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Abstract

Many large-scale parallel programs follow a bulk synchronous par-
allel (BSP) structure with distinct computation and communication
phases. Although the communication phase in such programs may
involve all (or large numbers) of the participating processes, the ac-
tual communication operations are usually sparse in nature. As a re-
sult, communication phases are typically expressed explicitly using
point-to-point communication operations or collective operations.
We define the dynamic sparse data-exchange (DSDE) problem and
derive bounds in the well known LogGP model. While current ap-
proaches work well with static applications, they run into limita-
tions as modern applications grow in scale, and as the problems
that are being solved become increasingly irregular and dynamic.
To enable the compact and efficient expression of the communi-
cation phase, we develop suitable sparse communication protocols
for irregular applications at large scale. We discuss different irreg-
ular applications and show the sparsity in the communication for
real-world input data. We discuss the time and memory complexity
of commonly used protocols for the DSDE problem and develop
NBX—a novel fast algorithm with constant memory overhead for
solving it. AlgorithmNBX improves the runtime of a sparse data-
exchange among 8,192 processors on BlueGene/P by a factor of
5.6. In an application study, we show improvements of up to a fac-
tor of 28.9 for a parallel breadth first search on 8,192 BlueGene/P
processors.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Communication Protocols

General Terms Algorithms, Theory, Performance

Keywords Sparse data exchange, Irregular algorithms, Alltoall,
Distributed termination, Nonblocking collective operations

1. Introduction

Parallel scientific codes based on message passing often consist
of distinct communication and computation phases, where all pro-
cesses are involved in either communication or computation. This
bulk synchronous programming model [1] is a powerful organiza-
tional principle that simplifies parallel programming by providing
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step-wise consistency. Making the communication phase as effi-
cient as possible is still a problem that must be solved by the pro-
grammer.

Although all of the parallel processes may be communicating
during the communication phase, each process may be communi-
cating with only a small subset of its peers. We will refer to the
communication operation(s) performed during the communication
phase as data-exchange operation(s).

Whereas communication relations in many parallel applications
with static grids and stencils do not change over time, there are an
increasing number of application domains that have rapidly chang-
ing communication patterns. Many dynamic applications belong
to the emerging class of irregular “informatics” applications. Cur-
rently defined static dense and sparse [2] collective operations do
not match such communication patterns well.

To satisfy the requirements of irregular applications at large-
scale machines, a new approach to describing and implementing
data-exchange operations is required. In this paper, we consider
this sparse data-exchange (SDE) problem. We analyze the space
and time complexity of different SDE operations. In addition, we
develop a new scalable algorithm—NBX—and implementations
that support sparse data exchange in large-scale runs with good
performance.

1.1 Outline and Contributions

In the next section, we define the static and dynamic sparse data
exchange problems. Optimizations for the static variant have been
analyzed in previous research works and thus, we focus on the
dynamic sparse data exchange (DSDE) with changing communi-
cation patterns. In our theoretical analysis of the communication
algorithms, we use the established LogGP network model. In Sec-
tion 2.2 we present a short introduction and overview of the LogGP.
We then proceed to discuss bounds on the execution time of three
fundamental communication functions that are used in various pro-
tocols that implement DSDE: census, personalized census, and per-
sonalized exchange. In the census function all processes agree on a
globally accumulated value, the personalized census allows distinct
values for each process, and in the personalized exchange, each
process sends data to each other process. The established bounds
will be used later in the paper to derive bounds on the runtime of
possible protocols to implement DSDE.

In Section 3, we describe three commonly used protocols to im-
plement DSDE: personalized exchange, personalized census, and
remote summation. All three protocols run in two distinct phases:
the first phase exchanges the meta-information about the commu-
nication peers and the second phase communicates the actual data.
We analyze all three algorithms with regards to their time and mem-
ory complexity and provide lower bounds that hold irrespectively



of how the used collective functions are implemented. We conclude
that the needed time and memory to perform personalized exchange
and personalized census grows linearly with the number of partic-
ipating processes. The remote summation algorithm uses remote
memory access (data accumulation) to achieve constant space and
logarithmic time complexity with the number of participating pro-
cesses.

After the discussion of different implementation options, we
propose a new algorithm, nonblocking census, that uses non-
blocking collective communication. This algorithm merges the two
phases into an optimized communication protocol. We define dif-
ferent possibilities to implement the nonblocking census algorithm
(depending on the properties of the communication network). Our
algorithm does not require remote memory access and runs with
constant space and logarithmic time in the LogGP model.

In Section 4, we present a parametrization of our models and
an experimental evaluation on three different large-scale systems.
We present parametrized LogGP models for the algorithms. We
also discuss how the time complexity of the optimized algorithm
changes with the communication pattern. Then we show results for
a microbenchmark where each process sends to fixed number of
random peers in each communication round.

In Section 5, we discuss the use of the sparse data exchange pro-
tocol and the structure of the communication topology for several
dynamic applications. Our analysis of parallel graph algorithms,
parallel n-body methods and sparse matrix computations shows
that our new protocol can be used to improve the performance of
the sparse data exchange in such applications. However, we remark
that this might depend on the specific properties of the computed
system (sparsity and topology) and the communication parameters
(LogGP) of the used architecture.

2. Preliminaries and Background

We start with the definition of the problem and a discussion of the
building-blocks which are used later in the paper.

2.1 The Sparse Data-Exchange Problem

The SDE problem is relevant to many parallel applications. It has
been discussed in the context of the Message Passing Interface
(MPI) to enable optimized message scheduling and process map-
ping on large-scale systems [2]. However, performing such opti-
mizations requires time to compute optimized mappings as well as
communication schedules, and often involves the heuristic solution
of NP-hard problems (e.g., graph embedding problems or graph
coloring problems for optimized communication schedules). Such
optimizations are thus generally only appropriate for static commu-
nication schemes, communications where the same communication
pattern is used multiple times. We define the SDE problem as fol-
lows:

Definition 1. Let P be the set of processes of a parallel program
with C communication steps and let P = |P| be the cardinality of
this set. In each communication step 0 ≤ c < C, each process
p ∈ P communicates with (sends to or receives from) a set of
processes N c

p ⊆ P , which is called the c-neighborhood of p.
The communication is called a sparse data exchange (SDE) if
k = maxp∈P,0≤c<C(|N c

p |) = O(log P ).

In this general definition of SDE, each process is allowed to
change its communication neighborhood frequently and arbitrarily.
We also generally assume that k is not known in advance and varies
across communication steps.

Not all applications change communication patterns frequently.
The static version of the SDE has been analyzed in previous works
and possible optimizations are well documented (e.g., [3, 4]). How-
ever, the dynamic variant, which is important to many irregular

applications, received less attention so far. Each process initially
knows only the processes it sends messages to. However, knowl-
edge about the whole neighborhood (also about incoming mes-
sages) must be acquired to perform the data exchange. We define
the static and dynamic SDE as follows:

Definition 2. The SDE problem on P processes is called a static

sparse data exchange (SSDE) if the neighborhoods N i
p (0 ≤ i <

C − 1; 0 < p ≤ P ) can be determined before the algorithm runs.
In contrast, it is called a dynamic sparse data-exchange (DSDE)
problem when processes only know the part of the neighbors that
they send messages to and the neighbors to receive from need to be
determined as part of the exchange.

In this work, we analyze algorithms that implement DSDE in
theory and practice. We introduce the LogGP network model in the
next section.

2.2 The LogGP Model

In this paper, we analyze protocols for solving the DSDE using
the LogGP network transmission model [5]. LogGP consists of the
five parameters, L, o, g, G, and P, and allows us to analyze the time
complexity of parallel algorithms. The parameters are:

L: Maximum latency between any two processes in the system

o: Process-local CPU overhead to send or receive a message

g: Process-local injection or reception overhead; that is, the mini-
mum time between two message injections or receptions

G: Transmission time per byte

P: Total number of processes in the system.

The LogGP model describes a network as P (P−1) independent
unidirectional channels from process pi to process pj (0 ≤ i, j <
P , i 6= j). Messages are delivered in order in each channel. For
example, a simple transmission of 10 bytes from one process to
another would take a time of L + 2o + 9G under the LogGP
model (the first byte is accounted by L). After sending a message,
a process has to wait max{o, g} before sending the next message
(we assume single-CPU endpoints). We generally assume, wlog,
that all processes start at t = 0 and an algorithm is completed
when the last process finishes.

We assume that each process is running at all times (there is
no operating system scheduling interference). For the purposes of
space complexity analysis, we assume that an integer occupies
constant space at the process where it is stored and a send operation
requires Θ(1) memory at the source and target processes.

2.3 Complexity of a Census Function

Census functions are widely used in parallel programming. Infor-
mally, a census function is a function where each process receives
the combination (reduction) of data items distributed among all
processes. Such a function is available in MPI as MPI Allreduce

and a special version where only one process receives the final
value, MPI Reduce. Since processes can only “learn” about the
values on other processes with explicit message passing (cf. [6]),
there must be a chain of messages from each process to each other
process.

Definition 3 (Census Function). Every process p0, . . . , pP−1 has
a value v0, . . . , vP−1 and all processes need to receive the result
v0⊕v1⊕. . .⊕vP−1. The operation⊕ is assumed to be associative

and commutative for our purposes.

Global synchronization (a barrier) is a particular example of a
census function where the operation ⊕ itself is not important.

We assume the communication of small data for the following
analysis. First we discuss an optimal broadcast algorithm where



initially a root process p0 has a single data item and at the end
of the algorithm, all processes p0 . . . pP−1 have this data. A cen-
sus function can simulate a broadcast without additional costs if
all processes but the root contribute the identity element with re-
gards to ⊕ (e.g., choose addition as operation and zero as identity
element). Thus, a lower bound to the broadcast problem is also a
lower bound to the census problem.

The broadcast algorithm has been discussed under the postal
model in [7–9]. The basic idea is that processes are arranged in a
tree and each process eagerly sends to as many distinct processes
as possible until a given time t is reached. We define P (t) as the
number of processes that can be reached in time t (including the
root, which is reached at t = 0). In the remainder of this paper, we
assume o ≥ g for simplicity (a similar method can be applied for
the case g > o).

The root sends a new message to a child every o cycles and the
first child itself starts sending at 2o+L, the second child at 3o+L
and the nth child at (n+1)o+L. Thus, P (t) = 1 iff t < 2o+L and
the following recurrence counts the number of reached processes:

P (t) =

(

1 : t < 2o + L

P (t− o) + P (t− L− 2o) : otherwise.
(1)

We now present bounds for the number of reached nodes that
we can use to bound the running time.

Lemma 1. The total number of nodes that can be reached at time
t is bounded by

2⌊
t

L+2o⌋ ≤ P (t) ≤ 2⌊
t

o⌋.

Proof. The evaluation of recurrence (1) can be done by creating
a full binary tree T recursively (each inner node of T has two
children). The construction of T starts with the root of weight
t. If t ≥ 2o + L, then two children with weights t − o and
t − 2o − L are added. The algorithm is applied recursively to the
two children until no children can be added. The number of leaves
in T equals to P (t). A complete binary tree of height h has 2h

leaves (a single root has h = 0). The number of children (P (t)) in
T is now bounded between the number of children of the smallest
complete binary subtree of T and 2hT . The height hT of T is the
longest path from the root to any leaf, which is

¨

t
o

˝

. The shortest
path from the root to any leaf, and thus, the height of the smallest

complete subtree, is
j

t
L+2o

k

. The bounds of P (t) follow from this

observation.

The number of processes that can be reached at time t bounds
the running time of the broadcast operation. After applying loga-
rithms to the bounds in Lemma 1 we get

—

t

L + 2o

�

≤ log2(P ) ≤

—

t

o

�

which yields the following Corollary.

Corollary 1. Let TBC(P ) be the time to broadcast a small mes-
sage to a set of P processes in the LogGP model, then

log2(P ) · o ≤ TBC(P ) ≤ log2(P ) · (L + 2o),

and TBC(P ) = Θ(log(P )).

Bar-Noy et al. show similar asymptotic bounds in the Postal
Model in [10].

2.4 Complexity of Personalized Census

A personalized census function is a special case of the census func-
tion where the resulting data is distributed over the processes. Thus,
each process not only contributes a separate data item, but it also

receives a distinct result. Such functions are used for parallel matrix
multiplication and in various communication protocols. A person-
alized census function is available in MPI as MPI Reduce scatter.

Definition 4 (Personalized Census). In a personalized census func-
tion, each process i initially has data elements vi,j (0 ≤ i, j < P ).
After the operation, each process, i, holds a single value x =
v0,i ⊕ v1,i ⊕ . . .⊕ vP−1,i.

Lemma 2. Let TRS(P ) be the time to perform a personalized
census over small data on a set of P processes, then

TRS(P ) ≥ G(P − 1) + (L + 2o−G) · ⌈log2 P ⌉,

and TRS(P ) = Θ(P )

Proof. TBC(P ) is a lower bound to this problem because each pro-
cess needs to communicate one data item to all processes. How-
ever, since the items are personalized and each process must sub-
mit P − 1 values, this lower bound is not tight. Iannello shows
a lower bound of (P − 1) + (min{L′, g′} − 1) · ⌈log2 P ⌉ in
the simplified LogGP model [5] in [11] (Lemma 7). The simpli-
fied LogGP model uses G to model the length of a cycle and thus

t(P ) = TRS

G
, L′ = L+2o

G
, and g′ = g

G
. If we substitute the param-

eters in Lemma 7 in [11] with the original LogGP parameters and
assume o ≥ g, we get the bound of Lemma 2. The upper bound can
trivially be achieved with an algorithm where each process sends to
and receives from all other P − 1 processes and then computes the
necessary sum si, thus, TRS(P ) = O(P ).

The lower bound is tight for L ≈ g. Iannello presents an
optimized algorithm in [11].

2.5 Complexity of Personalized Exchange

Another important global function is the personalized complete
exchange, in which each process has a vector of P − 1 elements
to send to every other process. In MPI, this operation is available
with MPI Alltoall.

Definition 5 (Personalized Exchange). In a personalized ex-
change, each process i initially has data elements vi,j (0 ≤ j <
P ). After the operation, each process i holds the data elements
v0,i, v1,i, . . . , vP−1,i.

Lemma 3. Let TPE(P ) be the time to perform a personalized
exchange of small data on a set of P processes, then

TPE(P ) ≥ TRS(P ) = G(P − 1) + (L + 2o−G) · ⌈log2 P ⌉,

and TPE(P ) = Θ(P ).

Proof. Due to the independence of the send and receive channels,
TRS is also a good lower bound to this problem. All assumptions
from [5, 11] remain valid and the lower bound follows. The upper
bound can trivially be achieved with an algorithm where each
process sends to and receives from all other P − 1 processes.

An algorithm that reaches the lower bound asymptotically was
proposed by Bruck et al. [12].

3. Protocols for DSDE

A specialization of the problem in MPI is the generalized all-to-
all communication that is available with MPI Alltoallv. However,
this operation requires the knowledge of all source processes and
data sizes at each process, which is often not available in compu-
tations. The sparse communication can be implemented by using
MPI Alltoall to communicate the sizes per host, followed by an
MPI Alltoallv to communicate the actual data.



In fact, most protocols can be divided into two phases: The first
phase exchanges meta-information either about the communication
neighborhood, the data sizes, or both. The second phase is usually
the communication of the user data. In this work, we focus on
the efficient implementation of the communication of the metadata
which we expect to dominate large-scale runs. First, however, we
develop bounds for the second phase when each process has global
information about its neighborhoods.

Lemma 4. Let TDT be the time to perform the second phase
of SDE in which each process has complete knowledge about all
neighbors and data sizes. TDT ≥ TBC(k) and TDT = O(log P ).

Proof. If k is the maximum size of the neighborhood Np of any
process, then, TBC(k) is a lower bound to completion of the algo-
rithm because some data needs to be sent to each of the k processes.
The number of neighbors k in a sparse data exchange is limited by
O(log P ) (Definition 1). Each process could simply send to and
receive from all its neighbors and TDT = O(log P ).

Typical applications (cf. Section 5) often use frequent small
message exchanges at large scale. If such small messages are sent
to all peers in a trivial (linear) way, the time to finish the data
transmission is dominated by k · o.

In the following sections, we analyze the space and time com-
plexity for three different protocols—PEX , PCX , RSX—that
use message passing as their underlying communication layer.
Based on this analysis, we present NBX , a new scalable proto-
col that uses novel semantic features of MPI to solve the DSDE
problem in Section 3.4. We use the symbols S and T to represent
space at each process and total runtime, respectively. Our analyses
of spatial complexity are limited to the necessary storage for the
protocol itself and do not include the size of the user data.

3.1 Algorithm PEX—Personalized Exchange

In the alltoall exchange algorithm, PEX , each process writes the
data sizes to send to each peer in a vector with P elements and
redistributes the vector with a personalized exchange as defined in
Section 2.5 (e.g., MPI Alltoall).

In a second step, each process reserves the required receive
memory and posts (nonblocking) receive operations for each re-
mote process that has a nonzero sendcount. Then all processes
post their respective send operations. The operation is finished af-
ter all sends and receives are satisfied. Alternatively, the second
step can be performed with a generalized exchange (for example
MPI Alltoallv).

Theorem 1. The space needed by PEX on P processes is given
by SPEX (P ) = Θ(P ). The time needed to complete PEX on P
processes is TPEX (P ) = TPE(P ) + TDT (P ) = Θ(P ).

Proof. Θ(P ) bytes of buffer space are needed for the exchange op-
eration. The needed time is the time that is required by the exchange
operation (Lemma 3) plus the data transmission (Lemma 4).

The personalized exchange of the metadata (first phase) will
dominate the actual SDE in small neighborhoods in highly scalable
systems because TPEX = Θ(P ) while TDT = O(log P ).

3.2 Algorithm PCX—Personalized Census

In the personalized census algorithm, PCX , each process writes
’1’ at position (i,j) of a global column-wise distributed P × P ta-
ble and ’0’ otherwise. Then, the table is globally reduced row-wise
and each process i receives the sum si of row i which is essentially
the number of processes that send data to process i. This reduction
could be performed with the MPI operation MPI Reduce scatter.

In the next step, all processes start sending all data without block-
ing. Then, each process enters a loop with si iterations which
probes for wildcard receives, allocates memory and receives the
data as shown in Algorithm 1.

Algorithm 1: PCX—Personalized Consensus.

Input: List I of destinations and data
Output: List O of received data and sources
allocate local table with P entries, initialize all entries to ’0’;1

foreach i ∈ I do2

set row target(i) in local table to ’1’;3

si = global sum of my table row;4

foreach i ∈ I do5

start nonblocking sends to dest(i);6

for round = 1..si do7

msg = blocking probe for incoming message; allocate8

buffer, receive message msg, add buffer to O;

Theorem 2. The space needed to perform PCX on P processes is
given by SPCX (P ) = Θ(P ). The time needed to complete PCX
on P processes is TPCX (P ) = TRS(P ) + TDT (P ) = Θ(P ).

Proof. Similarly to PEX , a table of size Θ(P ) is needed at
each process for the exchange of the metadata. The needed time
TPCX (P ) follows from Lemmas 2 and 4.

The main difference from the personalized exchange protocol
is that the metadata is reduced in the collective operation and each
process only receives the number of neighbors (messages) to wait
for. However, TPCX (P ) = Θ(P ) is asymptotically not smaller
than TPEX (P ).

3.3 Algorithm RSX—Remote Summation

If the communication environment supports remote data accumula-
tion (MPI offers MPI Accumulate), each process could increase a
counter si (originally zero) on each of its target processes i. After a
global synchronization step (e.g., MPI Win fence), each process,
j, posts sj (nonblocking) wildcard receive operations and sends all
its messages. The algorithm is very similar to algorithm PCX (cf.
Algorithm 1). The difference is that si is not computed in a global
operation but with remote memory accesses. This results in a sparse
communication pattern.

Theorem 3. The space needed to perform RSX on P processes
is given by SRSX (P ) = Θ(1). The time needed to completeRSX
on P processes is TRSX (P ) = L+ k · o+TBC(P )+TDT (P ) =
Θ(log P ).

Proof. Only a single atomic counter is needed to perform protocol
RSX . The time needed for protocol RSX involves k accumula-
tion messages and the global synchronization. The global synchro-
nization is bounded by TBC(P ) (cf. Corollary 1).

RSX is, with TRSX (P ) = Θ(log P ), asymptotically fastest
so far.

3.4 Algorithm N BX—Nonblocking Consensus

Now, we propose a new scalable algorithm, NBX , for the SDE
problem. This method utilizes nonblocking collective operations, a
novel technique that is part of the upcoming MPI-3 standard. Non-
blocking collective operations are structurally similar to the com-
munication operations that we discussed above. This means, that



all discussed lower bounds consistently apply, however, the differ-
ence is that nonblocking operations can be started and completed
independently (like nonblocking point-to-point operations in MPI).

Nonblocking operations enable additional functional paral-
lelism where the main CPU can continue to compute while the
collective communication runs. This overlap potential of compu-
tation and communication has been analyzed by Hoefler et al. and
Hoefler and Lumsdaine [13, 14]. However, nonblocking collective
operations also provide semantic advantages that allow separate
start and completion of a globally synchronizing operation.

We utilize a nonblocking barrier to set a distributed marker such
that each process starts the barrier after it finishes its local part and
serves the requests of other processes until it detects global ter-
mination (i.e., the barrier is reached by all nodes and completes).
We also use send operations that only complete after the message
has been received (synchronous mode send, cf. MPI Ssend). Algo-
rithm 2 shows pseudocode for such a two-phase implementation.

Algorithm 2:NBX—Nonblocking Consensus.

Input: List I of destinations and data
Output: List O of received data and sources
done=false;1

barr act=false;2

foreach i ∈ I do3

start nonblocking synchronous send to process dest(i);4

while not done do5

msg = nonblocking probe for incoming message;6

if msg found then7

allocate buffer, receive message, add buffer to O;8

if barr act then9

comp = test barrier for completion;10

if comp then done=true;11

else12

if all sends are finished then13

start nonblocking barrier;14

barr act=true;15

Theorem 4. The space needed to perform NBX on P processes
is given by SNBX (P ) = Θ(1). The time needed to perform NBX
on P processes is TNBX (P ) = TBC(P ) + TDT (P ) = Θ(log P ).

Proof. Except for variables of constant size, algorithm NBX does
not require any additional space to administer the communication.
The time needed to perform the data exchange is simply the time
needed to perform the data movement (Lemma 4) and an additional
barrier (census, Corollary 1) operation.

This algorithm scales well with TNBX (P ) = Θ(log P ) and
thus solves the SDE problem optimally. In other words, it meets
the lower bound TBC(P ) imposed by the necessary detection of
termination.

Consistency This approach requires a barrier that completes only
after all messages have been received. This is guaranteed if any of
the following conditions is met:

1. The network is synchronous and the barrier message is only
injected after all data messages have been injected.

2. Each network channel is strictly FIFO and the barrier algorithm
uses all P − 1 outgoing channels. (Such an Ω(P ) barrier algo-
rithm obviously could not meet the lower bound, TBC .)

3. The network can be drained. (This would imply a special net-
work operation which effectively replaces a barrier).

4. The sender can check if a message reception has at least been
started at the receiver side.

Options 1–3 are relevant to systems with special hardware support
which is not offered by our message passing model or the MPI stan-
dard. Option 4 can be implemented with a simple protocol where
the receiver acknowledges the (start of) reception of each message
to the sender. The MPI-1 standard offers such a functionality with
a synchronous mode send (e.g., MPI Ssend), which offers multiple
avenues for optimization.

Theorem 5. AlgorithmNBX implements SDE correctly if at least
one of the above consistency requirements is fulfilled.

Proof. Options 1, 2, and 3 guarantee that the barrier completes only
after all messages are sent and have been received because mes-
sages in one channel cannot pass each other in our model. All pro-
cesses check for incoming messages and receive all arriving mes-
sages before the barrier completes. The strict ordering guarantees
that all messages are received at all processes. Option 4 replaces
the global ordering requirement with local ordering. A process p
starts the barrier operation only after all the messages it sent were
received. The process continues receiving messages until the bar-
rier completes globally hence the algorithm does not deadlock and
when the barrier completes globally, all messages sent have been
received.

Overhead of SynchronousMode Sends A trivial implementation
of synchronous mode send would effectively double the number of
messages and add another L+k ·o to the running time of TNBX in
the worst case. Unfortunately, many MPI libraries implement this
simple protocol because of the rare usage of MPI Ssend in appli-
cations. However, it is possible for this reception notification to be
embedded into the usual reliability protocol for data transmission.

Nevertheless, we assume the worst-case for our model, and will
present benchmark results of actual overheads in a later section.
Thus, we model the worst-case runtime of NBX with explicit
point-to-point synchronization as

T ′
NBX (P ) = TNBX (P ) + L + k · o. (2)

4. Implementation and Validation

We used three different systems for our evaluation, the Jaguar sys-
tem at Oak Ridge National Laboratory, the Intrepid BlueGene/P
system at the Argonne National Laboratory, and the Big Red sys-
tem at Indiana University to cover a wide range of different CPU
and network architectures. All systems are equipped with four cores
per node and we ran four MPI processes per node in all our experi-
ments.

Jaguar, a Cray XT-4/XT-5 system with 150,152 2.3 GHz
Opteron compute cores, ranks among the worlds fastest comput-
ers. Connected with the SeaStar 2 network in a three-dimensional
torus topology, the network bandwidth is approximately twice as
high as the injection bandwidth per node, reducing the effects of
network congestion, especially for small messages. Jaguar runs
Compute Node Linux 2.1 with the Cray Message Passing Toolkit
3. We used the XT-4 partition for our experiments.

The Intrepid system is a BlueGene/P and comprises 163,840
850 MHz PPC450 cores. We used virtual-node mode in our experi-
ments. The network consists of multiple special-purpose networks.
The collective network supports several collective operations in-
cluding simple reduction operations. The barrier network is essen-
tially a global OR which enables fine-grained synchronization of
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Figure 1. Visualization of different modeling parameters.

thousands of nodes in less than one microsecond [15]. The gen-
eral purpose network is a high-bandwidth three-dimensional torus
network. Intrepid runs Compute Node Kernel and a customized
MPICH2-based MPI library.

The Big Red system consists of 3,072 PowerPC 970 cores. The
768 nodes are connected with a fat-tree Myrinet 2000 network.
Big Red runs Linux 2.6 and Open MPI 1.3.2 with network-specific
configurations.

Nonblocking Collective Operations The performance of the col-
lective algorithms is crucial for the overall performance of the
protocols. We used the standard blocking MPI collective opera-
tions supplied with the system’s MPI library and LibNBC [16]
for nonblocking collective operations. We assume that MPI’s col-
lective operations are well optimized for the underlying network.
The generic LibNBC implementation uses the dissemination bar-
rier. Dissemination-based algorithms [17] are asymptotically opti-
mal for census functions of small data. However, depending on the
specific LogGP parameters and number of processes, other algo-
rithms might be faster with the same asymptotic bound.

BlueGene/P has a special hardware-supported barrier network.
Therefore, on the Intrepid system, we used the deep-computing
messaging framework [18] function DCMF GlobalBarrier to reg-
ister a callback for the nonblocking barrier that uses the hardware
support.

4.1 Bounds on Real Systems

We assume in the following that all communication algorithms are
implemented optimally in the LogGP model. We measured the
LogGP parameters of all test systems as described in [19, 20].
Table 1 shows the parameters for all systems.

System L (µs) o (µs) g (µs) G (µs)

Intrepid 4.29 2.87 2.04 0.00267
Jaguar 9.90 1.75 3.40 0.00058
Big Red 7.08 11.78 4.19 0.00414

Table 1. LogGP parameters for all machines.

We also analyzed the implementation quality of synchronous
sends. We used a standard ping-pong benchmark to compare
MPI Send with MPI Ssend. We observed that there is generally
a penalty for the latency of small messages while the transmis-
sion of large messages is not affected. This is because eager and
rendezvous protocols in MPI implementations. Small eager mes-
sages do not include a handshake hence, the handshake has to be
added which might require another roundtrip. The rendezvous pro-
tocol includes a handshake and effectively implements MPI Ssend.

The transmission curves for MPI Ssend in the Big Red system are
shown in Figure 1(a). For the other systems, we compare the 1-byte
latency Ls of the synchronous-mode send operation MPI Ssend

with the normal MPI Send latency (see Table 1). In addition, Ta-
ble 2 reports the corresponding data size ss where both send modes
converged (i.e., latency difference is smaller than 1%). The ratios

System Ls (µs) Ls/L ss (kiB)

Intrepid 5.04 1.17 12
Jaguar 25.40 2.57 132
Big Red 8.02 1.13 1.5

Table 2. Synchronous send overheads for all machines.

for Ls/L vary from 1.13 to 2.57 in our test systems. While the
measured ratios are only valid for ping-pong measurements with
exactly one message in the network, we found that they represent
real application behavior well. In the following theoretical analysis,
we explicitly account for the handshake overhead of synchronous
mode send (cf. Equation (2)).

4.2 Influence of the Number of Neighbors

The performance of the different algorithms depends on P , k,
the LogGP parameters, and the overhead of synchronous mode
send. We compare algorithms PCX and NBX as examples for
the discussion of the influence of k. NBX is more scalable than
the other algorithms; however, the penalty of the required point-
to-point synchronization accumulates linearly with k. Thus, we
expect that this algorithm performs best for sparse exchanges in
large-scale systems. Figure 1(b) compares the LogGP-predicted
idealized running time for algorithms PCX and NBX for 10 and
50 neighbors on Intrepid. It is clear that NBX is asymptotically
faster than PCX , however, the crossover point depends on k. Thus,
we analyze the behavior of this switching point, that is, the scaling
of k (we omit P , where it is obvious).

T ′
NBX ≤ TPCX

TBC + TDT + L + k · o ≤ TRS + TDT

k ≤
TRS − TBC − L

o

We see that the new algorithm has significant advantages over the
other algorithms even if k scales linearly with the total number of
processes. However, it strongly depends on the ratio of the LogGP
parameters. An algorithm that selects the fastest among NBX
and PCX must consider all LogGP parameters and k. Figure 1(c)
shows the threshold for k, where the two algorithms would perform
equally fast.
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Figure 2. Algorithm comparison on Intrepid for k = 6.
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Figure 3. Algorithm comparison on Jaguar for k = 6.

4.3 Microbenchmark Results

We first propose a microbenchmark that allows us to measure
the communication performance in isolation. The benchmark uses
the Mersenne Twister [21] random number generator to select k
different target processes and random message sizes between 1 and
1024 bytes at each process. For our experiment, we execute the
benchmark for 1000 rounds and report the accumulated time. This
simulates a bulk-synchronous application without computation.

We executed the microbenchmark with k = 6 on all systems
with varying results. Figures 2 and 3 show the results for differ-
ent process counts in Intrepid and Jaguar, respectively. Protocol
RSX could not be evaluated on Intrepid because the one-sided
implementation caused deadlocks. The three other protocols scale
as predicted with NBX as the best protocol for all investigated
process counts. This is mostly due to the optimized barrier and the
relatively low overhead of synchronous-mode sends.

Jaguar shows the interesting feature that PEX and PCX per-
form faster at smaller process counts but are eventually surpassed
by NBX at 2,048 processes. The low performance of RSX indi-
cates optimization potential in the one-sided communication layer.
LibNBC is not optimized for the underlying torus topology. Thus,
we expect that NBX would perform faster with an optimized bar-
rier implementation specific to the torus network.

Big Red showed a behavior similar to that of Jaguar. PEX and
PCX perform faster for smaller process counts but are surpassed
at about P = 400 by NBX .

We see that the performance on the different systems and scales
varies considerable. However, the benchmark data supports our
analysis that PEX or PCX perform good at small scales but
are outperformed by NBX at larger scales. The specific crossing

points are system dependent. Thus, an adaptive library implemen-
tation of the protocols might be beneficial.

5. Applications and Parallel Algorithms

In this section, we discuss different parallel algorithms and methods
that use DSDE and can thus utilize the discussed protocols. We
discuss three different application domains: graph computations,
n-body methods, and sparse matrix computations. We describe
optimized algorithms to solve the respective problems and their
relation to DSDE.

5.1 Parallel Graph Algorithms

Parallel graph algorithms are often used in large-scale network
analysis and data mining and impose several hard problems [22]
such as the inherent irregularity and lack of structure due to their
data-driven nature and poor locality. Complex graph algorithms
are often built upon level-synchronous breadth-first search (BFS)
traversals [23, 24]. Thus, we choose BFS as an example to discuss
the properties of the underlying communication. However, our re-
sults also apply to many other parallel graph algorithms such as
shortest-path problems, connected components and betweenness
centrality.

Algorithm 3 shows the pseudocode for parallel level-ordered
BFS. The call globalsum is a synchronizing operation that com-
putes a global census function, equivalent to MPI Allreduce with
MPI LOR as operation. This operation is used in Algorithm 3 as a
global OR in order to check for termination of the algorithm. The
call DSDE(R, Q, d) starts a sparse exchange of all vertices in the
set R, and all received vertices are inserted into Q with their re-
ceived dist. If an edge is remote, then it carries the address of the
destination process as a property.

Algorithm 3: Parallel BFS Algorithm.

Input: Distributed Graph (V, E), root vertex r, dist[v] =∞
Output: Distance dist[v] from r to all vertices v ∈ V
Q← empty queue; R← empty list; d = 0;1

if r is local then push r → Q;2

while true do3

if Q not empty then4

pop v ← Q;5

if dist[v] > d then6

globalsum(1);7

d = dist[v];8

DSDE(R, Q, d);9

foreach (v, w) ∈ E do10

if w is local then11

enqueue w → Q;12

dist[w] = d + 1;13

else enqueue w → R;14

else15

if R 6= ∅ then globalsum(1);16

else if globalsum(0) = 0 then break;17

DSDE(R, Q, d);18

The communication pattern in the BFS algorithm depends on
the initial graph structure and the evolution of the computation.
Many real-world problems can be represented by scale-free graphs
with a very small number of high-degree vertices and a sparse net-
work of low-degree vertices that often form clusters. An efficient
partitioning algorithm is necessary to achieve a good work distri-
bution. We generated well-partitioned (balanced) test graphs, as de-
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Figure 4. BFS times on Big Red with k = 6.

scribed in the next section, for our experiments to overcome this
problem.

5.1.1 The Balanced Graph Scenario

In this study, we utilize a random Erdős Rényi graph [25] local to
each process. Each of the node-local vertex pairs (u, v) u, v ∈ Vi

0 ≤ i < P − 1, is with probability p in the edge set Ei. Addi-
tionally, each process is a source of k remote edges that point to
random vertices in remote processes. Edges are only known to the
source node. A Hamiltonian cycle is added to the graph to ensure
that it is connected. Our model resembles the main properties of a
well-distributed Watts Strogatz model [26].

To draw a realistic scenario, we used p = 0.03 with 15,000
vertices per process on Big Red. The resulting 6.75 · 106 edges
nearly fill the available 1 GiB per core. We added k = 6, 26 or
79 random remote edges per process. All protocols were tested
with the same random graph after one warm-up round (where MPI
initialization occurs) for each setting. Multiple computations have
been performed, showing an acceptably low variation (< 5%).
We report the average running times, checking the outcome for
correctness.

Figure 4 shows the timing of a parallel level-synchronous BFS
search with 15,000 vertices per process and k = 6 random remote
edges per process. The gap between BFS+NBX and the other
algorithms is slightly bigger than in the microbenchmark run. We
conjecture that this is due to lower cache pollution because NBX
does not need to build lists of size Ω(P ) before communicating. It
also achieves efficient communication-communication overlap of
the barrier operation and the data transmission, which is important
in the irregular case. Additionally, NBX performs much faster
when the neighborhood sizes are unequal (we used static sizes in
the microbenchmark) as in BFS where the exchange is started when
the local queue runs empty, which depends on the input graph. We
repeated the benchmark with k = 26 and k = 79. The shape of
the curves is similar in all cases and beginning with 128 processes,
BFS withNBX was the fastest on Big Red.

We ran a similar experiment on the Intrepid system. However,
we could only use 10,000 vertices per process (3 ·106 edges at p =
0.03) due to the larger scale and the Ω(P ) memory consumption of
algorithms PEX and PCX . On this system, we have a “constant-
time” nonblocking barrier operation available that synchronizes all
processes in less than one microsecond independent of the scale.
Figure 5 shows the scaling of the level-synchronous parallel BFS
on Intrepid. We observe that the time with all three protocols is
nearly equal with 128 processes. However, as we scale up, PEX
and PCX quickly pass NBX which stays nearly constant due to
the fast barrier. PEX did not run above 2,048 processes because
of memory constraints. Benchmarks with k = 26 and k = 79
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show very similar curves. The BFS algorithm withNBX on 2,048
processes performs 15.8 and 14.1 times faster than with PCX ,
respectively. Jaguar showed similar results that are omitted due to
space constraints.

5.2 Parallel Barnes–Hut N -Body Methods

N -body simulations are typically used in cosmology to study the
physical behavior of massive numbers of particles, as in galaxies
or dark matter. The simulations track the particle movements under
the influence of gravity. Because the number of involved particles
is usually large (often millions of bodies), the computation of all
N2 direct particle–particle interactions becomes infeasible. Tree
methods such as a Barnes–Hut simulation overcome this issue by
dividing the volume (e.g., a universe) into cubic cells by forming
an octree (for 3 dimensions, or quadtree for 2 dimensions). Only
particles from nearby cells need to be handled individually, while
particles in distant cells can be treated as a single large body that
is located at its center of mass [27]. This method provides a huge
improvement because only O(N · log N) interactions need to be
considered.

Contrary, to the slow direct method where all force calculations
take similar amounts of time, a Barnes–Hut simulation has the
drawback that the time to calculate the resulting force on each
particle depends on its location (more precisely, the number of
“near” particles) and is therefore highly irregular. For this reason,
the primary challenge for a parallel simulation is to find a good
mapping of particles to the processes [28]. A good way to achieve
such a mapping is to use geometric partitioning [29]. One such
method is orthogonal recursive bisection (ORB), which divides
the space orthogonal to the longest dimension into two pieces that
generate the same load. This procedure is repeated until the desired
number of partitions (e.g., the number of processes) is obtained.
The example shown in Figure 6(a)1 shows such a two-dimensional
subdivision for 16 processes. Lines show the splittings, and their
colors as well as dot lengths indicate the depth of the recursive
bisection.

The difference between individual time steps of a simulation are
usually so small that it is more efficient to apply ORB only when
the actual process skew exceeds a certain threshold (often 5%). In
one ORB phase, it can happen that some particles leave the cell of
one processor and need to be migrated to the processor responsi-
ble for the new location. The (green) “force” arrow on the example
image shows such a situation where a particle leaves the area of
influence of one process (rank #3) to become the responsibility of
another process (rank #8) in subsequent simulation steps. Because
force calculation and updating of the resulting positions is done in

1 Credit: NASA and The Hubble Heritage Team.
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Figure 6. Number of Neighbors k for Different Applications.

a distributed manner, only the source process knows when particles
leave its cell. When this happens, it needs to move all the informa-
tion of these particles to the proper processes. This is done after
every simulation step (more precisely after the new positions have
been calculated) in a dynamic sparse exchange operation.

The most interesting parameter of this application with regards
to DSDE protocols is the maximum number of neighbors k for
different numbers of processes. This parameter is specific to the
application and determines the performance of DSDE. The ORB
splitting based on the imbalance in previous force computations
creates rapidly changing process neighborhoods. Experiments with
two galaxies consisting of 4 million particles showed that most pro-
cesses only need to migrate a small number of particles, whereas
there are some processes that send up to a thousand particles. We
were able to reproduce this behavior in a strong scaling experiment
on 1,024 processes and observed rapidly changing neighborhoods
between simulation rounds. Nevertheless, the maximum number of
neighbors k was always below 5 in our tests (Note that the com-
munication neighborhood of a cell is a subset of the geometrically
adjacent cells). Figure 6(b) shows the maximum number of neigh-
bors per process during a full run with 512 processes.

5.3 Parallel Sparse Matrix Computations

Sparse matrix computations are used in many scientific applica-
tions, such as computational fluid dynamics, finite element method
computations, and molecular dynamics. The key operations of
many such computations are (sparse) matrix–vector multiplications
and dot products (e.g., in Krylov-subspace methods). The commu-
nication pattern and volume depends on the distributions of the
matrix and the vector. The resulting communication is often static
and can be optimized statically. However, changes to the modeled
system (e.g., deformations) also change the sparse structure and the
communication neighborhoods and volumes.

We already showed that the performance of the algorithms de-
pends on the size of the neighborhood. Instead of presenting more
benchmark results, we chose to analyze realistic problems regard-
ing the size of the communication neighborhood, which mostly
depends on the structure of the sparse matrix. Thus we analyzed
six real-world matrices from the University of Florida sparse ma-
trix collection [30]. We used a load-balanced row-wise distribu-
tion of the matrix elements and a block distribution of the dense
vector. More elaborate partitioning methods can be used to further
optimize balance and reduce communications. However, fully dis-
tributed partitioning methods to optimize such problems at large
scale are still a field of active research.

We used six of the largest datasets in the matrix collection, per-
formed a sparse matrix–vector multiplication and recorded the av-
erage and maximum number of neighbors for each process. Ta-

ble 3 shows the number of rows, nonzero elements and k for a
512-process run. Details about the input matrices can be obtained
from [30].

Name # rows # elements k

torso3 259,156 4,429,042 27
pkustk01 22,044 979,380 76
parabolic fem 525,825 3,674,625 79
nlpkkt160 8,345,600 225,422,112 6
commanche dual 7,920 31,680 28
bone010 986,703 47,851,783 8

Table 3. Key properties of the used matrices and k for P = 512.

We observe that both the maximum and the average size of the
neighborhood grow very slowly with the number of processes. We
plot the average values for different process counts in Figure 6(c)
because the maximum is often strained by single high-degree ver-
tices.

Those results show that the number of neighbors grows very
slowly with the number of processes in large-scale matrix prob-
lems. Thus, we conclude that the discussed optimized algorithms
for DSDE could be used to optimize parallel sparse matrix compu-
tations where the system changes dynamically during the compu-
tation.

6. Conclusions and Outlook

In this work we define the static and dynamic sparse data-exchange
([S,D]SDE) problems for parallel applications. We show three dif-
ferent practical algorithms that can be easily implemented in to-
day’s parallel computing models such as the Message Passing Inter-
face (MPI). In addition, we propose a new algorithm that leverages
the new semantic features of nonblocking collective operations in
the upcoming version of the MPI standard.

By just splitting the collective operation into a start and an end,
we have the possibility to set a collective marker indicating that
the local active part of the process is done while the process can
still perform other tasks (e.g., receiving messages) until a globally
consistent state is reached. This process-local marker is part of
the global state and the collective operation will finish after all
processes set their markers. We showed one concrete example
for the use of those semantics that efficiently solves the DSDE
problem.

We believe that the semantic advantages of nonblocking col-
lective communications offer a huge potential, especially for ir-
regular applications. It seems also interesting that an advanced
one-sided algorithm can be replaced with a faster algorithm based



on nonblocking collective and point-to-point operations. We ex-
pect that this technique is applicable to other application domains
and other collective operations (such as the census operations
MPI Allreduce, MPI Reduce scatter, or MPI Alltoall).

Our evaluations of the different algorithms on three different
supercomputer systems showed that there are several trade-offs to
be made to choose the best algorithm, especially at smaller scales.
The proposed algorithm, however, is, with a bound of Θ(log P )
asymptotically faster than all established point-to-point algorithms
(Θ(P )) and outperforms each for sparse exchanges at large scale.
The new algorithm performs in microbenchmarks about 5.6 times
faster than the best known algorithm on 8,192 BlueGene/P proces-
sors and about 3.8 times faster on 16,384 Jaguar CPUs.

We also discuss several applications for the problem and show
application benchmark results for graph computations. The pro-
posed algorithm is able to use BlueGene/P’s hardware-optimized
barrier which reduces the runtime significantly. We see a speedup
of a parallel breadth-first search of up to 28.9 times on 8,192
CPUs. We discuss the size of the process neighborhoods for real-
world n-body problems and sparse matrix–vector multiplications.
We showed that the maximum and the average number of neigh-
bors scales very slowly with the number of processes. Those results
strongly suggest that the proposed protocol would perform well for
large-scale computations of those inputs.
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