
IEEE Computer: Special Issue
Editor: Name, xxxx@email

Benchmarking data science:
Twelve ways to lie with
statistics and performance on
parallel computers.

Torsten Hoefler
ETH Zürich

Abstract—Progress in artificial intelligence and machine learning is largely driven by growing
compute capabilities of specialized accelerators and large datasets. A remarkable property is
that model accuracy can be traded off for compute performance: the computation only needs to
be as accurate as the statistical noise in the dataset. Given this sensitive trade off, we recognize
that reproducibility and interpretability of compute performance of data science workloads
differs fundamentally from both core HPC and machine learning. In this article, we humorously
discuss twelve fallacies when focusing on compute performance that we frequently observed in
practice—fast but wrong models are worse than slow models. We follow each with a
recommendation to mitigate the danger and hope to contribute to establishing a good
benchmarking etiquette for data science. Our work aims to start a discussion that eventually
leads to better science in the quickly emerging field of “systems for AI”.

INTRODUCTION

Data science, Artificial Intelligence (AI), and
Machine Learning (ML) have gained significant
importance in the recent past. The AI revolution is
in full swing after machine learning, specifically
Deep Learning (DL) systems, have demonstrated
to beat human performance in many tasks. Market
analysts expect that AI and DL workloads will
soon consume the vast majority of compute cycles
spent in datacenters, edge, and consumer devices.
This development will be further fueled by the

quest towards more general human-like intelli-
gence. OpenAI, for example, follows a strategy
that trains extremely large models (e.g., GPT-3
with 175 billion parameters) on a large language
corpus gathered from human-written texts. It is
speculated that training just one single model
costs upwards of $10 million with growing costs
for even larger models.

Thus offering cost-effective high-performance
computer systems for artificial intelligence and
deep learning is becoming not just a large market

Computer Published by the IEEE Computer Society © 2021 IEEE 1

IEEE Computer

but a necessity. It is of utmost importance that re-
searchers, software, and hardware engineers com-
pare performance and cost effectiveness of such
architectures in reproducible and interpretable
ways.

When designing systems, software, or algo-
rithms for AI we must consider the intersection
between the general fields of data science
and systems engineering. In this paper, we
discuss a set of fallacies that emerge from
this intersection and we propose mitigations as
well as a general methodology to improve re-
producibility and interpretability in the quickly
growing field of “Systems for AI”.

Interpretability has long been a sore topic in
data science—going back to Huff’s now 67-year-
old book “How to Lie with Statistics”. While this
book falls into the general category of data liter-
acy (how to interpret data), it contains many foun-
dational lessons that remain important for modern
data science. The fundamentally hard problem of
reproducibility and interpretability remains a hot
topic today. There is rarely a year where not one
or two keynotes at top-class machine learning
conferences focus on these topics. Ali Rahimi’s
test of time award talk at NeurIPS’17 provoked
a significant debate by comparing the state of
the art in machine learning with alchemy in the
medieval ages.

Ensuring reproducibility in data science is in
part hard because algorithms usually base on
statistics where we cannot (and do not want to)
expect bit-wise reproducibility. The fundamen-
tally stochastic nature of computations requires a
more complex model for reproducibility: instead
of reproducing a specific result, we need to re-
produce a distribution [1]. Thus, the measure of
success is often defined as achieving a specific
accuracy on a test-set, e.g., classifying 95% of
the examples correctly. Here, it does not matter
which 95% set—implying that many different
models can be considered to reproduce a specific
result. In fact, due to complex hyperparameters
that control the often nondeterministic learning
algorithms, finding the exact same model in dif-
ferent training runs is a rarity, if not practically
impossible.

Compute performance is similarly hard to

reproduce because it also follows a stochastic
process in complex systems. Even system avail-
ability (e.g., can I find a computer system from
10 years ago?) makes reproducing results hard
and forces scientists and engineers towards in-
terpretability [2]. In both cases—data science
and compute performance—rigorous statistics are
necessary to model either accuracy or compute
performance. Similarly, in both cases, the fields
are largely driven by empirical results. Combining
rigorous benchmarking with rigorous data science
is necessary to design, build, and understand
next-generation artificial intelligence systems. For
example, cost forces many to employ the most
efficient (low bitwidth) datatype for learning sys-
tems but one must pay attention that the resulting
lossy compression does not invalidate the results.

The rush for good results
Pressure and competition in the field are

fierce—numerous startups, vendors, and large
cloud providers compete for the expected trillion-
dollar business. Efficiency is key because many
tasks, especially grand-challenges, such as more
general intelligence benefit from larger models.
Thus, specialized parallel high-performance ar-
chitectures are most important to train such large
models. At the same time, models must be usable
in practice, which limits the cost of training and
as well as inference.

Startups are fighting for their place and often
take extreme positions such as systems without
large main memories or wafer-scale computing to
claim their 2-30x benefit over all other solutions.
Those approaches push the system balance into
extreme regimes, which may be applicable to
the workload but needs to be carefully analyzed.
One big danger is to only focus on a specific
aspect or metric of the system. For example,
in many High-Performance Computing (HPC)
environments, the floating point rate (flop/s) is
seen as the measure of performance. This leads
to many studies focusing on «floptimization»1

and not sustained performance. Many researchers
are in a similar position because competition to
disseminate new ideas is fierce. With dozens of
papers appearing each week on arXiv alone, fast
publication of new results is imperative. In such

1we use «text» to indicate irony in the quoted text

2 Computer

high-pressure environments, it is most important
to avoid pitfalls in performance optimization and
analysis of data science workloads.

Life at the intersection
Performance optimization, measurement, and

reproducibility has been a topic in the HPC com-
munity for decades. Sets of rules and best/worst
practices exist for performance measurements [3],
[2] and major HPC conferences launched serious
reproducibility initiatives.

Similarly, the data science community has
established a set of rules for ensuring result repro-
ducibility [4] that have been endorsed by top ML
conferences. Yet, the two fields are fundamentally
different—the HPC field focuses on both results
and performance, while today’s machine learning
field predominantly targets at results. Arguably,
the result of HPC simulations can often be defined
in a bit-reproducible manner [5], [6] while ML
results are usually of stochastic nature requiring
to share exact experimental setups [4].

Both communities focused on their specific
fields in isolation—however, the fields are start-
ing to mix in productive ways. This gives rise
to machine learning tracks at traditional HPC
conferences and systems tracks at traditional ML
conferences or even new conferences aimed at the
intersection, such as MLSys.

Our paper aims to bridge the silos between
ML and HPC by identifying a set of fallacies
in performance analysis and system design for
data science workloads. These fallacies and re-
sulting guidelines are useful for practitioners,
system vendors, scientists, and end-users alike.
We hope to establish some form of bench-
marking etiquette for data science workloads.
Vendors and scientists can check their own
messages for violations of the etiquette while
users can quickly identify the right questions
to ask.

Twelve ways to fool the masses
We now identify twelve different fallacies that

we continue to observe regularly in the wild such
as in vendor white papers, demos, and product
specifications but also many scientific papers,
talks, and even prestigious award presentations.

The methodology and style is inspired by Bailey’s
classical “twelve ways to fool the masses” [3];
we summarize each humorously, explain it in
detail, and then follow with a recommendation.
We believe that each of our recommendations
contributes to establishing a good performance
benchmarking etiquette in data science.

#1 Scale computations at all cost

«You should adjust your system to yield the
highest possible performance. Forget about inci-
dentals such as convergence or accuracy!»

The biggest peculiarity of data science work-
loads is that they enable a trade-off between ac-
curacy and performance (implementation) aspects
of the execution. While it is necessary to consider
this trade-off, it can be very tempting to navigate
it to one extreme and focus on performance at
all cost. We have observed that accuracy was
sacrificed for performance in HPC settings—what
value does a fast but incorrect calculation have?
While this trade-off and its misuse manifests
itself in many data science workloads, let us
consider Stochastic Gradient Descent (SGD) as
an example in the following.

SGD and its variants form the basis of much
of deep learning training today. Supervised SGD
training works on examples that are sampled from
the input and output sets of the true function to
be learned. The training process adapts weight
terms in a fixed computational structure (e.g., a
neural network) to approximate the true function
represented by those examples. SGD proceeds in
an iterative process, where a subset of examples
is used to calculate an averaged update for the
weights in each iteration. This set is usually called
“minibatch”, and its size determines the quality
of the overall algorithm—intuitively, if it is too
small, the updates can be very noisy for complex
functions or inexact examples and if the set is to
large, nuances of the function to be learned could
be lost in the averaging. Thus, the size of the
minibatch, a simple algorithmic hyperparameter,
is crucial for the accuracy of the resulting model.

The simplest way to parallelize training in
deep learning is to replicate the full model and
its weights and train on different parallel proces-
sors. Then, each processor computes the weight
updates for a set of examples in parallel. This

May/June 2021 3

IEEE Computer

is possible because weights are only updated
after processing a minibatch, so if there are E
examples in a minibatch, one can employ up to E
parallel processors with this technique. However,
for efficiency reasons, one would need more
than a single example per processor to re-use
the weights, or in HPC language, turn a set of
Matrix Vector (BLAS Level 2) operations into
Matrix Matrix (BLAS Level 3) operations. The
per-processor set of examples is often called “mi-
crobatch”. If we now have P processors, and a
microbatch size of M , we would need E > MP
for our minibatch size.

As mentioned before, E is limited by statis-
tical properties of the data and choosing E too
large may negatively affect convergence [7]. Yet,
if you want to set a speed record on a large-scale
parallel computer, you would scale E to tens of
thousands or more! This has been a typical issue
in the early days and can still be seen regularly
in practice.

Similarly, “weak scaling”, i.e., keeping the
microbatch size per processor constant while in-
creasing the number of processors, will change
the statistics. If one keeps the number of epochs
constant, it will reduce the update steps, which
may be most relevant for training [8]. At the end,
most learning workloads are strong scaling as the
model size is constant and the set of examples is
typically constant as well. Another very related
technique for floptimization that is even more
common is running hundreds of ensembles (that
may later be averaged) to show computational
performance and (in this case trivial) scaling.
However, those additional ensembles may not
improve the quality to rationalize the investment.

In general, one needs to carefully study admis-
sible batch sizes [9] or use specialized methods to
tune the optimization algorithm to support larger
batch sizes for data parallelism [10]. One could
also achieve higher parallelism with synchronous
methods that do not change the statistics [11],
[12].

When applying a technique that changes
the calculation statistics, carefully consider its
impact on the quality of the result.

#2 Trade convergence for performance

«Do not worry if your performance optimiza-
tion slows convergence! Simply report the time
per iteration!»

Machine learning workloads can be surpris-
ingly robust and can work with substantial in-
accuracies during the calculation as long as the
overall statistics are maintained. This means that
one can discard much of the calculation as
long as, in expectation (eventually), the statistical
properties of the calculation are maintained.

Examples include stochastic rounding for low-
bit datatypes and top-k gradient methods where
we send only the largest gradient values while
accumulating the discarded gradients locally in
data-parallel training [13], [14]. However, such
methods usually slow down convergence of the
model optimization and thus often require many
more iterations to maintain the same accuracy
as exact calculations. If you save 50% of the
compute time per iteration but need 4x more
iterations, then you are 2x slower at the end.
Thus, one needs to be very careful when influ-
encing convergence rates through approximation
techniques!

Many works consider per-iteration times and
rarely analyze convergence. Even if they analyze
it, results are often presented separately, such as
“we sped up iterations by 2x” in the case above.

For any optimization that may slow con-
vergence, analyze and measure the resulting
convergence rate for representative examples.
Or simply always report the total runtime to
find the final model.

#3 Do not consider generalization accuracy

«Train the biggest model to minimize training
loss for highest performance.»

Large models often allow more efficient use
of accelerators and parallelism. But model size is
not always a guarantee for quality as large models
can simply store all presented examples but still
not approximate the true function they draw from
well. This phenomenon is called “overfitting”
and is a well-understood danger in data sciences.
Yet, when presenting performance numbers, it is
regularly overlooked.

4 Computer

For example, larger batch sizes required for
highly-parallel training can reduce the generaliza-
tion accuracy while achieving low training error,
leading to a “generalization gap” [7]. General-
ization can be improved by careful tuning of the
training dynamics through hyperparameters such
as adapting the learning rate during training or
increasing the number of iterations [8].

Thus, even when mainly comparing perfor-
mance, we need to test and report generalization
(sometimes called test-) accuracy. In practice, this
is done by evaluating the model on unseen exam-
ples from the same distribution. This may require
careful tuning to achieve good generalization and
shows again that data science and performance
engineering must be combined. Since hyperpa-
rameters are important - we must make sure to
document and share those for reproducibility -
ideally, share the whole code and training setup.

Always measure and report generalization
accuracy after performance optimizations.

#4 Do not report hyperparameter tuning cost

«Hyperparameter tuning can be expensive, so
do not talk about it when reporting costs or
runtimes!»

It may not be practical if one has to train a
model 20 times in order to find the parameters
that make it 10% faster on some hardware. Also,
why would we need to train the same model
20 times? However, this is quite often done in
practice when reporting performance in both,
science and industry. Specifically when tuning
for errors and error patterns coming from the
computer itself such as inherent inaccuracies in
analog devices, shortcuts in rounding modes,
or quantization errors in low-bitwidth datatypes.
Some of these errors may even be characteristic
for each individual device.

Document all hyperparameter tuning re-
quired for achieving the results. Analyze
whether the discovered parameters generalize
to different examples, models, or even tasks.

#5 Report highest (exa)op/s rates

«Floptimization is about reporting the highest
flop/s rates! Thus use the smallest datatypes—
after all your laptop can do 1018 bit flip (exa-)ops
per second! Maybe you can even get away with
reporting flop/s that you never do?»

Many machine learning workloads allow ag-
gressive optimizations for low bitwidth data rep-
resentation. Reducing the number of bits in the
number representation can lead to substantial
speedups because energy and silicon area for
integer multiplication shrink quadratically with
the bitwidth. Furthermore, the required mem-
ory bandwidth and storage shrinks linearly with
bitwidth. Low-width 4-8-bit integers are com-
monplace in inference and 4-16 bit floating
points numbers in training. While low-precision
datatypes are very effective in deep learning, they
often form a trade-off between accuracy and per-
formance: very low precision quantization losses
accuracy, which should always be analyzed and
reported. Some company brochures even name
datatypes as 32 bits but in fact some bits are
simply discarded during the calculation.

Sparse computations omit zero values dur-
ing the computation or data loading—gaining
performance benefits for compute or bandwidth.
However, some vendors count operations that
are never performed. Sometimes, but not always,
such practice can be identified by the term “ef-
fective operations”. While managing sparsity re-
quires often significant additional resources (stor-
age and compute), those can hardly be counted as
arithmetic operations.

Clearly specify the bitwidth of the op-
erations performed and only count the ac-
tual operations that are computed. Most often,
a mix of different precisions (bitwidths) is
used for machine learning. In such cases, we
can specify the relative proportions, e.g., “we
achieved 1 exaflop/s with 85% 8-bit, 10% 16-
bit, and 5% 32-bit floating point operations”.

#6 Show only kernels/subsets when scaling

«Always present the fastest kernel such as
matrix multiplication as this will result in highest
flop rates!»

May/June 2021 5

IEEE Computer

A general danger when accelerating computa-
tions is to focus too much on one specific part of
the problem. In early deep learning accelerators,
computations were clearly limited by matrix mul-
tiplication performance. However, reducing the
datatype bitwidth made the basic multiplications
quadratically cheaper [15] while the memory
bandwidth cost was only reduced linearly. Spe-
cialized acceleration units such as Tensor Cores
lowered the multiplication overhead further. After
accelerating those workloads by more than 10x,
the bottleneck shifts to other aspects such as data
movement. For transformer networks on modern
hardware, 99.8% of the floating point operations
only take 61% of the time, while the remaining
0.2% are data-movement bound, which takes 39%
of the time [16]. This demonstrates that it can
be very misleading to only show the best matrix
multiply unit or to report only operation counts.
The same idea is of course true for any subset
kernel-selection!

Always consider a complete problem when
benchmarking and showing performance re-
sults. When analyzing specific kernels, put
them into proportion to the overall workload.

#7 Optimize only for one network

«If you carefully tuned your experiment, code,
and architecture to a specific problem, then make
sure to only talk about this!»

This is a standard issue similar to #6 but one
abstraction level higher. Any compute system is
developed with a (set of) specific use-case(s) in
mind. However, the workloads usually have some
variability and the compute system will be used
for a variety of tasks. Thus, it needs to perform
reasonably well for many scenarios and an honest
analysis should test a variety of such scenarios.

The closest comparison in the HPC space are
systems that were solely designed for a good
top-500 score (solving a single large system of
linear equations with Gaussian elimination). This
is not necessarily representative of modern HPC
workloads but high top-500 rankings still make
a good selling argument. In machine learning,
specific networks, such as ResNet or BERT begin
to play a similar role - how fast can I train a
ResNet-50 on ImageNet or BERT on a specific

language corpus to state of the art accuracy?
Such benchmarks are extremely useful and foster
reproducibility and interpretability but we must
be careful to not overfit the design to them.

Many of those examples are instances of
Goodhart’s law that roughly states that when a
benchmark becomes an optimization target, it
looses its value as benchmark!

Always analyze and present a carefully
selected set of workloads covering the full
workload space of interest.

#8 Compare outdated/general purpose HW to
specialized HW

«Modern accelerators show highest speedups
against old hardware - so make sure to compare
to the oldest machine you can find!»

This is another classic problem - many works
compare aged General Purpose Graphics Pro-
cessing Units (GPGPUs) with their shiny new
ML accelerator or even a Central Processing
Unit (CPU) that was never meant for specialized
computation. The resulting huge speedups have
very little meaning. Similar problems arise when
comparing completely different architectures, for
example Field Programmable Gate Arrays (FP-
GAs) and GPGPUs.

For comparing different accelerator types, one
should ensure that those are manufactured in a
similar silicon process with a similar die size,
design power, and cost. If accelerators are made
in fundamentally different processes and/or die
sizes, then one can scale the performance num-
bers by the difference in silicon efficiency. In
any case, the exact comparison points need to be
documented carefully.

Ensure a fair comparison for different hard-
ware by selecting devices of equal cost and age
or scaling accordingly.

#9 Don’t worry about inference costs

«If you want to show quickest time to some
accuracy, use a large model!»

OpenAI showed that increasing model
size and stopping training before convergence

6 Computer

achieves the same accuracy as more expensive
training of smaller models [17]. While this
sounds great from a training performance
perspective, the main goal of learning is to later
use the model in an inference setting. It may
make sense to train large models and then distill
them [18] but those additional costs must be
included in the overall analysis.

For practical ML workloads, the center
of attention should lie on inference efficiency
because inference computations will dominate
during the lifetime of most models.

#10 Do not consider reading the data

«When measuring performance numbers,
make sure all needed data is already loaded into
main memory!»

ML models are usually trained on large
amounts of data and reading this data can be a
substantial bottleneck. After all, the deep learning
revolution is fueled by algorithms, data, and com-
pute. Thus, for each iteration, data needs to be
loaded from storage, converted, augmented, and
computed by the model. Many toolchains exist for
the data input pipeline, but Input/Output (I/O) is
often ignored in performance experiments.

The data is not always coming from storage—
examples for reinforcement learning environ-
ments often come from a simulation process
executed on CPUs. Running those simulations
and transmitting the data to the training ac-
celerators can quickly become a bottleneck in
highly-optimized learning processes. One general
systems design issue is to have enough external
bandwidth for I/O into the training system.

Consider the whole system pipeline when
analyzing performance of machine learning
workloads including storage access and other
data sources.

#11 Train on unreasonably large examples

«Larger computations are simpler to paral-
lelize and achieve higher flop rates, so make
sure to choose the largest inputs for highest
performance!»

Sensors often return high-resolution data. For
example, modern commodity camera sensors
record tens of megapixels but those are rarely
needed for typical object detection or classifica-
tion tasks. Following this observation, the Ima-
geNet benchmark scales input images down by
orders of magnitude for computational efficiency.
This input feature compression and selection is
important, otherwise, the network would need to
learn the compression wasting valuable compute
cycles and weight storage. Thus, one needs to
carefully analyze how to format the input data
to the machine learning model. This can be as
important as the design of the model and the
optimization algorithm itself.

Always define and consider input sizes,
format, and transformations carefully in per-
formance analysis of learning systems.

#12 Choose your comparison points well

«Make sure to only compare performance or
accuracy if your model is unlikely to win in both
categories!»

As machine learning is often about an
accuracy-performance trade-off, it is necessary
to look at both in tandem. Pareto optimality is
a useful measure for comparing methods. Any
method that is not dominated by the Pareto front
may be useful in practice.

Another issue is how to present relative ac-
curacy. Since approximation methods usually re-
duce accuracy, it is natural to report closeness to
the state of the art result. Often, this is reported
similar to “we achieve 99% of the baseline perfor-
mance”. However, what is meant by this phrase
depends on the exact interpretation. Let us assume
a 95% state of the art accuracy for some task.
This means that the model function outputs the
same as the true function in 9,500 out of 10,000
examples.

Some interpret 99% of baseline as 9,405
correct examples while others (falsely?) assume
they can loose an absolute 1% going down to
9,400 correct examples. A second, more stringent,
interpretation could consider the incorrect results.
To be within 99% with respect to the incorrect
results means to increase them by no more than
1%. In this case, we only allow 5 more incorrect

May/June 2021 7

IEEE Computer

examples, i.e., the model would need to classify
9,495 examples correctly. It is thus quite impor-
tant to be precise when defining relative accuracy
to state of the art results.

Always present both accuracy and perfor-
mance and be precise when defining relative
accuracies.

Discussion
We present twelve ways to sugercoat perfor-

mance results of data science workloads. Many of
those adjust the trade-off between accuracy and
performance in order to shed the best possible
light on the performance of specific machine
learning systems. Each of these ways points
at a potential problem with setups for analyz-
ing performance of machine learning workloads.
While we propose simple mitigations for each,
we find that general principles emerge that can
help to make performance analysis in this field
transparent and reproducible. The most important
principle here is documentation and transparency
to enable interpretability of the results. This can
ideally be achieved by sharing the whole experi-
mental setup. We hope to spark a discussion and
present a blueprint for sanity-checking results,
reports, and presentations.

While we outline the interaction between data
science and performance, we note that both fields
have their own standards for scientific repro-
ducibility (e.g., [4], [2]) that need to be consid-
ered! In addition, we recommend following the
general good scientific practice [19].

All-in-all we aim this work to contribute to
the definition of a good benchmarking etiquette
in the quickly growing field of “Systems for AI”.

Acknowledgments
The core of this article was sparked at the

IPAM workshop “HPC for Computationally and
Data-Intensive Problems” organized by Joachim
Buhmann, Jennifer Chayes, Vipin Kumar, Yann
LeCun, and Tandy Warnow. There, I presented a
preliminary version of the twelve rules during a
spontaneous evening talk and thank all attendees,
especially Yann, Vipin, and Joachim for great
comments and suggestions. The later refinement
of the list was influenced by all my data sci-

ence collaborators at SPCL, ETH Zurich, and
Microsoft.

REFERENCES
1. V. Stodden, “Reproducing statistical results,” Annual

Review of Statistics and Its Application, vol. 2, no. 1,

pp. 1–19, 2015.

2. T. Hoefler and R. Belli, “Scientific Benchmarking of

Parallel Computing Systems,” pp. 73:1–73:12, ACM,

Nov. 2015. Proceedings of the International Conference

for High Performance Computing, Networking, Storage

and Analysis (SC15).

3. D. H. Bailey, “Twelve ways to fool the masses when

giving performance results on parallel computers,” Su-

percomputing Review, pp. 54–55, 08/1991 1991.

4. J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Lariv-

ière, A. Beygelzimer, F. d’Alché Buc, E. Fox, and

H. Larochelle, “Improving reproducibility in machine

learning research (a report from the neurips 2019 re-

producibility program),” 2020.

5. A. Arteaga, O. Fuhrer, and T. Hoefler, “Designing Bit-

Reproducible Portable High-Performance Applications,”

in Proceedings of the 28th IEEE International Parallel

and Distributed Processing Symposium (IPDPS), IEEE

Computer Society, Apr. 2014.

6. J. Demmel and H. D. Nguyen, “Parallel reproducible

summation,” IEEE Transactions on Computers, vol. 64,

no. 7, pp. 2060–2070, 2015.

7. M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient

mini-batch training for stochastic optimization,” in Pro-

ceedings of the 20th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, KDD

’14, (New York, NY, USA), p. 661670, Association for

Computing Machinery, 2014.

8. E. Hoffer, I. Hubara, and D. Soudry, “Train longer, gen-

eralize better: closing the generalization gap in large

batch training of neural networks,” 2018.

9. S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team,

“An empirical model of large-batch training,” 2018.

10. Y. You, I. Gitman, and B. Ginsburg, “Large batch training

of convolutional networks,” 2017.

11. T. Ben-Nun and T. Hoefler, “Demystifying Parallel and

Distributed Deep Learning: An In-Depth Concurrency

Analysis,” ACM Comput. Surv., vol. 52, pp. 65:1–65:43,

Aug. 2019.

12. S. Li and T. Hoefler, “Chimera: Efficiently Training Large-

Scale Neural Networks with Bidirectional Pipelines,”

in Proceedings of the International Conference for

High Performance Computing, Networking, Storage and

Analysis (SC21), ACM, 11 2021.

8 Computer

13. D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Kon-

stantinov, and C. Renggli, “The Convergence of Sparsi-

fied Gradient Methods,” in Advances in Neural Informa-

tion Processing Systems 31, Curran Associates, Inc.,

Dec. 2018.

14. C. Renggli, D. Alistarh, M. Aghagolzadeh, and T. Hoe-

fler, “SparCML: High-Performance Sparse Communica-

tion for Machine Learning,” in Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis (SC19), Nov. 2019.

15. A. Karatsuba, “The complexity of computations,” Pro-

ceedings of the Steklov Institute of Mathematics,

vol. 211, pp. 169–, 01 1995.

16. A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler,

“Data Movement Is All You Need: A Case Study on

Optimizing Transformers,” in Proceedings of Machine

Learning and Systems 3 (MLSys 2021), Apr. 2021.

17. J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown,

B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and

D. Amodei, “Scaling laws for neural language models,”

2020.

18. Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein,

and J. E. Gonzalez, “Train large, then compress: Re-

thinking model size for efficient training and inference of

transformers,” 2020.

19. N. A. of Sciences Engineering, Medicine, et al., Re-

producibility and Replicability in Science. National

Academies Press, 2019.

Torsten Hoefler is a full Professor of Computer
Science at ETH Zurich, Switzerland. Before joining
ETH, he led the performance modeling and sim-
ulation efforts of parallel petascale applications for
the NSF-funded Blue Waters project at NCSA/UIUC.
He is also a key member of the Message Passing
Interface (MPI) Forum where he chairs the "Col-
lective Operations and Topologies" working group.
Torsten won best paper awards at the ACM/IEEE
Supercomputing Conference 2010 (SC10), EuroMPI
2013, SC13, SC14, SC19, IPDPS’15, ACM HPDC’15
and HPDC’16, ACM OOPSLA’16, and other confer-
ences. He published numerous peer-reviewed sci-
entific conference and journal articles and authored
chapters of the MPI-2.2 and MPI-3.0 standards. For
his work, Torsten received the ACM Gordon Bell Prize
in 2019, the IEEE TCSC Award of Excellence (MCR)
in 2019, ETH Zurich’s Latsis Prize in 2015, the SIAM
SIAG/Supercomputing Junior Scientist Prize in 2012,
and the IEEE TCSC Young Achievers in Scalable
Computing Award in 2013. He was also awarded the
BenchCouncil Rising Star Award in 2020. Following
his Ph.D., he received the Young Alumni Award 2014

from Indiana University. Torsten was elected into the
first steering committee of ACM’s SIGHPC in 2013
and he was re-elected in 2016 and 2019. He was
the first European to receive many of those honors
he also received both an ERC Starting and an ERC
Consolidator grant. His research interests revolve
around the central topic of "Performance-centric Sys-
tem Design" and include scalable networks, parallel
programming techniques, and performance modeling.
Additional information about Torsten can be found on
his homepage at http://htor.inf.ethz.ch.

May/June 2021 9

http://htor.inf.ethz.ch

	The rush for good results
	Life at the intersection
	Twelve ways to fool the masses
	#1 Scale computations at all cost
	#2 Trade convergence for performance
	#3 Do not consider generalization accuracy
	#4 Do not report hyperparameter tuning cost
	#5 Report highest (exa)op/s rates
	#6 Show only kernels/subsets when scaling
	#7 Optimize only for one network
	#8 Compare outdated/general purpose HW to specialized HW
	#9 Don't worry about inference costs
	#10 Do not consider reading the data
	#11 Train on unreasonably large examples
	#12 Choose your comparison points well

	Discussion
	Acknowledgments
	REFERENCES
	Biographies
	Torsten Hoefler

