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Abstract—Over the last decade, CUDA and the underlying
GPU hardware architecture have continuously gained popularity
in various high-performance computing application domains
such as climate modeling, computational chemistry, or machine
learning. Despite this popularity, we lack a single coherent
programming model for GPU clusters. We therefore introduce
the dCUDA programming model, which implements device-
side remote memory access with target notification. To hide
instruction pipeline latencies, CUDA programs over-decompose
the problem and over-subscribe the device by running many more
threads than there are hardware execution units. Whenever a
thread stalls, the hardware scheduler immediately proceeds with
the execution of another thread ready for execution. This latency
hiding technique is key to make best use of the available hardware
resources. With dCUDA, we apply latency hiding at cluster scale
to automatically overlap computation and communication. Our
benchmarks demonstrate perfect overlap for memory bandwidth-
bound tasks and good overlap for compute-bound tasks.

Index Terms—Distributed memory, gpu, latency hiding, pro-
gramming model, remote memory access

I. INTRODUCTION

Today, we typically target GPU clusters using two program-
ming models that separately deal with inter-node and single-
node parallelization. For example, we may use MPI [7] to
move data in between nodes and CUDA [19] to implement the
on-node computation. MPI provides point-to-point communi-
cation and collectives that allow to synchronize concurrent
processes executing on different cluster nodes. Using a fork-
join model, CUDA allows to offload compute kernels from
the host to the massively parallel device. To combine the two
programming models, MPI-CUDA programs usually alternate
sequentially between on-node kernel invocations and inter-
node communication. While being functional, this approach
also entails serious disadvantages.

The main disadvantage is that application developers need
to know the concepts of both programming models and
understand several intricacies to work around their inconsis-
tencies. For example, the MPI software stack in meantime
has been adapted to support direct device-to-device [24] data
transfers. However, the control path remains on the host which
causes frequent host-device synchronizations and redundant
data structures on host and device.

On the other hand, the sequential execution of on-node
computation and inter-node communication inhibits efficient

utilization of the costly compute and network hardware. To
mitigate this problem, application developers can implement
manual overlap of computation and communication [23], [27].
In particular, there exist various approaches [13], [22] to
overlap the communication with the computation on an inner
domain that has no inter-node data dependencies. However,
these code transformations significantly increase code com-
plexity which results in reduced real-world applicability.

High-performance system design often involves trading
off sequential performance against parallel throughput. The
architectural difference between host and device processors
perfectly showcases the two extremes of this design space.
Both architectures have to deal with the latency of hardware
components such as memories or floating point units. While
the host processor employs latency minimization techniques
such as prefetching and out-of-order execution, the device
processor employs latency hiding techniques such as over-
subscription and hardware threads.

To avoid the complexity of handling two programming
models and to apply latency hiding at cluster scale, we in-
troduce the dCUDA (distributed CUDA) programming model.
We obtain a single coherent software stack by combining
the CUDA programming model with a significant subset of
the remote memory access capabilities of MPI [12]. More
precisely, a global address space and device-side put and get
operations enable transparent remote memory access using the
high-speed network of the cluster. We thereby make use of
over-decomposition to over-subscribe the hardware with spare
parallelism that enables automatic overlap of remote memory
accesses with concurrent computation. To synchronize the
program execution, we additionally provide notified remote
memory access operations [3] that after completion notify the
target via notification queue.

We evaluate the dCUDA programming model using a
stencil code, a particle simulation, and an implementation
of sparse matrix-vector multiplication. To compare perfor-
mance and usability, we implement dCUDA and MPI-CUDA
versions of these mini-applications. Two out of three mini-
applications show excellent automatic overlap of communica-
tion and computation. Hence, application developers not only
benefit from the convenience of device-side remote memory

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 ©2016 IEEE



access. More importantly, dCUDA enables automatic overlap
of computation and communication without costly, manual
code transformations. As dCUDA programs are less network
latency sensitive, our development might even motivate more
throughput oriented network designs. In brief, we make the
following contributions:

• We implement the first device-side communication library
that provides MPI like remote memory access operations
and target notification for GPU clusters.

• We design the first GPU cluster programming model that
makes use of over-subscription and hardware threads to
automatically overlap inter-node communication with on-
node computation.

II. PROGRAMMING MODEL

The CUDA programming model and the underlying hard-
ware architecture have proven excellent efficiency for parallel
compute tasks. To achieve high performance, CUDA programs
offload the computation to an accelerator device with many
throughput optimized compute cores that are over-subscribed
with many more threads than they have execution units. To
overlap instruction pipeline latencies, in every clock cycle the
compute cores try to select among all threads in flight some
that are ready for execution. To implement context switches
on a clock-by-clock basis, the compute cores split the register
file and the scratchpad memory among the threads in flight.
Hence, the register and scratchpad utilization of a code effec-
tively limit the number of threads in flight. However, having
enough parallel work is of key importance to fully overlap
the instruction pipeline latencies. Little’s law [1] states that
this minimum required amount of parallel work corresponds
to the product of bandwidth and latency. For example, we need
200kB of data on-the-fly to fully utilize a device memory with
200GB/s bandwidth and 1µs latency. Thereby, 200kB translate
to roughly 12,000 threads in flight each of them accessing
two double precision floating point values at once. We show
in Section IV that the network of our test system has 6GB/s
bandwidth and 19µs latency. We therefore need 114kB of data
or roughly 7,000 threads in flight to fully utilize the network.
Based on the observation that typical CUDA programs make
efficient use of the memory bandwidth, we conclude there
should be enough parallelism to overlap network operations.
Consequently, we suggest to use hardware supported overlap
of computation and communication to program distributed
memory systems.

A. Distributed Memory

One main challenge of distributed memory programming
is the decomposition and distribution of program data to the
different memories of the machine. Currently, most distributed
memory programming models rely on manual domain decom-
position and data synchronization since handling distributed
memory automatically is hard.

Today, MPI is the most widely used distributed memory pro-
gramming model in high-performance computing. Many codes
thereby rely on two sided communication that simultaneously

involves sender and receiver. Unfortunately, this combination
of data movement and synchronization is a bad fit for extend-
ing the CUDA programming model. On the one hand, CUDA
programs typically perform many data movements in the form
of device memory accesses before synchronizing the execution
using global barriers. On the other hand, CUDA programs
over-subscribe the device by running many more threads than
there are hardware execution units. As sender and receiver
might not be active at the same time, two sided communication
is hardly practical. To avoid active target synchronization, MPI
alternatively provides one sided put and get operations that
implement remote memory access [12] using a mapping of
the distributed memory to a global address space. We believe
that remote memory access programming is a natural extension
of the CUDA programming model.

Finally, programming large distributed memory machines
requires more sophisticated synchronization mechanisms than
the barriers implemented by CUDA. We propose a notification
based synchronization infrastructure [3] that after completion
of the put and get operations enqueues notifications on the
target. To synchronize, the target waits for incoming notifica-
tions enqueued by concurrent remote memory accesses. This
queue based system enables to build linearizable semantics.

B. Combining MPI & CUDA

CUDA programs structure the computation using kernels,
which embody phases of concurrent execution followed by
result communication and synchronization. More precisely,
kernels write to memory with relaxed consistency and only
after an implicit barrier synchronization at the end of the kernel
execution the results become visible to the entire device. To
expose parallelism, kernels use a set of independent thread
groups called blocks that provide memory consistency and
synchronization among the threads of the block. The blocks
are scheduled to the different compute cores of the device.
Once a block is running its execution cannot be interrupted as
todays devices do not support preemption [30]. While each
compute core keeps as many blocks in flight as possible,
the number of concurrent blocks is constraint by hardware
limits such as register file and scratchpad memory capacity.
Consequently, the block execution may be partly sequential
and synchronizing two blocks might be impossible as one runs
after the other.

MPI programs expose parallelism using multiple processes
called ranks that may execute on the different nodes of a
cluster. Similar to CUDA, we structure the computation in
phases of concurrent execution followed by result communi-
cation and synchronization. In contrast to CUDA, we write
the results to a distributed memory and we use either point-
to-point communication or remote memory accesses to move
data between the ranks.

Todays MPI-CUDA programs typically assign one rank to
every device and whenever necessary insert communication in
between kernel invocations. However, stacking the communi-
cation and synchronization mechanisms of two programming
models makes the code unnecessarily complex. Therefore, we
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Fig. 1: Block scheduling for MPI-CUDA and dCUDA.

suggest to combine the two programming models into a single
coherent software stack.

dCUDA programs implement the application logic using
a single CUDA kernel that performs explicit data exchange
during execution. To enable synchronization, we limit the over-
subscription to the maximal number of concurrent hardware
threads supported by the device. To move data between blocks
no matter if they run on the same or on remote devices,
we use device-side remote memory access operations. We
identify each block with a unique rank identifier that allows
to address data on the entire cluster. We map MPI ranks
to CUDA blocks, as they represent the most coarse grained
execution unit that benefits from automatic latency overlap
due to hardware threading. Hereafter, we use the terms rank
and block interchangeably. To synchronize the rank execution,
we implement remote memory access operations with target
notification. An additional wait method finally allows to syn-
chronize the target execution with incoming notifications.

Figure 1 compares the execution of an MPI-CUDA program
to its dCUDA counterpart. We illustrate the program execu-
tion on two dual-core devices each of them over-subscribed
with two blocks per core. We indicate communication using
black arrows and synchronization using black lines. Both
programs implement sequential compute and communication
phases. While the dCUDA program uses over-subscription to
automatically overlap the communication and compute phases
of competing blocks, the MPI-CUDA program leaves this
optimization potential unused.

C. Example

Figure 2 shows an example program that uses dCUDA
to implement a two-dimensional stencil computation. Using
pointers adjusted to rank local memory, the program reads
from an ”in” array and writes to an ”out” array. To distribute
the work, the program performs a one-dimensional domain
decomposition in the j-dimension. To satisfy all data depen-
dencies, in every iteration the program exchanges one halo line
with the left and right neighbor rank. For illustration purposes,

1 __shared__ dcuda_context ctx;
2 dcuda_init(param, ctx);
3 dcuda_comm_size(ctx, DCUDA_COMM_WORLD, &size);
4 dcuda_comm_rank(ctx, DCUDA_COMM_WORLD, &rank);
5
6 dcuda_win win, wout;
7 dcuda_win_create(ctx, DCUDA_COMM_WORLD,
8 &in[0], len + 2 * jstride, &win);
9 dcuda_win_create(ctx, DCUDA_COMM_WORLD,

10 &out[0], len + 2 * jstride, &wout);
11
12 bool lsend = rank - 1 >= 0;
13 bool rsend = rank + 1 < size;
14
15 int from = threadIdx.x + jstride;
16 int to = from + len;
17
18 for (int i = 0; i < steps; ++i) {
19 for (int idx = from; idx < to; idx += jstride)
20 out[idx] = -4.0 * in[idx] +
21 in[idx + 1] + in[idx - 1] +
22 in[idx + jstride] + in[idx - jstride];
23
24 if (lsend)
25 dcuda_put_notify(ctx, wout, rank - 1,
26 len + jstride, jstride, &out[jstride], tag);
27 if (rsend)
28 dcuda_put_notify(ctx, wout, rank + 1,
29 0, jstride, &out[len], tag);
30
31 dcuda_wait_notifications(ctx, wout,
32 DCUDA_ANY_SOURCE, tag, lsend + rsend);
33
34 swap(in, out); swap(win, wout);
35 }
36
37 dcuda_win_free(ctx, win);
38 dcuda_win_free(ctx, wout);
39 dcuda_finish(ctx);

Fig. 2: Stencil program with halo exchange communication.

the program listing highlights all methods and types imple-
mented by the dCUDA framework. The calling conventions
require that all threads of a block call the framework methods
collectively with the same parameter values. To convert the
example into a working program, we need additional boiler-
plate initialization logic that, among other things, performs the
input/output and the domain decomposition.

On line 2, we initialize the context object using the ”param”
kernel parameter that contains framework information such as
the notification queue address. The context object stores the
shared state used by the framework methods.

On lines 3–4, we get size and identifier of the rank with
respect to the world communicator. A communicator corre-
sponds to a set of ranks that participate in the computation.
Thereby, each rank has a unique identifier with respect to this
communicator. We currently provide two predefined commu-
nicators that either represent all ranks of the cluster called
”world communicator” or all ranks of the device called ”device
communicator”.

On lines 6–10, we create two windows that provide remote
memory access to the ”in” and ”out” arrays. When creating a
window all participating ranks register their own local memory
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range with the window. The individual window sizes may
differ and windows of shared memory ranks might overlap.
We use windows to define a global address space where
rank, window, offset tuples denote global distributed memory
addresses. Figure 3 illustrates the overlapping windows of
the example program. Each cell represents the memory of
one j-position that stores ”jstride” values in the i-dimension.
Colors mark cells that belong to the domain boundaries of the
rank. More precisely, the windows of shared memory ranks
overlap and the windows of distributed memory ranks allocate
additional halo cells that duplicate the domain boundaries.

On lines 24–30, we move the domain boundaries of the
”out” array to the windows of the neighbor ranks. We address
the remote memory using the window, rank, and offset pa-
rameters. Once the data transfer completes, the put operation
additionally places a notification in the notification queue
of the target rank. We can mark the notification with a tag
that, in case of more complex communication patterns, allows
disentangling different notification sources.

On lines 31–32, we wait until the notification of the neigh-
boring ranks arrive in the notification queue. Our program
waits for zero, one, or two notifications depending on the val-
ues of the lsend and rsend flags. We consider only notifications
with specific window, rank, and tag values. To match multiple
notifications at once, we can optionally use wildcard values
that allow to match notifications with any window, rank, or
tag value.

On lines 37–39, we free the window objects to cleanup after
the program execution. Overall, our implementation closely
follows the MPI remote memory access specification [12].
On top of the functionality demonstrated by the example, we
implement the window flush operation that allows to wait
until all pending window operations are done. Furthermore,
we cannot only put data to remote windows but also get data
from remote windows. Finally, the barrier collective allows to
globally synchronize the rank execution.

D. Discussion

Compared to MPI-CUDA, dCUDA slightly simplifies the
code by moving the communication control to the device.
For example, we have direct access to the size information of
dynamic data structures and there is less need for separate pack
kernels that bundle data for the communication phase. While
the distributed memory handling causes most of the code
complexity for both programming models, with dCUDA we
remove one synchronization layer and implement everything
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Fig. 4: Architecture overview of the dCUDA runtime system.

with a distributed memory view. We may thereby generate
redundant put and get operations in shared memory, but our
runtime can optimize them out.

III. IMPLEMENTATION

Moving the MPI functionality to the device-side raises mul-
tiple challenging implementation questions. To our knowledge
so far there is no device-side MPI library, which might be
partly attributed to the fact that calling MPI from the kernel
conflicts with multiple CUDA mantras. On the one hand, the
weak consistency memory model prevents shared memory
communication during kernel execution. On the other hand,
the missing block scheduling guarantees complicate the block
synchronization.

A. Architecture Overview

Our research prototype consists of a device-side library
that implements the actual programming interface and a host-
side runtime system that controls the communication. More
precisely, we run one library instance per rank and one runtime
system instance per device. Connected via MPI, the runtime
system instances control data movement and synchronization
of any two ranks in the system. However, the data movement
itself either takes place locally on the device or using direct
device-to-device communication [24].

While a design without host involvement seems desirable,
existing attempts to control the network interface card directly
from the device are not promising [21] in terms of performance
and system complexity. Furthermore, the host is a good fit for
the synchronization required to order incoming notifications
from different source ranks. To avoid device-side synchro-
nization, we go even one step further and loop device local
notifications through the host as well.

Moving data between ranks running on the same device
requires memory consistency. In CUDA atomics are the only
coherent memory operations at device-level. However, we did
not encounter memory inconsistencies on Kepler devices with
disabled L1 cache (which is the default setting). When polling
device memory, we additionally use the volatile keyword to
make sure the compiler issues a load instruction for every
variable access.



To implement collectives such as barrier synchroniza-
tion [31], all participating ranks have to be scheduled ac-
tively. Otherwise, the collective might deadlock. As discussed
in Section II-B, hardware constraints, such as the register file
size and the lack of preemption, result in sequential block
execution once we exceed the maximal number of concurrent
hardware threads. Our implementation therefore limits the
number of blocks to the maximum the device can have in
flight at once. However, we might still encounter starvation
as there are no guarantees regarding the hardware thread
scheduling implemented by the compute cores. For example,
the compute cores might only run the threads that are waiting
for notifications and pause the threads that send notifications.

Figure 4 illustrates the software architecture of the dCUDA
runtime system. A host-side event handler starts and controls
the execution of the actual compute kernel. To communicate
with the blocks of the running kernel, we create separate block
manager instances that interact with the device-side library
components using queues implemented as circular buffers.
The event handler dispatches incoming remote memory access
requests to the matching target block manager and continu-
ously invokes the block manager instances to process incoming
commands and pending MPI requests. More precisely, using
the command queue the device-side library triggers block
manager actions such as window creation, notified remote
memory access, and barrier synchronization. To guarantee
progress using a single worker thread, the block manager
implements these actions using non-blocking MPI operations.
Once the pending MPI request signals completion, the block
manager notifies the device-side library using separate queues
to acknowledge commands and to post notifications. An addi-
tional logging queue allows to print debug information during
kernel execution. The device-side library uses a context object
to store shared state such as queue or window information.
Most of the times, the device-side library initiates actions
on the host and waits for their completion. However, all
remote memory accesses to shared memory ranks are directly
executed on the device. We thereby perform no copy if source
and target address of the remote memory access are identical,
which commonly happens for overlapping shared memory
windows. Furthermore, the device-side library implements the
notification matching.

B. Communication Control

Figure 5 shows the end-to-end control flow for a distributed
memory put operation with target notification. Initially, the
origin device-library assembles a tuple containing data pointer,
size, target rank, target window and offset, tag, and flush
identifier of the transfer and 1) sends this meta information to
the associated block manager. Using two non-blocking sends,
2) the origin block manager forwards the meta information
to the target event handler and 3) copies the actual data
directly from the origin device memory to the target device
memory. Once the MPI requests signal that the send buffers
are not in use anymore, 4) the origin block manager frees the
meta information and updates the flush counter on the device.
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Fig. 5: Sequence diagram of a notified distributed memory put.

Using pre-posted receives, the target event handler waits for
meta information arriving from an arbitrary origin rank and
5) immediately forwards the incoming meta information to
the associated target block manager. Finally, 6) the target
block manager posts a non-blocking receive for the actual data
transfer and 7) after completion notifies the target device-side
library and frees the meta information.

The control flow for shared memory is simpler. Initially, the
origin device-side library performs the actual data transfer. We
thereby perform no copy in case source and target pointers are
identical. Finally, we notify the target device-side library via
the origin block manager.

The device-side library uses a counter to generate unique
window identifiers. These counters get out of sync whenever
only a subset of the ranks participates in the window creation.
The block manager therefore uses a hash map to translate the
device-side identifiers to globally valid identifiers. Similarly,
we use a counter to generate unique flush identifiers for remote
memory access operations. The block manager keeps a history
of the processed remote memory access operations and updates
the device about the progress using a single variable set to the
flush identifier of the last processed remote memory access
operation whose predecessors are done as well.

C. Performance Optimization

As an efficient host-device communication is of key impor-
tance for the performance of our runtime system, we spend
considerable effort in optimizing queue design and notification
matching. Due to the Little’s law assumption, we rather focus
on throughput than on latency optimizations.

Memory Mapping: To move large amounts of data be-
tween host and device, the copy methods provided by the
CUDA runtime are the method of choice. However, the DMA
engine setup causes a considerable startup latency. Alterna-
tively, we can directly access the device memory mapped in
the address space of the host memory and vice versa. This
approach is a much better fit for the small data transfers
prevalent in queue operations. While CUDA out of the box
provides support to map host memory in the device address
space, we can map device memory in the host address space
using an additional kernel module [26].

Queue Design: On todays machines the PCI-Express link
between host and device is a major communication bottleneck.



We therefore employ a circular buffer based queue design that
provides an enqueue operation with an amortized cost of a
single PCI-Express transaction. To facilitate efficient polling,
we place the circular buffer including its tail pointer in receiver
memory. For example, Figure 4 shows that we allocate the
notification queue in device memory and the command queue
in host memory. To implement the enqueue operation using
a single PCI-Express transaction, we embed an additional
sequence number with every queue entry. The receiver then
determines valid queue entries using the sequence number
instead of the head pointer. Furthermore, we use a credit-
based system to keep track of the available space. The sender
starts with a free counter that is set to the queue size. With
every enqueue operation, we decrement the free counter until
it is zero. To recompute the available space, we then load the
tail pointer from the receiver memory. The number of free
counter updates depends on queue size and queue utilization.
Overall, every enqueue operation requires one PCI-Express
transaction to write the queue entry including its sequence
number and an occasional PCI-Express transaction to update
the free counter. We thereby assume queue entry accesses
using a single vector instruction are atomic. On our test
system, we never encountered inconsistencies when limiting
the queue entry size to the vector instruction width.

Notification Matching: The notification matching is the
most complex device-side library component. Two methods
allow to wait or test for a given number of incoming no-
tifications. We can thereby filter the notifications depending
on window identifier, source rank, and tag [3]. The matching
happens in the order of arrival and after completion we
remove the matched notifications. To fill potential gaps, we
additionally compress the notification queue starting from the
tail. Our implementation performs the matching using eight
threads that work on separate four byte notification chunks. We
read incoming notifications using coalesced reads and once the
sequence number matches each thread compares the assigned
notification chunk to a thread private query value. We initialize
the query value depending on the thread index position with
the window identifier, the source rank, the tag, or with a wild
card value. To determine if the matching was successful, we
reduce the comparison result using shuffle instructions. In case
of a mismatch each thread buffers his notification chunk in a
stack-allocated array. Otherwise, we increment a counter that
keeps track of the successful matches. Finally, we remove the
processed notification from the queue and repeat the procedure
until we have enough successful matches. Once this is done,
we copy the mismatched notifications back from the stack-
allocated array to the queue. We thereby assume the number of
mismatched notifications is low enough for the stack-allocated
array to fit in the L1 cache.

D. Discussion

To make our programming model production ready, addi-
tional modifications may be necessary. For example, we partly
rely on undocumented hardware behavior and we could further
optimize the performance. To develop a more reliable and effi-

cient implementation, we suggest the following improvements
to the CUDA environment.

Scheduling of Computation & Communication: Our pro-
gramming model packs the entire application logic in a single
kernel. As discussed in Section III-A, this approach conflicts
with the scheduling guarantees and the weak memory con-
sistency model of CUDA. For example, we might encounter
starvation because the scheduler does not consider the ranks
that are about to send notifications, or we might work with
outdated data since there is no clean way to guarantee device-
level memory consistency during kernel execution. We sug-
gest an execution model with one master thread per rank
that handles the communication using remote memory access
and notifications. Similar to the dynamic parallelism feature
of CUDA, the master thread additionally launches parallel
compute phases in between the communication phases. To
guarantee memory consistency, our execution model clears
the cache before every compute phase. To prevent starvation,
we suggest a yield call that guarantees execution time for all
other ranks running on the same processing element. Hence,
the master thread can yield the other ranks while waiting
for incoming notifications. Currently, the compute phase with
maximal register usage limits the available parallelism for the
entire application. With the proposed execution model, we can
adapt the number of threads for every compute phase and
increase the overall resource usage.

Notification System: An effective and low overhead noti-
fication system is crucial for the functioning of our program-
ming model. Despite our optimization efforts, the current noti-
fication matching discussed in Section III-C increases register
pressure and code complexity and consequently may impair
the application performance. We suggest to at least partly
integrate the notification infrastructure with the hardware. On
the one hand, the network may send data and notifications
using a single transmission. Low level interfaces, such as
uGNI [14] or InfiniBand Verbs, already provide the necessary
support. On the other hand, the device may provide additional
storage and logic for the notification matching or hardware
support for on-chip notifications.

Communication Control: While we move data directly
from device-to-device, we still rely on the host to control
the communication. We expect that moving this functionality
to the device improves the overall performance of the sys-
tem. Mellanox and NVIDIA recently announced a technology
called GPUDirect Sync [9] that will enable device-side com-
munication control.

IV. EVALUATION

To analyze the performance of our programming model,
we implement a set of microbenchmarks that measure latency,
bandwidth, and the overlap of computation and communica-
tion for compute and memory bound tasks. We additionally
compare the performance of mini-applications implemented
using both dCUDA and MPI-CUDA.



A. Experimental Setup & Methodology

We perform all our experiments on the Greina compute
cluster at the Swiss National Supercomputing Center CSCS.
In total, Greina provides ten Haswell nodes equipped with
one Tesla K80 GPU per node and connected via 4x EDR
Infiniband. Furthermore, we use version 7.0 of the CUDA
toolkit, the CUDA-aware version 1.10.0 of OpenMPI, and the
gdrcopy kernel module [26]. We run all experiments using
a single GPU per node with default device configuration. In
particular, auto boost remains active which makes device-side
time measurements unreliable.

To measure the performance of dCUDA and MPI-CUDA
codes, we time the kernel invocations on the host-side and
collect the maximum execution time found on the different
nodes. In contrast, dCUDA programs pack the application
code in a single kernel invocation that also contains a fair
amount of setup code such as the window creation. To get
a fair comparison, we therefore time multiple iterations and
subtract the setup time estimated by running zero iterations.
Furthermore, we repeat each time measurement multiple times
and compute the median and the nonparametric confidence
interval. More precisely, we perform 20 independent measure-
ments of 100 and 5,000 iterations for the mini-applications and
the microbenchmarks respectively. Our plots visualize the 95%
confidence interval using a gray band.

The dCUDA programming model focuses on multi-node
performance. To eliminate measurement noise caused by
single-node performance variations, we use the same launch
configuration for all kernels (208 blocks per device and 128
threads per block), and we limit the register usage to 63
registers per thread which guarantees that all 208 blocks are
in flight at once.

B. Microbenchmarks

To evaluate latency and bandwidth of our implementation,
we run a ping-pong benchmark that in every iteration moves
a data packet forth and back between two ranks using notified
put operations. We either place the two ranks on the same
device and communicate via shared memory, or we place the
ranks on different devices and communicate via the network.
We then derive the latency as half the execution time of
a single ping-pong iteration and divide the packet size by
the latency to compute the bandwidth. Figure 6 plots the
put-bandwidth for shared and distributed memory ranks as
function of the packet size. The low put-bandwidth of shared
memory ranks can be explained by the fact that a single block
cannot saturate the memory interface of the device. However,
in real-world scenarios hundreds of blocks are active concur-
rently resulting in high aggregate bandwidth. For empty data
packets, we measure a latency of 7.8µs and 19.3µs for shared
and distributed memory respectively. Hence, the latency of a
notified put tops the device memory access latency [17] by one
order of magnitude. We are aware that these numbers motivate
further tuning. However, in the following we demonstrate that
the dCUDA programming model is extremely latency agnostic.
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Fig. 6: Put-bandwidth of shared and distributed memory ranks.
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Fig. 7: Overlap for square root calculation (Newton-Raphson).

The dCUDA programming model promises automatic over-
lap of computation and communication. To measure this effect,
we design a benchmark that iteratively executes a compute
phase followed by a halo exchange phase. To determine
the overlap, we implement runtime switches that allow to
separately disable the compute and halo exchange phases. We
use runtime switches to avoid code generation effects that
might influence the overall performance of the benchmark.
We expect that the execution time of the full benchmark varies
between the maximum of compute and halo exchange time for
perfect overlap and the sum of compute and halo exchange
time for no overlap. To investigate the effect of different
workloads, we additionally implement square root calculation
(Newton-Raphson) and memory-to-memory copy as examples
for compute-bound and memory bandwidth-bound compu-
tations. To demonstrate the overlap of computation and
communication, Figure 7 and Figure 8 compare the execution
time with and without halo exchange for increasing amounts
of computation. An additional horizontal line marks the halo
exchange only time. We run all experiments on eight nodes of
our cluster. Thereby, each halo exchange moves 1kB packets,
each copy iteration moves 1kB of data, and each square root
iteration performs 128 divisions per rank. We measure perfect
overlap for memory bandwidth-bound workloads and good
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Fig. 8: Overlap for memory-to-memory copy.

overlap for compute-bound workloads. We explain the slightly
lower overlap for compute-bound workloads by the fact that
the notification matching itself is relatively compute heavy.

C. Mini-applications

To evaluate the absolute performance of our programming
model, we compare MPI-CUDA and dCUDA variants of
mini-applications that implement a particle simulation, a sten-
cil program, and sparse matrix-vector multiplication. Three
algorithmic motifs that are prevalent in high-performance
computing. The main loops of the MPI-CUDA variants run
on the host, invoke kernels, and communicate using two-sided
MPI, while the main loops of the dCUDA variants run on
the device and communicate using notified remote memory
access. Otherwise, the implementation variants share the entire
application logic and the overall structure. None of them im-
plements manual overlap of computation and communication.

Particle Simulation: Our first mini-application simulates
particles in a two-dimensional space that interact via short-
range repulsive forces. We integrate the particle positions
using simplified Verlet integration considering only forces
between particles that are within a parameterizable cutoff
distance. Just like the particle-in-cell method used for plasma
simulations [5], we decompose our wide rectangular domain
into cells that are aligned along the wide edge of the domain.
Furthermore, we chose the cell width to be lower or equal
to the cutoff distance and consequently only compute forces
between particles that are either in the same cell or in neigh-
boring cells. After each integration step we update the particle
positions and move them to neighboring cells if necessary.

We organize the data using a structure of arrays that hold
position, velocity, and acceleration of the particles. We thereby
assign the cells to fixed-size, non-overlapping index ranges and
use additional counters to keep track of the number of particles
per cell. To deal with non uniform particle distributions among
the cells, we allocate four times more storage than necessary to
fit all particles. To support distributed memory, we decompose
the arrays and allocate an additional halo cell at each sub-
domain boundary.
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Fig. 9: Weak scaling for the particle simulation example.

The main loop of the particle simulation performs the
following steps: 1) we perform a halo cell exchange between
neighboring ranks, 2) we compute the forces and update the
particle positions, 3) we sort out the particles that move to a
neighbor cell, 4) we communicate the particles that move to
a neighbor rank, and 5) we integrate the particles that arrived
from a neighbor cell. To copy the minimal amount of data,
the MPI-CUDA variant continuously fetches the book keeping
counters to the host memory. In contrast, the main loop of the
dCUDA variant runs on the device and has direct access to
all data. Thereby, each rank registers one window per array
that spans the cells assigned to the rank plus two halo cells.
The windows of neighboring shared memory ranks physically
overlap, which means, as in case of the MPI-CUDA variant,
actual data movement only takes place for distributed memory
ranks. However, in contrast to MPI-CUDA the synchronization
is much more fine grained enabling overlap of computation
and communication.

Figure 9 shows weak scaling for both implementation
variants as well as the halo exchange time measured by the
MPI-CUDA variant. We thereby use a constant workload
of 416 cells and 41,600 particles per node. Typically, the
simulation would be compute-bound, but as we are interested
in communication we reduced the cutoff distance so that there
are very few particle interactions. Consequently, the simulation
becomes more memory bandwidth-bound. We perform two
memory accesses in the innermost loop that computes the par-
ticles distances. Aggregated over 100 iterations and assuming a
total execution time of 200ms, we get an estimated bandwidth
requirement of roughly 100GB/s compared to 240GB/s peak
bandwidth. Keeping in mind that the code also performs var-
ious other steps this shows that our implementation performs
reasonably. While the two implementation variants perform
similarly up to three nodes, the dCUDA variant clearly out-
performs the MPI-CUDA variant for higher node counts. The
scaling costs of the MPI-CUDA variant roughly correspond
to the halo exchange time, while the dCUDA variant can
partly overlap the halo exchange costs. However, the particle
simulation is dynamic and during execution load imbalances
evolve. For example, the minimal and maximal halo exchange
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Fig. 10: Weak scaling of the stencil program example.

times measured on eight nodes differ by a factor of two. We
therefore do not expect an entirely flat scaling.

Stencil Program: Our second mini-application iteratively
executes a simplified version [11] of the horizontal diffusion
kernel derived from the COSMO atmospheric model [2]. Just
like COSMO, we consecutively apply the four dependent
stencils to a three-dimensional regular grid with a limited
number of vertical levels. The stencils themselves are rather
small and consume between two and four neighboring points
in the horizontal ij-plane.

Our implementation organizes the data using five three-
dimensional arrays that are stored in column-major order. We
perform a one-dimensional domain decomposition along the j-
dimension and extend the sub-domains with a one-point halo
in both j-directions. Consequently, the halos consist of one
continuous storage segment per vertical k-level.

The main loop of the stencil program contains three com-
pute phases each of them followed by a halo exchange. In total,
we execute four stencils and communicate four one-point halos
per loop iteration. To apply the stencils, we assign each block
to an ij-patch that covers the full i-dimension. For each array,
the dCUDA variant registers a window that spans the ij-patch
assigned to the rank plus one halo line in each j-direction. The
windows of neighboring shared memory ranks overlap and
data movements only take place between distributed memory
ranks. To improve the performance, the MPI-CUDA variant
additionally copies the data to a continuous communication
buffer that allows to wrap the entire halo exchange in a single
message.

Figure 10 shows weak scaling for both implementation
variants as well as the halo exchange time measured by the
MPI-CUDA variant. We chose a domain size of 128×320×26
grid points per device. The stencil program accesses eight
different arrays per iteration. Aggregated over 100 iterations
and assuming a total execution time of 70ms, we compute an
approximate bandwidth requirement of 100GB/s compared to
240GB/s peak bandwidth. Hence, the overall performance of
our implementation is reasonable. While both implementation
variants have similar single-node performance, the dCUDA
variant excels in multi-node setups. The scaling costs of the

MPI-CUDA variant roughly correspond to the halo exchange
time, while the dCUDA variant can completely overlap the
significant halo exchange costs. This is possible as the stencil
program is perfectly load balanced and the halo exchange costs
are the only contribution the scaling costs. To achieve better
bandwidth, OpenMPI by default stages messages larger than
30kB through the host. The MPI-CUDA variant sends one
26kB message per halo, while the dCUDA variant sends 26
separate 1kB messages (one per vertical layer). Hence, with
the given configuration both implementation variants perform
direct device-to-device communication. However, introducing
additional vertical layers improves the relative performance
of the MPI-CUDA variant as it benefits from the higher
bandwidth of host staged transfers.

Sparse Matrix-vector Multiplication: Our third mini-
application implements sparse matrix-vector multiplication
followed by a barrier synchronization. The barrier synchro-
nization thereby emulates possible follow up steps that syn-
chronize the execution, the worst-case for dCUDA’s overlap
philosophy. For example, the normalization of the output
vector performed by the power method.

We store the sparse matrix using the compressed row
storage (CSR) format and distribute the data using a two-
dimensional domain decomposition that splits the matrix into
square sub-domains. Furthermore, we store the sparse input
and output vectors along the first row and the first column of
the domain decomposition respectively. To process the matrix
sub-domains, we assign each row of the matrix patch to exactly
one block.

The main loop of the application performs the following
steps: 1) we broadcast the input vector along the columns
of the domain decomposition, 2) each rank locally computes
the matrix-vector product, 3) we aggregate the result vectors
along the rows of the domain decomposition, and 4) we
synchronize the execution of all ranks. We thereby manually
implement the broadcast and reduction collectives using a
binary tree communication pattern. The dCUDA variant over-
decomposes the problem along the columns of the domain
decomposition. Hence, the depth of the broadcast tree is higher
while the message size corresponds to the MPI-CUDA variant.
In contrast, along the rows of the domain decomposition the
reduction tree has the same depth while the dCUDA variant
sends more but smaller messages.

Figure 11 shows the weak scaling for both implementation
variants as well as the halo exchange time measured by
the MPI-CUDA variant. We run our experiments using a
10,816×10,816 element matrix per device and randomly pop-
ulate 0.3% of the elements. Our matrix-vector multiplication
performs roughly a factor two slower than the cuSPARSE
vendor library. While the MPI-CUDA variant performs slightly
better for small node counts, the dCUDA variant seems
to catch up for larger node counts. However, due to the
tight synchronization, we do not observe relevant overlap of
computation and communication. The scaling cost for both
implementation variants corresponds roughly to the communi-
cation time. We therefore conjecture that the short and tightly
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Fig. 11: Weak scaling of the sparse matrix-vector example.

synchronized compute phases provide not enough room for
overlap of computation and communication. Furthermore, the
MPI-CUDA variant stages the reduction messages through the
host, while the dCUDA variant due to the higher message
rate uses direct device-to-device communication. Therefore,
the dCUDA variant suffers from lower network bandwidth
which might overcompensate potential latency hiding effects.
We show this example to demonstrate that, even in the worst-
case of very limited overlap, dCUDA performs comparable to
MPI-CUDA. Advanced algorithmic methods could be used to
enable automatic overlap even in Krylov subspace solvers [8].

V. DISCUSSION

To further improve the expressiveness and the performance
of the dCUDA programming model, we briefly discuss possi-
ble enhancements.

Collectives: Over-decomposition makes collectives more
expensive as the their cost typically increase with the num-
ber of participating ranks. We suggest to implement highly-
efficient collectives that leverage shared memory [10], [16].
Furthermore, one can imagine nonblocking collectives that run
asynchronously in the background and notify the participating
ranks after completion.

Multi-Dimensional Storage: Our implementation cur-
rently only supports one-dimensional storage similar to dy-
namically allocated memory in C programs. We suggest to add
support for multi-dimensional storage as it commonly appears
in scientific applications. For example, we could provide a
variant of the put method that copies a rectangular region of
a two-dimensional array.

Shared Memory: With our programming model hundreds
of ranks work on the same shared memory domain. We suggest
to add functionality that makes better use of shared memory.
For example, we could provide a variant of the put method that
transfers data only once and then notifies all ranks associated
to the target memory.

Host Ranks: To fully utilize the compute power of host
and device, we suggest to extend our programming model
with host ranks that like the device ranks communicate using
notified remote memory access.

VI. RELATED WORK

Over the past years, various GPU cluster programming
models and approaches have been introduced. For example,
the rCUDA [6] virtualization framework makes all devices of
the cluster available to a single node. The framework there-
fore intercepts calls to the CUDA runtime and transparently
forwards them to the node that hosts the corresponding device.
Consequently, CUDA programs that support multiple devices
require no code changes to make use of the full cluster.
Reaño et al. [25] provide an extensive list of the different
virtualization frameworks currently available.

Multiple programming models provide some sort of device-
side communication infrastructure. The FLAT [18] compiler
transforms code with device-side MPI calls into traditional
MPI-CUDA code with host-side MPI calls. Consequently, the
approach provides the convenience of device-side MPI calls
without actually implementing them. GPUNet [15] implements
device-side sockets that enable MapReduce-style applications
with the device acting as server for incoming requests. Key
design choices of dCUDA, such as the circular buffer based
host-device communication and the mapping of ranks to
blocks, are inspired by GPUNet. DCGN [28] supports device-
side as well as host-side compute kernels that communicate
using message passing. To avoid device-side locking, the
framework introduces the concept of slots that limit the max-
imum number of simultaneous communication requests. In a
follow-up paper [29] the authors additionally discuss different
rank to accelerator mapping options. GGAS [20] implements
device-side remote memory access using custom-built network
adapters that enable device-to-device communication without
host interaction. However, the programming model synchro-
nizes the device execution before performing remote memory
accesses and therefore prevents any hardware supported over-
lap of computation and communication. GPUrdma [4] was
developed in parallel with dCUDA and implements device-
side remote memory access over InfiniBand using firmware
and driver modifications that enable device-to-device commu-
nication without host interaction.

Multiple works discuss technology aspects that are relevant
for the programming model design. Oden et al. [21] control
InfiniBand network adapters directly from the device without
any host interaction. Their implementation relies on driver
manipulations and system call interception. However, the
host controlled communication nevertheless excels in terms
of performance. Furthermore, Xiao and Feng [31] introduce
device-side barrier synchronization and Tanasic et al. [30]
discuss two different hardware preemption techniques.

VII. CONCLUSION

With dCUDA we introduce a unified GPU cluster pro-
gramming model that follows a latency hiding philosophy.
Therefore, we enhance the CUDA programming model with
device-side remote memory access functionality. To hide mem-
ory and instruction pipeline latencies, CUDA programs over-
decompose the problem and run many more threads than
there are hardware execution units. In case there is enough



spare parallelism, this technique enables efficient resource
utilization. Using the same technique, dCUDA additionally
hides the latency of remote memory access operations. Our
experiments demonstrate the usefulness of the approach for
mini-applications that implement different algorithmic motifs.
We expect that real-word applications will draw significant
benefit from automatic cluster-wide latency hiding and overlap
of computation and communication. Especially since imple-
menting manual overlap results in seriously increased code
complexity. Overall, dCUDA stands for a paradigm shift away
from coarse-grained sequential communication phases towards
more fine-grained overlapped communication. Although the
high message rate of fine-grained communication is clearly
challenging for todays networks, our experiments show that
the potential of the approach outweighs this drawback.
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