ZooKeeper [20], and Chubby [4]. In
general, DARE is different from these approaches in that it
is designed for RDMA semantics instead of relying on mes-
sages. In this way, we achieve lowest latency in combination
with high throughput which benefits client applications that
cannot pipeline requests and require strong consistency.

Other attempts were made to increase the performance of
key-value stores through RDMA; yet, they are using RDMA
either as an optimization for message passing [22] or only
for reading data [13, 32]. DARE uses RDMA for both read
and write requests. In addition, unique features of RDMA,
such as queue pair management, allow us to design wait-free
protocols for normal operation.

Furthermore, a series of optimizations were proposed for
solving consensus, such as distributing the load by allow-
ing multiple servers to answer requests and answering not-
interfering requests out-of-order [27, 30, 34]. While DARE
does not consider these optimizations, we believe they could
be added to our design with moderate effort. Also, highly
scalable systems, such as distributed hash tables, offer
high throughput by relaxing the consistency model [11, 28].
DARE’s scalability is limited since it guarantees strong con-
sistency for both reads and writes.

Finally, our fine-grained failure model, where remote
CPUs can fail but their memory is still usable, is very similar
to Disk Paxos [15]. Our work focuses on the fast implemen-
tation of this model with minimal overheads over realistic
RDMA systems. Also, the idea of an in-memory RSM has
been analyzed before [1, 29]. Yet, most practical systems
utilize disks for saving the state on stable storage [20, 35],
resulting in higher latency; while we can do this as well, we
argue that it may not be necessary to achieve high relia-
bility. Other systems reduce the latency by replacing disk
storage with NVRAM; for example, CORFU uses a cluster
of flash devices to offer a shared log abstraction [3]; however,
it requires an RSM for reconfiguration.

8. DISCUSSION
Does it scale to thousands of servers? Leader-based

RSM protocols are limited in scalability due to their depen-
dency on consensus. Thus, DARE is intended to store meta-
data of more complex operations. A strategy to increase
scalability would be partitioning data into multiple (reli-
able) DARE groups and delivering client requests through a
routing mechanism [41]. Yet, routing requests that involve
multiple groups would require consensus.

What about stable storage? Using stable storage,
such as RAID systems, can further increase data reliabil-
ity. Yet, waiting for requests to commit to disk would be
too slow for normal latency-critical operations. While our
protocol can easily be extended to facilitate this (one could
even use additional InfiniBand disk storage or NVRAM tar-
gets directly), we currently only consider to periodically save
the SM to disk. In case of a very unlikely catastrophic fail-

ure (more than half of the servers fail), one may still be able
to retrieve from disk the slightly outdated SM. This is con-
sistent with the behavior of most file-system caches today.

Can weaker consistency requirements be sup-
ported? DARE reads could be sped up significantly if any
server could answer requests (not only the leader). This
would also disencumber the leader who could process writes
faster; yet, clients may read an outdated version of the data.

9. CONCLUSION
We demonstrate how modern RDMA networks can accel-

erate linearizable state machine replication by more than an
order of magnitude compared to traditional TCP/IP-based
protocols. Our RDMA-based RSM protocol and prototype
DARE provide wait-free log replication and utilize RDMA
features in innovative ways. For example, the queue pair
connection management is extensively used to control log
access during leader election and in failure situations.

An analysis of DARE’s reliability shows that only five
DARE servers are more reliable and 35x faster than storing
the data on a RAID-5 system. This is mainly because an
RDMA system is potentially more resilient—despite a fail-
stop failure of the CPU or OS, a server is still accessible
via RDMA. Our implementation allows operators to offer
strongly consistent services in datacenters; we expect that
RDMA-based protocols will quickly become a standard for
performance-critical applications.

Acknowledgements. This work was supported by Mi-
crosoft Research through its Swiss Joint Research Centre.
We thank our shepherd Jay Lofstead, the anonymous re-
viewers; Miguel Castro for his insightful feedback; Timo
Schneider for helpful discussions; and the Systems Group at
ETH Zurich for providing us the InfiniBand machine used
for evaluation.

10. REFERENCES
[1] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection

and consensus in the crash-recovery model. Distributed
Computing, 13(2):99–125, 2000.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating Long Messages into
the LogP Model—One Step Closer Towards a Realistic
Model for Parallel Computation. In Proc. 7th Annual ACM
Symposium on Parallel Algorithms and Architectures,
SPAA ’95, pages 95–105, New York, NY, USA, 1995. ACM.

[3] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber,
M. Wei, and J. D. Davis. Corfu: A shared log design for
flash clusters. In Proc. 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12,
pages 1–1, Berkeley, CA, USA, 2012.

[4] M. Burrows. The Chubby Lock Service for Loosely-coupled
Distributed Systems. In Proc. 7th Symposium on Operating
Systems Design and Implementation, OSDI ’06, pages
335–350, Berkeley, CA, USA, 2006.

[5] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. In Proc. 3rd Symposium on Operating Systems
Design and Implementation, OSDI ’99, pages 173–186,
Berkeley, CA, USA, 1999.

[6] T. D. Chandra and S. Toueg. Unreliable Failure Detectors
for Reliable Distributed Systems. J. ACM, 43(2):225–267,
Mar. 1996.

[7] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID: High-performance, Reliable Secondary
Storage. ACM Comput. Surv., 26(2):145–185, June 1994.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking Cloud Serving Systems with
YCSB. In Proc. 1st ACM Symposium on Cloud

Computing, SoCC ’10, pages 143–154, New York, NY,
USA, 2010. ACM.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s
Globally-distributed Database. In Proc. 10th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’12, pages 251–264, Berkeley, CA,
USA, 2012.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available
Key-value Store. SIGOPS Oper. Syst. Rev., 41(6):205–220,
Oct. 2007.

[12] J. Domke, T. Hoefler, and S. Matsuoka. Fail-in-place
Network Design: Interaction Between Topology, Routing
Algorithm and Failures. In Proc. International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’14, pages 597–608, Piscataway, NJ, USA,
2014. IEEE Press.

[13] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast Remote Memory. In Proc. 11th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’14, pages 401–414, Berkeley, CA,
USA, 2014.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of Distributed Consensus with One Faulty
Process. J. ACM, 32(2):374–382, Apr. 1985.

[15] E. Gafni and L. Lamport. Disk Paxos. Distrib. Comput.,
16(1):1–20, Feb. 2003.

[16] R. Gerstenberger, M. Besta, and T. Hoefler. Enabling
Highly-scalable Remote Memory Access Programming with
MPI-3 One Sided. In Proc. International Conference on
High Performance Computing, Networking, Storage and
Analysis, SC ’13, pages 53:1–53:12, New York, NY, USA,
2013. ACM.

[17] Global Scientific Information and Computing Center.
Failure History of TSUBAME2.0 and TSUBAME2.5, 2014.

[18] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer,
and F. Cappello. Modeling and Tolerating Heterogeneous
Failures in Large Parallel Systems. In Proc. of 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 45:1–45:11, New York, NY, USA, 2011. ACM.

[19] M. P. Herlihy and J. M. Wing. Linearizability: A
Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[20] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In Proc. 2010 USENIX Conference on USENIX
Annual Technical Conference, USENIX ATC’10, pages
11–11, Berkeley, CA, USA, 2010.

[21] InfiniBand Trade Association. InfiniBand Architecture
Specification: Volume 1, Release 1.2.1. 2007.

[22] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang,
M. Wasi-ur Rahman, N. S. Islam, X. Ouyang, H. Wang,
S. Sur, and D. K. Panda. Memcached Design on High
Performance RDMA Capable Interconnects. In Proc. 2011
International Conference on Parallel Processing, ICPP ’11,
pages 743–752, Washington, DC, USA, 2011.

[23] J. Kirsch and Y. Amir. Paxos for System Builders: An
Overview. In Proc. 2nd Workshop on Large-Scale
Distributed Systems and Middleware, LADIS ’08, pages
3:1–3:6, New York, NY, USA, 2008. ACM.

[24] L. Lamport. The implementation of reliable distributed
multiprocess systems. Computer Networks (1976), 2(2):95
– 114, 1978.

[25] L. Lamport. The Part-time Parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[26] L. Lamport. Paxos Made Simple. SIGACT News,
32(4):51–58, Dec. 2001.

[27] L. Lamport. Generalized Consensus and Paxos, 2005.

[28] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang,
A. Rajendran, Z. Zhang, and I. Raicu. ZHT: A
Light-Weight Reliable Persistent Dynamic Scalable
Zero-Hop Distributed Hash Table. In Proc. 2013 IEEE
27th International Symposium on Parallel and Distributed
Processing, IPDPS ’13, pages 775–787, Washington, DC,
USA, 2013.

[29] B. Liskov and J. Cowling. Viewstamped Replication
Revisited. Technical Report MIT-CSAIL-TR-2012-021,
MIT, July 2012.

[30] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building Efficient Replicated State Machines for WANs. In
Proc. 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 369–384,
Berkeley, CA, USA, 2008.

[31] C. D. Martino, F. Baccanico, Z. Kalbarczyk, R. Iyer,
J. Fullop, and W. Kramer. Lessons Learned From the
Analysis of System Failures at Petascale: The Case of Blue
Waters. Jun 2014.

[32] C. Mitchell, Y. Geng, and J. Li. Using One-sided RDMA
Reads to Build a Fast, CPU-efficient Key-value Store. In
Proc. 2013 USENIX Conference on Annual Technical
Conference, USENIX ATC’13, pages 103–114, Berkeley,
CA, USA, 2013.

[33] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d.
Supinski. Design, Modeling, and Evaluation of a Scalable
Multi-level Checkpointing System. In Proc. 2010
ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010.

[34] I. Moraru, D. G. Andersen, and M. Kaminsky. There is
More Consensus in Egalitarian Parliaments. In Proc. 24th
ACM Symposium on Operating Systems Principles, SOSP
’13, pages 358–372, New York, NY, USA, 2013. ACM.

[35] D. Ongaro and J. Ousterhout. In Search of an
Understandable Consensus Algorithm. In 2014 USENIX
Annual Technical Conference, USENIX ATC’14,
Philadelphia, PA, June 2014.

[36] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
Trends in a Large Disk Drive Population. In Proc. 5th
USENIX Conference on File and Storage Technologies,
FAST ’07, pages 2–2, Berkeley, CA, USA, 2007.

[37] J. S. Plank, A. L. Buchsbaum, and B. T. Vander Zanden.
Minimum Density RAID-6 Codes. Trans. Storage,
6(4):16:1–16:22, June 2011.

[38] M. Poke and T. Hoefler. DARE: High-Performance State
Machine Replication on RDMA Networks (Extended
Version). http://spcl.inf.ethz.ch/Research/Parallel_
Programming/DARE, 2015.

[39] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin,
B. R. de Supinski, and S. Matsuoka. Design and Modeling
of a Non-blocking Checkpointing System. In Proc.
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12,
pages 19:1–19:10, Los Alamitos, CA, USA, 2012.

[40] F. B. Schneider. Implementing Fault-tolerant Services
Using the State Machine Approach: A Tutorial. ACM
Comput. Surv., 22(4):299–319, Dec. 1990.

[41] P. Unterbrunner, G. Alonso, and D. Kossmann. High
Availability, Elasticity, and Strong Consistency for
Massively Parallel Scans over Relational Data. The VLDB
Journal, 23(4):627–652, Aug. 2014.

