
Communication-Centric Optimizations by
Dynamically Detecting Collective Operations

Torsten Hoefler
Department of Computer Science

University of Illinois at Urbana-Champaign
htor@illinois.edu

Timo Schneider
Department of Computer Science

Chemnitz University of Technology
timos@cs.tu-chemnitz.de

Abstract
The steady increase of parallelism in high-performance comput-
ing platforms implies that communication will be most important
in large-scale applications. In this work, we tackle the problem
of transparent optimization of large-scale communication patterns
using online compilation techniques. We utilize the Group Oper-
ation Assembly Language (GOAL), an abstract parallel dataflow
definition language, to specify our transformations in a device-
independent manner. We develop fast schemes that analyze data-
flow and synchronization semantics in GOAL and detect if parts
of the (or the whole) communication pattern express a known col-
lective communication operation. The detection of collective op-
erations allows us to replace the detected patterns with highly op-
timized algorithms or low-level hardware calls and thus improve
performance significantly. Benchmark results suggest that our tech-
nique can lead to a performance improvement of orders of magni-
tude compared with various optimized algorithms written in Co-
Array Fortran. Detecting collective operations also improves the
programmability of parallel languages in that the user does not have
to understand the detailed semantics of high-level communication
operations in order to generate efficient and scalable code.

Categories and Subject Descriptors D. Software [D.1. PRO-
GRAMMING TECHNIQUES]: D.1.3 Concurrent Programming,
Parallel Programming

General Terms Performance, Languages

Keywords Collective Communication, Parallel Compiler Opti-
mization, Parallel Dataflow

1. Introduction
Most of today’s large-scale parallel codes are implemented in a
message-passing programming model using the Message Passing
Interface (MPI) standard. MPI offers a large set of predefined com-
munication patterns as collective operations. However, parallel pro-
grammers sometimes use suboptimal point-to-point algorithms to
implement collective semantics. One reason may be that the pro-
grammer found a particuler point-to-point algorithm to be faster
than the collective implementation on a particuler machine. In addi-
tion, other programming paradigms, such as PGAS languages [5, 7]

Copyright is held by the author/owner(s).
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
ACM 978-1-4503-1160-1/12/02.

or declarative parallel languages provide a conceptually simpler in-
terface and rely on the compiler or the underlying communication
layer for optimizations.

In this work, we describe a detection scheme that can recognize
arbitrary collective semantics in parallel codes. This scheme can be
used to “search and replace” suboptimal implementations of collec-
tive operations during runtime. We use a parallel dataflow analysis
to identify the collective semantics and outline automatic transfor-
mation schemes to dynamically optimize such detected operations.
We utilize GOAL [3] as an intermediate representation (IR) for ba-
sic communication operations such as send and receive and the data
dependencies between those operations. We show a detailed exam-
ples how such IR representations can be extracted from a PGAS
code.

1.1 Related Work
Previous works that attempted to detect collective operations per-
formed the detection post-mortem by analyzing traces of the pro-
gram run. Knüpfer et al. proposed a scheme to detect alltoall, scat-
ter, gather, and broadcast by analyzing point-to-point patterns in
message traces [4]. Kranzlmüller et al. investigate the detection of
repetitive communication patterns in [6]. Like Knüpfer, they only
look at single point-to-point operations in MPI traces such that for-
warding of data through proxy processes cannot be detected in this
scheme.

In this work, we propose a scheme that is guaranteed to detect
all collective operations on the full process set in a communication
schedule.

2. An Example Transformation
To demonstrate the applicability to PGAS languages we use an
example from the MG code—the multigrid kernel from the NAS
benchmark suite that was ported to Co-Array Fortran (CAF) [2]:

! omitted initializations for brevity
if (this image () .eq.iimage) then

ibuf (1:n) = ii (1:n)
call sync all()

else
call sync all()
ii(1:n) = ibuf(1:n)[iimage]

endif
call sync all()

The compilation of the pCFG, similarly as described in [1],
would be used to track the dataflow from one image to another.
A dataflow analysis identifies the buffer ibuf(1:n) on process
iimage as source and the buffers ii(1:n) on all images as destina-
tions of the flow. The compiler can now simply insert send and re-

ceive statements at the synchronization points (sync all()). This
would then result in the following GOAL code1:

! omitted initializations for brevity
if (this image () .eq.iimage) then

ibuf (1:n) = ii (1:n)
endif
call GOAL Create(g)
if (this image () .eq.iimage) then

do dst=0, num procs-1
if (dst.ne.iimage) call GOAL Send(g, ibuf, n*8, dst, ierr)

end do
else

call GOAL Recv(g,ii,n*8,GOAL ANY SOURCE,ierr)
endif
call GOAL Compile(g, sched)

The serial compiler transformation to emit the communication
schedule is outside the scope of this work. We now discuss how to
recognize the logical broadcast and replace the messaging sched-
ule in the GOAL compile step accordingly. The CAF NAS codes
include numerous occurrences of logical broadcast and allreduce
calls similar to the one demonstrated above because the presented
code is a natural way to express data movement in PGAS lan-
guages.

2.1 Dataflow Analysis
The GOAL Compile() step above is executed during runtime and
allows for dynamic optimizations, similar to the well-known com-
mit phase in MPI Datatypes. A dataflow analysis computes the
flows from all original sends to all final receives. An original send
is a send operation that specifies local memory that has not been
received from another process and a final receive is a receive that
specifies user memory as destination.

In the following, we assume that the transformed example CAF
code is running with six processes. The compile call is collective
across all images (processes) and collects the complete global com-
munication graph. The left part of Figure 1 shows the global com-
munication graph for the linear broadcast as collected in compile.
Each arrow represents a send from the source buffer to the destina-
tion buffer. The source buffer and process for each final destination
is encoded as a tuple and a simple pattern matching on this tuple
determines that the pattern (or a subset) is a known collective oper-
ation. In this case, all processes receive data from a single buffer at
rank iimage, i.e., iimage is source of a broadcast operation. Our
scheme detects all collective operations defined in MPI.

0
ibuf

1
ii

2
ii

4
ii

3
ii

5
ii

semantically

0
ibuf

1
ii

3
ii

2
ii

5
ii

4
ii

equivalent

Figure 1. Example Schedules.

2.2 Schedule Transformation
The right part of Figure 1 shows a semantically equivalent commu-
nication graph in a tree shape. This graph was automatically trans-
formed after the broadcast operation was detected by removing all
communication edges of the broadcast and inserting a well-known
binomial tree algorithm into the schedule.

1 This code has been corrected after the original publication

2.3 Experimental Evaluation
We now compare the performance of the broadcast as shown in the
CAF example code with an optimized implementation on a Cray
XK6 system. We used the Cray 4.0.30 Programming Environment
and the communicated data size was a single double value. Figure 2

2
5

2
0

5
0

2
0
0

Number of Processes

B
c
a

s
t

R
u

n
ti
m

e
 [

u
s
]

16 32 64 128 256 512 1k 2k 4k

linear
optimized

Figure 2. Naive vs. Optimized Performance in Cray XK6.

compares the performance of both implementations. The optimized
implementation is up to a factor of 26 faster than the simple CAF
implementation.

3. Discussion and Conclusion
We demonstrated novel dataflow techniques for the automatic and
transparent detection and transformations of collective operations.
These techniques can be used to detect arbitrary collective opera-
tions by pattern matching data-movement from source to destina-
tion buffers in arbitrary communication topologies. The techniques
can easily extended to define semantic equivalence of other com-
munication patterns and enable automatic transformations on the
communication graph. For example, detecting collective operations
on subsets of processes is a harder problem and left for future work.

Acknowledgments
This work was supported by the DOE Office of Science, Advanced Sci-
entific Computing Research, under award number DE-FC02-10ER26011,
program manager Sonia Sachs.

References
[1] G. Bronevetsky. Communication-sensitive static dataflow for parallel

message passing applications. In Proc. of the 7th IEEE/ACM Intl. Symp.
on Code Generation and Optimization, CGO ’09, pages 1–12, 2009.

[2] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-
Ghazawi, A. Mohanti, Y. Yao, and D. Chavarrı́a-Miranda. An evalu-
ation of global address space languages: co-array fortran and unified
parallel c. In Proc. of the tenth ACM SIGPLAN Symp. on Princ. and
Practice of Par. Progr., PPoPP ’05, pages 36–47. ACM, 2005.

[3] T. Hoefler, C. Siebert, and A. Lumsdaine. Group Operation Assembly
Language - A Flexible Way to Express Collective Communication. In
38th Intl. Conf. on Par. Proc., ICPP’09, 2009.

[4] A. Knüpfer, D. Kranzlmüller, and W. E. Nagel. Detection of Collective
MPI Operation Patterns. In Proc. of EuroPVM/MPI’04, volume 3241
of LNCS, pages 259–267. 2004.

[5] R. W. Numrich and J. Reid. Co-array fortran for parallel programming.
SIGPLAN Fortran Forum, 17:1–31, August 1998. ISSN 1061-7264.

[6] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. d. Supin-
ski, and D. J. Quinlan. Detecting Patterns in MPI Communication
Traces. In Proc. of the 37th Intl. Conf. on Par. Proc., ICPP’08, pages
230–237, 2008.

[7] UPC Consortium. UPC Language Specifications, v1.2. Technical
report, Lawrence Berkeley National Laboratory, 2005. LBNL-59208.

