
Multistage Switches are not Crossbars: Effects of Static Routing in

High-Performance Networks

Torsten Hoefler

Open Systems Laboratory

Indiana University

Bloomington, IN 47405

htor@cs.indiana.edu

Timo Schneider

Technical University of Chemnitz

Strasse der Nationen 62

Chemnitz 09107, Germany

timos@cs.tu-chemnitz.de

Andrew Lumsdaine

Open Systems Laboratory

Indiana University

Bloomington, IN 47405

lums@cs.indiana.edu

Abstract

Multistage interconnection networks based on central

switches are ubiquitous in high-performance computing.

Applications and communication libraries typically make

use of such networks without consideration of the actual

internal characteristics of the switch. However, applica-

tion performance of these networks, particularly with re-

spect to bisection bandwidth, does depend on communica-

tion paths through the switch. In this paper we discuss the

limitations of the hardware (capacity-based) definition of

bisection bandwidth and introduce a new metric: effective

bisection bandwidth. We assess the effective bisection band-

width of several large-scale production clusters by simulat-

ing artificial communication patterns on them. Networks

with full bisection bandwidth typically provided effective bi-

section bandwidth in the range of 55-60%. Simulations with

application-based patterns showed that the difference be-

tween effective and rated bisection bandwidth could impact

overall application performance by up to 12%.

1 Introduction

Commodity-based clusters with central-switch-based

networks have become an established architecture for high-

performance computing. The use of a central switch signif-

icantly simplifies the communication model for such sys-

tems. Compared to other interconnection network topolo-

gies, such as tori or rings, the central-switch based struc-

ture has the advantage of being able to efficiently embed

structured communication patterns and to support unstruc-

tured patterns as well. A network with a true crossbar as

its central switch has almost ideal network properties: con-

stant latency between all pairs of endpoints as well as full

bisection bandwidth (any half of the endpoints can simulta-

neously communicate with the other half at full line rate).

However, although they are often treated as if they were

true crossbar switches, practical central switches are gen-

erally implemented as multistage interconnection network

(MINs). As a result, MINs are able to approximate, but not

truly provide the latency and bisection bandwidth character-

istics of crossbars. The point-to-point latency in a MIN is

not constant for all port combinations (although it is usually

the case that the variance is relatively low). Less obvious,

but more important to application performance, is the ef-

fect of MIN architecture on network bisection bandwidth,

particularly as it is seen by applications.

As with other networks, MINs can be characterized by

their bisection bandwidth, which, following [9] we define

as the total bandwidth between the two halves of the worst-

case segmentations of a network. However, this definition

of bisection bandwidth only considers the capacity provided

by the hardware. It does not consider how the usage of that

capacity may be affected by routing policies. That is, unlike

with a true crossbar, connections must be routed in a MIN

and different communication patterns may require different

routing in order to achieve the rated bisection bandwidth for

a MIN. If proper routing is not established in the MIN for a

given communication pattern, that pattern may not be able

to achieve satisfactory performance.

This issue is particularly problematic in networks, such

as Infiniband, that employ static routing schemes because of

the potential for mismatch between the static routes and the

communication requirements of running applications. Ap-

plications can be oblivious to network parameters if the net-

work can provide its rated bisection bandwidth for all com-

munication patterns. Indeed, most applications and commu-

nication libraries today are written using this assumption.

However, different applications have different communica-

tion patterns (and communication patterns may even vary

significantly within a single application).

Given the prevalence of MIN networks in high-

performance computing, a more thorough understanding of

their characteristics is an important step towards more ef-

fective utilization of these resources.

Contributions

Therefore, in this paper we assess the impact of static

routing on the expected bisection bandwidth for arbitrary

patterns and for real applications on large-scale production

clusters. We address several myths about the definition of

bisection bandwidth (and full bisection bandwidth) and in-

troduce the new application-driven definition of “effective

bisection bandwidth”. Furthermore, we provide a method-

ology and tool for cluster and network designers to char-

acterize the theoretical performance of applications running

on InfiniBand (and potentially other) MIN networks. More

generally, we argue that the scalability of MINs is limited

due to practical constraints (routing, hot spots).

2 Background

2.1 Network Topologies

Different network topologies with different properties

have been proposed to be used in parallel computers:

trees [4, 14], Benes networks [2], Clos networks [5] and

many more — consult [13] for a complete overview. Cross-

bar switches are often used as basic building blocks today.

Crossbar circuits usually implement a symmetric crossbar,

i.e., the number of input ports is equal to the number of out-

put ports. Available HPC networks, such as Myrinet, Infini-

Band and Quadrics implement crossbars of sizes 32, 24 and

8 respectively. A fully connected network is not scalable

because the number of necessary links grows with O(P 2)
for P endpoints.

The Clos network The Clos network was designed

by Clos in order to build telecommunication networks with

switch elements of limited size [5]. It is used today in many

InfiniBand and Myrinet switches. The typical Clos network

consists of three stages and is described by three parame-

ters. Those parameters n and m and r describe the input

and output port count and number of switches in the first

layer respectively. The m switches in the middle stage are

used to connect input to output ports. Clos networks are

“strictly non-blocking” if m ≥ 2n − 1 and rearrangably

non-blocking if m ≥ n. Most of todays networks are built

with n = m which makes those Clos topologies “rear-

rangably non-blocking” (see [5] for details). They can have

the full bisection bandwidth but only for certain combina-

tions of routing and traffic patterns. An easy routing algo-

rithm (up*/down* [25]) can be used to ensure deadlock-free

routing and multiple paths between any pair of nodes exist

(failover possible).

The (fat) tree network The tree network has a fixed

tree topology and has been used to connect the TMC CM-

5 and Meiko CS-2 machines and many InfiniBand based

cluster systems, such as the world’s largest unclassified In-

finiBand system (Thunderbird) at the Sandia National Lab-

oratories. The nodes are connected at the leaves and rout-

ing is simple (go up until the target node is reachable on a

down route). However, this introduces congestion near the

root and limits the bisection bandwidth. Leiserson simply

increased the link width at every level to avoid this conges-

tion [14]. The resulting “fat tree” network can be designed

to offer full bisection bandwidth and can be efficiently im-

plemented in an on-chip network. However, it is not possi-

ble to construct it easily from fixed-size crossbar elements

with fixed link bandwidths. A tree-like network topology

that can be constructed with equally sized crossbar switches

has been proposed in [15]. Similar to Clos networks, the k-

ary n-tree networks [20] retain the theoretical full bisection

bandwidth in a rearrangable way.

Practical installations Most modern networks, such as

Myrinet, Quadrics and InfiniBand allow arbitrary network

layouts but usually use Clos networks or fat trees. The main

difference lies in the size of the crossbar elements and the

routing strategy. Myrinet employs 16 or 32 port crossbar

switches. InfiniBand and Quadrics build on 24 and 8 port

switch elements respectively. The routing strategy is also

very important. Myrinet uses source-based routing where

every packet can define a different route. InfiniBand uses

a static switch based routing scheme and Quadrics a non-

disclosed adaptive scheme [19].

In the following, we pick the network with second most

installations in the top 500 list (24.2% as of 11/2007), In-

finiBand, to analyze the effects of changing traffic patterns

and the influence of the used network topologies for exist-

ing systems and routing algorithms.

2.2 The InfiniBand Network

We focus on a practical analysis of deployed InfiniBand

networks in this paper. However, our results also apply

to other statically routed networks with similar topologies.

The InfiniBand standard does not define a particular net-

work topology, i.e., switches can be connected in an ar-

bitrary way to each other. The switches have a simple

static routing table which is programmed by a central en-

tity, called the subnet manager (SM). The SM uses special

packets to explore the network topology in the initialization

phase. It then computes the routing table for every switch.

The routing algorithm can be freely chosen by the SM. This

initialization usually requires network downtime and is not

performed often. Thus, the routing can be seen as static.

2.2.1 Hot-spot problems in the InfiniBand Network

Most large-scale InfiniBand networks use the k-ary n-tree

topology to connect high node-counts. This topology is able

to provide full bisection bandwidth, but is limited to a fixed

routing table. This means that, for a given balanced rout-

ing, there is at least one pattern that delivers full bisection

bandwidth, but all other communication patterns might per-

form significantly worse. The problem is not the number of

available physical links, which is sufficient for any commu-

1,5,9 (up)

2,6,10 (up)
7,11,15 (up) 3,7,11 (up)

4,8,12 (up)

2,10,14 (up)

1,9,13 (up)

3,11,15 (up)

4,12,16 (up)

1 .. 4

....
9 .. 12

8 port
crossbar

5,9,13 (up)2

2

12

6,10,14 (up)

8, 12, 16 (up)

1 (down)

2 (down)

6 (down)

5 (down)

(to 9+10)

13 (down)

14 (down)

3 (down)

4 (down)

7 (down)

8 (down)

15 (down)

16 (down)

5 .. 8
1

13 .. 16

1

2

1

2

1

1

(to 11+12)

crossbar
8 port

8 port
crossbar

8 port
crossbar

8 port
crossbar

Figure 1. Statically routed fat tree example with 16 nodes and 8 port crossbars

nication pattern, it is the routing which might oversubscribe

physical links even though other links remain idle. This

problem has been discussed as a source for performance

loss in [30, 21]. Zahavi [30] uses specialized routing tables

in the switches to avoid hot-spots in the network for a cer-

tain communication pattern. This method only works if the

processes are carefully placed in the network, the applica-

tion pattern is known well in advance, and the system can be

taken down to re-program the switches before the applica-

tion run. This scenario is very unlikely; applications have to

run with the pre-installed routing table that might not sup-

port their specific traffic pattern. Most routing algorithms

try to distribute routes evenly over the available links, lead-

ing to a so called “balanced routing” scheme. We will illus-

trate the congestion with a small 16 node example network

built from 8 port crossbar elements using ideally balanced

routing. Figure 1 shows the network and the fixed rout-

ing tables as attributes on the physical connections (up and

down routes). Figure 1 also shows a congestion case where

node 4 sends packet 1 to node 14 and node 1 sends packet

2 to node 6. Even though those two node pairs are distinct

and the down-route is contention-free, the static routes to

the upper-left switch send both packets over a single link

which causes congestion.

We call a set of n/2 communication partners a com-

munication pattern. Our example network allows us to

create some patterns that have full bisection bandwidth,

such as (1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,15),

(12,16). But other patterns, for example (1,5), (2,9), (3,13),

(4,6), (7,8), (10,11), (12,14), (15,16) show different char-

acteristics such that every connection has a different band-

width/oversubscription. The connections (1,5), (2,9) and

(3,13) have an oversubscription of 3 and thus only one

third of the bandwidth available. Other connections, such

as (7,8), (10,11) and (15,16) have the full bandwidth avail-

able. The congestion points in the network (in our exam-

ple the up-link between the lower and upper left switches)

are called hot spots [22]. Some techniques have been in-

troduced to avoid those hot spots, such as adaptive source-

based routing or multi-path routing [16]. However, those

techniques often use simple round-robin schemes to dis-

perse the network traffic, which is very limited. Other tech-

niques require a global view of the network [6] or significant

changes to the InfiniBand network [17, 24].

2.2.2 Measuring the Effects of Fabric Congestion

To analyze the impact of the hot-spot and congestion, we

performed several benchmarks on the CHiC cluster, a 528

node InfiniBand system offering full bisection bandwidth.

The network topology of this system is a fat tree network

built from 44 24 port leaf switches (crossbar) and two 288

port top switches (internal Clos network). We queried the

routing tables and topologies of the switches with the tools

ibnetdiscover and ibdiagnet and chose pairs of

communicating peers that cause congestion in the fat tree

such that every node is in exactly one pair (no endpoint con-

gestion). We benchmarked the point-to-point latency and

bandwidth between a pair of nodes while adding more con-

gestion (we did this by adding sending 8MB ping-pong MPI

messages between the other node pairs). To achieve com-

parable results, we used the well-known Netpipe [28] MPI

benchmark with Open MPI 1.2.5 and OFED 1.3 to perform

those measurements.

The results in Figure 2 show the transmission curves for

different numbers of pairs causing congestion even though

all communications have been done among independent

pairs of nodes. This shows clearly that congestion and

routing-based hot-spots in the fabric can have a significant

impact on the communication performance. However, from

a user perspective it is not trivial to know if congestion oc-

curs because the fabric looks homogeneous.

Figure 3 shows the latency for all possible hot spot con-

gestions for the CHiC network. The congestion might vary

from 0 (no congestion) to 11 (maximum congestion) be-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0.001 0.01 0.1 1 10 100 1000 10000

B
a
n
d
w

id
th

 (
M

B
it
/s

)

Datasize (kiB)

no congestion
congestion: 1
congestion: 3
congestion: 5
congestion: 7

congestion: 10

Figure 2. InfiniBand bandwidth curve in dif-
ferent congestion situations

cause every crossbar has 12 down- and 12 up-links. Thus, a

maximum of 12 nodes can be connected to a single crossbar.

We see a nearly linear increase in 0-byte transmission la-

tency and a significant reduction of the available link band-

width.

2.2.3 InfiniBand’s Lid Mask Control

InfiniBand’s Lid Mask Control (LMC) mechanism has been

discussed as a solution to the hot-spot problem. It as-

signs multiple LIDs (InfiniBand’s endpoint identifiers) to

hosts and thus enables multiple routes for every pair of

peers. However, the ordering constraints of the InfiniBand

network prevent dispersion at the connection (queue pair)

level. Thus only whole messages can be scheduled to differ-

ent routes. Simple round-robin schemes have been shown

to improve the worst-case network performance slightly

in [29]. This “blind” way of dispersing routes does not

provide near-optimal performance but finds some average

performance and has not been analyzed well. It is thus un-

clear how much the difference to optimal routing is. An-

other problem with multi-path routing is that the switches

need to store and evaluate the potentially very high num-

ber of routes for every packet. The worst problem however,

is the growing number of endpoints (queue pairs) per pro-

cess (especially on SMP or multicore systems) which is not

scalable to higher node counts. Much work has been in-

vested to limit the number of queues [26, 27] or even use al-

ternative communication methods such as Unreliable Data-

gram [7, 12]. Thus, LMC-based mechanisms can be seen as

counter-productive at large scale.

In this article, we focus on the analysis of single-path

routed InfiniBand systems to analyze the impact of the static

routing.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1
-b

y
te

 L
a
te

n
c
y
 (

u
s
)

P
e
a
k
 B

a
n
d
w

id
th

 (
M

b
p
s
)

Congestion Factor

Latency
Bandwidth

Figure 3. Latency and bandwidth decrease
for InfiniBand measured in congestion situ-

ations

3 Hot Spot Analysis

While we’ve demonstrated that hot-spot problems exist

in current InfiniBand networks, it is still not known how

big the negative influence on real applications is. Our first

step is to check the assumption that every communication

pattern can be embedded in the network efficiently. Thus,

we have to assume totally arbitrary communication patterns

which reflects the worst class of applications with randomly

changing communication patterns.

To examine bisection bandwidth under this assumption,

we have to split P nodes into two equally sized partitions A
and B. We have

(

P
P

2

)

possibilities to do so. Furthermore we

have to decide which node of partition A communicates to

which node from partition B. The first node in partition A
has P

2
possible partners in partition B, the second has P

2
−1

left and so on. This yields to a total of P
2
! communication

schemes.

If we combine all different possibilities to split the P
nodes into two groups and all different pairings between the

two groups, we get

(

P
P
2

)

·

P

2
∏

i=1

i

possible communication patterns; which is already

518, 918, 400 in our simple 16 port network. Only a very

small fraction of those patterns has full bisection bandwidth.

Due to the huge number of possible patterns, there is no

possibility to benchmark reasonably sized network exhaus-

tively. Our approach is to simulate the network contention

of a huge (statistically significant) number of communica-

tion patterns because this is significantly faster and easier

than benchmarking.

3.1 Choosing a Network Model

Our congestion model is based on the the measurement

results of Section 2.2.2. We model the network as a topol-

ogy of fully connected, contention-free crossbar switches

with limited port count interconnected by physical wires

with bandwidth/capacity γ. Each crossbar switch has a

static routing table that defines an output port to every node

in the network. If we assume a specific communication pat-

tern, we assign a usage count π to every physical connec-

tion that indicates how many connections are routed over

this link. This usage count models the congestion factor in

2.2.2. The throughput per cable is thus defined as γ
π . In the

following, we only discuss relative bandwidths and thus set

γ = 1.

This simple model can be used to derive parameters for

more complex models. The LogGP [1] model for example

can be parametrized for a point-to-point connection while G
is multiplied with π. The latency can be modeled as a linear

function L(π). The parameters o and g are independent of

the congestion.

3.2 The Network Simulator

The design goal of our simulator is to use real existing

InfiniBand systems (topologies + routing tables) to inves-

tigate contention effects on applications running on those

systems. The simulator thus accepts a network structure

(queried from the running system with ibnetdiscover

and ibdiagnet and represented as a directed acyclic

graph) and a specific communication pattern (represented

by P/2 communication pairs) as inputs. The output is the

maximum usage count π(r) along every of the P/2 routes

r (each route r might use multiple physical cables but the

maximum congested cable mandates the transmission speed

and thus the route’s overall congestion). For example our

example pattern (1,5), (2,9), (3,13), (4,6), (7,8), (10,11),

(12,14), (15,16) would lead to the congestions 3, 3, 3, 1,

1, 1, 1, 1 respectively. The simulator assumes full duplex

communication, i.e., messages using the same link in dif-

ferent directions do not cause congestion.

3.2.1 Related Work

Several publications, such as [3, 6, 16, 17, 20, 21], rely on

network simulations. The ability to read arbitrary commu-

nication patterns and real-world topologies (not limited to

fat tree or Clos) distinguishes our work from all earlier net-

work simulations that used predefined patterns. Those pre-

defined patterns do often not reflect the communication pat-

terns used in high performance applications. Patterns are:

• “uniform traffic” [6, 16] which might cause congestion

at the endpoints (destinations are chosen uniformly,

i.e., two or more nodes might send to the same des-

tination).

• “complement traffic” [20] where node i sends to the

node with the number that equals the bit-wise (one-)

complement of i. This pattern reflects a possible bi-

section of the network.

• “bit reversal” and “transpose” [20] are patterns that re-

flect all-to-all like communications which are used for

some problems.

• “hot-spot traffic” [16, 21] is traffic where some per-

centage of the traffic is targeted at single nodes, so

called hot-spots. Hot-spots should be avoided in high

performance computing, thus, this pattern does not re-

flect typical applications.

• “localized traffic” [3] might reflect nearest neighbor

communication schemes in real-world applications but

the definition is vague.

Another problem with former simulations is that for each

pattern, usually only the average packet latency and band-

width is reported. However, the average values might have

little meaning. Some applications can accept a wide variety

of bandwidths in the communications, others can not. Fine

grained applications running tightly synchronized with col-

lective communication (lock-step) are usually only as fast

as the slowest link. The average values might mislead in

application modeling to just assume uniform bandwidth on

every link and thus misinterpret those simulations. A more

detailed application model is presented in Section 4.

3.2.2 Simulated Cluster Systems

Throughout this paper, we use four of the biggest Infini-

Band cluster installations available to perform our simula-

tions. The “CHiC” at the University of Technology Chem-

nitz has 528 nodes connected to 44 24-port leaf switches

which are connected to two 288 port switches in the second

level. The CHiC network is able to deliver full bisection

bandwidth. The second larger input system is the “Atlas”

system located at the Lawrence Livermore National Lab has

1142 nodes and a fat tree network with full bisection band-

width. The “Ranger” system at the TACC uses two Sun

“Magnum” 3456 port switches to connect 3936 nodes with

full bisection bandwidth. The largest simulated system, the

“Thunderbird” (short: Tbird) cluster, is also the largest In-

finiBand installation (with the biggest number of endpoints)

and its network has 4391 InfiniBand endpoints arranged in

a fat tree network with 1/2 bisection bandwidth.

3.2.3 Simulator Verification

To verify our simulation results, we implemented a bench-

mark that measures randomly changing “bisect” communi-

cation patterns and records the achieved bandwidths on ev-

ery connection into several bandwidth classes. A “bisect”

communication pattern is created as follows:

• split the network of size P into two equally sized

groups A and B

 0

 1

 2

 3

 4

 5

 6

 7

N
u
m

b
e
r

o
f
O

c
c
u
rr

e
n
c
e
s
 (

x
 1

0
0
,0

0
0
)

627.4 MiB/s281.2 MiB/s181.2 MiB/s133.6 MiB/s

measured
simulated

Figure 4. Simulation and Benchmark Results
for a 512 node bisect Pattern with 1MiB mes-

sages in the CHiC system

• create P/2 pairs such that every pair consists of a node

from A and B
• guarantee that no node is in more than a single pair

(has more than one partner in the other group)

Our benchmark generates a random “bisect” pattern at

process 0, scatters it to all P processes and synchronizes the

time on all nodes with a tree-based algorithm as described

in [10]. Process 0 broadcasts a starting time to all nodes that

start simultaneously and benchmark the time needed to send

100 fixed-size packets between the nodes. Process 0 gathers

all P/2 timing results and scatters a new random “bisect”

pattern. This procedure is repeated for 5000 random bisect

patterns. We use the Mersenne Twister [18] algorithm for

to generate the random patterns. The root node records all

5000 · P/2 point-to-point bandwidth results and sorts them

into 50 equally-sized bins.

The benchmark results of the full CHiC system are

shown in Figure 4. This benchmark, using the full system

showed very clean results with only 4 of the 50 possible bins

filled. The measured link bandwidth with MPI between two

nodes in the CHiC system is γ = 630MiB/s for 1MiB
messages. Our simple model γ

π would predict 315MiB/s,

210MiB/s, 157.5MiB/s for a congestion π of 2, 3 and 4

respectively. The benchmark results are slightly lower than

that but still reflect our expectations. Runs with fewer nodes

also supported our thesis, however, the results were scat-

tered across many bins due to background communication

during those jobs.

These experiments show that our simulator design accu-

rately reflects a real-world environment. It is usually not

easily possible to perform measurements at full scale, thus

we will show the effects of the network contention to appli-

cations by simulating the application traffic patterns. This

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6

F
ra

c
ti
o
n

Effective bandwidth

Atlas
Ranger

Tbird

Figure 5. Bisection pattern bandwidth results
for all simulated systems

will give us some estimation of how real applications are

influenced by the network topology.

3.2.4 Simulating the Effective Bisection Bandwidth

To get an estimation of how much bandwidth can be ex-

pected from a random “bisect” pattern, we ran N (N = 106

for our simulation) simulations with different patterns for

our three systems. Each pattern simulation resulted in P/2
oversubscription factors π (one per pair).

Most applications are round-based and every round ex-

hibits a potentially different communication pattern. To

model this behavior, we chose to evaluate every pattern

as an entity by plotting the pattern-specific average band-

widths in a histogram. Thus, we compute the pattern-

specific average oversubscriptions as
(

∑P/2

i=1
πi

)

· 2

P and

sorted these N results into bins. The normalized height

of any histogram bin shows the fraction of mappings wich

showed the specific effective bandwidth. Figure 5 shows the

histograms of the bandwidth-distribution. The achieved av-

erage bandwidths are interestingly stable (nearly all patterns

exhibit a similar average bandwidth) and only two bins are

(nearly equally) filled for all simulated systems.

Based on the observation that all “bisect” patterns seem

to have a pretty stable average bandwidth, we define the

application-oriented network parameter “effective bisection

bandwidth” as the average bandwidth for an arbitrary com-

munication pattern. This most generic definition reflects

applications with non-predictable and irregular communi-

cation patterns such as parallel graph algorithms as a single

number. This parameter is unfortunately not easy to mea-

sure for a given network. It might be assessed by a exhaus-

tive search or in combination with statistical methods.

The simulated “effective bisection bandwidths” are

57.6%, 55.6% and 40.6% of the full bandwidth for Ranger,

Atlas and Tbird, respectively. An interesting observation is

that the large Tbird system with half bisection bandwidth

does not deliver a significantly worse “effective bisection

bandwidth” than the Atlas system with full bisection band-

width.

However, this analysis still does not reflect many real-

world applications well. The next section explains an anal-

ysis of 5 real world application codes and simulates their

communication patterns.

4 Parallel Applications Communication

To understand how the network affects applications, we

are analyzing four large open source applications for the

main sources of communication overhead. Later, we will

use those results to derive communication patterns as input

for the simulation.

Most parallel high-performance applications are written

with the Message Passing Interface standard (MPI). Thus,

we used the MPI profiling interface to record application

communications and measure their running time as a share

of the application’s running time. We analyzed point-to-

point collective communication by representing the neigh-

borhood relations in a directed graph. Collective commu-

nication calls can not be recorded that easily because the

used pattern depends on the implementation. Thus, we just

recorded the communicator size on which the collective op-

erations were run. All runs were done on 64 processes with

InfiniBand as the interconnection network.

Massively Parallel Quantum Chemistry Program

The Massively Parallel Quantum Chemistry (MPQC) Pro-

gram [11] is an open-source implementation that solves

the Schrödinger equation to compute several properties of

atoms and molecules. The MPQC run took 852 seconds

and had 9.2% communication overhead. We were able to

identify three collective routines that caused nearly all com-

munication overhead: MPI Reduce (67.4%), MPI Bcast

(19.6%) and MPI Allreduce (11.9%). All routines used the

full set of processes (64) as communication group.

MIMD Lattice Computation The MIMD Lattice

Computation (MILC) code is used to study quantum chro-

modynamics, the theory of the strong interactions of sub-

atomic physics as used in high energy and nuclear physics.

We benchmarked a 9.4% communication overhead run-

ning the MILC code for 10884 seconds. More then

86% of the overhead was caused by point-to-point com-

munication (MPI Isend/MPI recv/MPI Wait) and 3.2% by

MPI Allreduce in the complete process group. We analyzed

the send/receive pattern and found that every process com-

municates with exactly 6 other processes (neighbors).

Parallel Ocean Program The Parallel Ocean Program

(POP) is an ocean circulation model. It is the ocean compo-

nent of the Community Climate System Model and has been

used extensively in ocean-only mode for eddy-resolving

simulations of the global ocean. We measured 32.6% com-

munication overhead for a 2294-second run. About 84%

of this overhead are due to point-to-point communications

and 14.1% are caused by a global MPI Allreduce. Every

process uses the point-to-point operations to communicate

with 4, 5 or 6 neighbors and rank 0.

Octopus The last analyzed application, Octopus,

is a part of the Time-dependent density functional the-

ory (TDDFT) package which solved the time-dependent

Schrödinger equation in real-space. The application ran on

64 nodes for 258 seconds and a communication overhead

of 10.5% was measured. Most of this time was spent in

MPI Allreduce (61.9%) and MPI Alltoallv (21.9%) on all

processors.

Application Conclusions and Summary The five

analyzed applications spend most of their communication

time in regular neighbor or collective communications.

Collective communications were reductions, broadcasts,

reductions-to-all and all-to-all and usually performed with

all processes in the communication context (communica-

tor). We also identified point-to-point patterns with 4 to

6 neighbors. Thus, we conclude that we can express the

network patterns of many real-world applications that exist

today by simulating collective communication and nearest

neighbor point-to-point patterns. The following section de-

scribes common patterns for the implementation of collec-

tive communications based on point-to-point messages.

5 Application Communication Simulation

A common way to implement collective operations is

to use algorithms based on point-to-point communication.

Multiple algorithms exist and are used in different scenar-

ios. A general rule for algorithm selection is that small-

message all-to-one or one-to-all operations (e.g., broad-

cast or reductions) use tree-like communication schemes

and large versions of those operations use double-trees or

pipelined (ring) communication schemes. All-to-all com-

munication schemes (e.g., reduce-to-all or personalized all-

to-all) usually implement the dissemination algorithm [8] or

also a pipelined ring scheme. A more detailed analysis of

algorithm selection can be found in [23].

5.1 Simulating Collective Patterns

To examine the effect of fabric congestion on applica-

tions we simulate different collective traffic patterns and

record the oversubscription π per route. Most optimized

collective communication patterns consist of multiple com-

munication stages r (aka rounds, e.g., the dissemination al-

gorithm uses ⌈log2P ⌉ rounds). Figure 6 shows the commu-

nication pattern of the dissemination and tree algorithm for

7 processes as an example. Every of those rounds reflects

a different communication pattern that is performed on the

network.

0

1

2

34

5

6

0

1

2

34

5

6

0

1

2

34

5

6

0

1

2

34

5

6

0

1

2

34

5

6

0

1

2

34

5

6

Round 1 Round 2Round 0

Tree pattern (small messages in Bcast, Reduce)

Round 1 Round 2Round 0

Dissemination pattern (Barrier and small messages in Alltoall, Alleduce)

Figure 6. Collective communication pattern

for the dissemination and tree algorithm

We extended the pattern generator to also generate col-

lective communication patterns such as dissemination, pair-

wise exchange, tree, pipeline, ring, scatter and gather pat-

terns. Those patterns usually have multiple communication

rounds with a specific pattern for each round.

Our simulator accepts a pattern and generates a random

mapping from each rank in the input pattern to an endpoint1

in the network. Then it simulates all communication rounds

for this mapping. However, the merging of the r · P/2 re-

sults for each multi-round pattern is not trivial because each

link might have a different oversubscription factor π. Thus,

we apply two strategies that determine an upper and lower

bound to the communication bandwidth:

1) we use the maximum congestion factor π for every

round and sum it up to the final result.

πsum max =
1

r
·

r
∑

i=1

max
k

(πi,k)

This represents the most pessimistic case where all pro-

cesses have to synchronize (wait for the slowest link) at the

end of each round.

2) we use the average congestion factor of each round

and sum them up to the final result.

πsum avg =
1

r
·

r
∑

i=1

2

P
·

P/2
∑

k=1

πi,k

This represents, similar to our definition of the “effective bi-

section bandwidth”, the optimistic case where no synchro-

nization overhead occurs and every process can proceed to

the next round without waiting for other processes.

1we focus on networking effects in this work and thus we only simulate

the single process per node case

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5

F
ra

c
ti
o
n

Effective bandwidth

Atlas lower
Atlas upper

Ranger lower
Ranger upper

Tbird lower
Tbird upper

Figure 7. Dissemination pattern simulation
results

The results of N different rank-to-node mappings are

then combined into equally sized bins and plotted as his-

tograms (we used N = 105 in our simulations). The nor-

malized height of any histogram bin shows the fraction of

mappings wich showed the specific effective bandwidth.

The dissemination, ring and recursive doubling simula-

tion results are rather similar and we present only the dis-

semination pattern in Figure 7 due to space restrictions. The

dissemination pattern uses ⌈log2P ⌉ communication rounds

to perform the operation as shown in Figure 6. The lower

bound in the histogram shows that the average of the mini-

mum bandwidths of all rounds (strategy 1) is as small as 10-

15%. The upper bound shows the bandwidths with around

40-50% in the optimistic estimation (strategy 2). The “ef-

fective bandwidth” (the average of the “upper” simulations)

for random rank-to-node mappings of the dissemination

pattern is 41.9%, 40.2% and 27.4% for the Ranger, Atlas

and Tbird systems respectively.

The tree pattern, depicted in Figure 8, shows the best re-

sults because it does not leverage the network fully (each

one of the ⌈log2P ⌉ rounds doubles the number of commu-

nicating peers beginning from 1 while all peers communi-

cate from round 1 in most other patterns, cf. Figure 6). The

“effective bandwidths” of the tree pattern for the Ranger,

Atlas and Tbird system were 69.9%, 71.3% and 57.4% re-

spectively.

The nearest-neighbor communication simulation results

— assuming 6 simultaneous neighbor communications —

are shown in Figure 9. This limits the bandwidth due to con-

gestion at the endpoints to 1/6. Thus, we scaled the results

by a factor of 6 to isolate the effect of fabric congestion.

We see a huge gap between the tightly synchronized com-

munication (lower) and the optimistic measure (upper). The

“effective bandwidths” are about 62.4%, 60.7% and 37.4%

for the Ranger, Atlas and Tbird system respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7

F
ra

c
ti
o
n

Effective bandwidth

Atlas lower
Atlas upper

Ranger lower
Ranger upper

Tbird lower
Tbird upper

Figure 8. Tree pattern simulation results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

c
ti
o
n

Effective bandwidth

Atlas lower
Atlas upper

Ranger lower
Ranger upper

Tbird lower
Tbird upper

Figure 9. Nearest neighbor communication

with 6 neighbors

5.2 Influence on Applications

With our simulation results and with several simplifying

assumptions, we can make some approximate statements

about the performance penalty due to the routing effects

of the four analyzed applications. We assume that the

applications are written in a scalable way such that a

weak scaling problem keeps the communication overhead

approximately constant at large scale and that collec-

tive algorithms like reductions, broadcast and alltoall

operations are implemented in a tree-based scheme to

favor small messages. We use our simulation results to

extrapolate the measured communication overhead to the

full effective bisection bandwidth case. Then, we calculate

the difference in running time of each application. For

example POP spent 27.4% of its execution time in neighbor

communications with up to 6 neighbors and 4.6% in an

allreduce (tree) operation. The average bandwidths for

those communication patterns on the largest simulated

system (Tbird) are about 37.4% and 57.4%. This means

that this communication for those patterns would be 2.67

and 1.74 times faster with real full bisection bandwidth.

This would decrease a hypothetical application running

time of 100s to only 80.89s, i.e., would reduce the appli-

cation running time to 80.89% of the original time. The

following table shows an estimation of the possible appli-

cation improvements on the three simulated systems (using

the whole network with one process per node) assum-

ing they could leverage full effective bisection bandwidth:

Application Overhead Ranger Atlas Tbird

MPQC 9.2% 97.23% 97.36% 96.08%

MIMD 9.4% 96.87% 97.73% 94.81%

POP 32.6% 88.32% 87.91% 80.89%

Octopus 10.5% 97.18% 97.23% 95.79%

The rated bandwidth of the Tbird system is only 1/2 bi-

section bandwidth. However, we would still argue that the

nearest neighbor and tree-based communication can be effi-

ciently embedded into the network (assuming a good node-

to-host mapping) such that the application effectively has

(for this pattern/mapping) full bandwidth. Thus, we com-

pare in the results in the table to full bandwidth. However,

if we assume an arbitrary mapping (i.e., that the rated band-

width is a strict limit), then the gain in application perfor-

mance for all application on the Tbird system halves.

We can conclude that the effect on application perfor-

mance is significant and that the usage of hot-spot avoiding

routing schemes would be very beneficial for real-world ap-

plications.

6 Conclusions and Future Work

We showed that the original definition of full bisection

bandwidth [9] does not take the network routing into ac-

count and might thus not be very meaningful for practi-

cal applications. Thus, we defined a more application per-

formance oriented measure, the “effective bisection band-

width” which takes routing into account. We demonstrated

a benchmark to perform this measurement. We also pro-

pose a simulation methodology and simulate three existing

InfiniBand clusters with 528, 1142 and 4391 nodes. Our

results show that none of those systems achieves more then

61% of the theoretical bisection bandwidth. We also ana-

lyzed different real-world applications for their communi-

cation patterns and simulated those patterns for the three

analyzed systems. A rough estimation of the communica-

tion behavior showed that the communication time of those

applications could nearly be halved and the time to solu-

tion could be optimized by more than 12% with a network

offering full effective bisection bandwidth.

Our results also show that an optimized process-to-node

layout as offered by topological MPI communicators might

result in a significant performance increase.

We are going to continue the analysis of the effects of

routing in InfiniBand networks. Next steps will consider

effective process placement and mapping, layout of routes

and topology-aware optimization of collective operations.

Acknowledgments

The authors want to thank Jeff Squyres (Cisco), Ralf

Wunderlich (FH Zwickau), Douglas Gregor (Indiana Uni-

versity), Patrick Geoffray (Myricom) and Christian Bell

(Qlogic) for helpful comments. The authors also want to

thank Frank Mietke (TUC) and Wolfgang Rehm (TUC) for

granting access to the CHiC cluster system was used as an

input system and to run most of the simulations. Thanks

to Adam Moody and Ira Weiny (LLNL) who provided the

Atlas system topology, Matt Leininger (LLNL) who pro-

vided an input file for the application MPQC, and Christo-

pher Maestas (Sandia) who provided the input file for the

Thunderbird cluster. This work was partially supported by a

grant from the Lilly Endowment, National Science Founda-

tion grant EIA-0202048 and a gift the Silicon Valley Com-

munity Foundation on behalf of the Cisco Collaborative Re-

search Initiative.

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman.

LogGP: Incorporating Long Messages into the LogP Model. Jour-

nal of Parallel and Distributed Computing, 44(1):71–79, 1995.
[2] V. E. Benes. Mathematical Theory of Connecting Networks and

Telephone Traffic. Academic Press, New York, 1965.
[3] R. V. Boppana and S. Chalasani. A comparison of adaptive

wormhole routing algorithms. SIGARCH Comput. Archit. News,

21(2):351–360, 1993.
[4] S. A. Browning. The tree machine: a highly concurrent computing

environment. PhD thesis, Pasadena, CA, USA, 1980.
[5] C. Clos. A study of non-blocking switching networks. Bell System

Technology Journal, 32:406–424, 1953.
[6] Z. Ding, R. R. Hoare, A. K. Jones, and R. Melhem. Level-wise

scheduling algorithm for fat tree interconnection networks. In SC

’06: Proceedings of the 2006 ACM/IEEE conference on Supercom-

puting, page 96, Tampa, Florida, 2006. ACM.
[7] A. Friedley, T. Hoefler, M. L. Leininger, and A. Lumsdaine. Scal-

able High Performance Message Passing over InfiniBand for Open

MPI. In Proceedings of 2007 KiCC Workshop, RWTH Aachen, De-

cember 2007.
[8] D. Hengsen, R. Finkel, and U. Manber. Two Algorithms for Barrier

Synchronization. Int. J. Parallel Program., 17(1):1–17, 1988.
[9] J. L. Hennessy and D. A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Publishers, 2003.
[10] T. Hoefler, T. Schneider, and A. Lumsdaine. Accurately Measuring

Collective Operations at Massive Scale. 04 2008. Accepted for

publication at the PMEO-PDS08 workshop at the IPDPS08.
[11] C. L. Janssen, I. B. Nielsen, M. L. Leininger, E. F. Valeev, and E. T.

Seidl. The massively parallel quantum chemistry program (mpqc),

version 2.3.0, 2004. Sandia National Laboratories, Livermore, CA,

USA.
[12] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda. High performance

MPI design using unreliable datagram for ultra-scale InfiniBand

clusters. In Proceedings of the 21st annual international conference

on Supercomputing, pages 180–189, New York, NY, USA, 2007.

ACM Press.
[13] F. T. Leighton. Introduction to Parallel Algorithms and Architec-

tures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers,

San Mateo, CA, USA, 1992.

[14] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient

supercomputing. IEEE Trans. Comput., 34(10):892–901, 1985.
[15] C. E. Leiserson and B. M. Maggs. Communication-efficient parallel

algorithms for distributed random-access machines. Algorithmica,

3:53–77, 1988.
[16] X. Lin, Y. Chung, and T. Huang. A multiple lid routing scheme

for fat-tree-based infiniband networks. In Proceedings of the 18th

IEEE International Parallel and Distributed Processing Symposium

(IPDPS04), page 11a, Sana Fe, NM, 04 2004.
[17] J. C. Martı́nez, J. Flich, A. Robles, P. López, and J. Duato. Support-

ing fully adaptive routing in infiniband networks. In IPDPS ’03:

Proceedings of the 17th International Symposium on Parallel and

Distributed Processing, page 44.1, Washington, DC, USA, 2003.

IEEE Computer Society.
[18] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-

dimensionally equidistributed uniform pseudorandom number gen-

erator. In ACM Trans. on Modeling and Computer Simulations,

1998.
[19] F. Petrini, J. Fernandez, E. Frachtenberg, and S. Coll. Scalable col-

lective communication on the asci q machine. In Hot Interconnects

12, 08 2003.
[20] F. Petrini and M. Vanneschi. K-ary n-trees: High performance net-

works for massively parallel architectures. Technical report, 1995.
[21] G. Pfister, M. Gusat, W. Denzel, D. Craddock, N. Ni, W. Rooney,

T. Engbersen, R. Luijten, R. Krishnamurthy, and J. Duato. Solving

hot spot contention using infiniband architecture congestion control.

In Proceedings HP-IPC 2005, Research Triangle Park, NC, 6 2005.
[22] G. F. Pfister and V. A. Norton. ”Hot Spot” Contention and Combin-

ing in Multistage Interconnection Networks. In ICPP, pages 790–

797, 1985.
[23] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,

and J. J. Dongarra. Performance Analysis of MPI Collective Oper-

ations. In Proceedings of the 19th International Parallel and Dis-

tributed Processing Symposium, 4th International Workshop on Per-

formance Modeling, Evaluation, and Optimization of Parallel and

Distributed Systems (PMEO-PDS 05), Denver, CO, April 2005.
[24] J. Sancho, J. Flich, A. Robles, P. Lopez, and J. Duato. Performance

evaluation of up*/down* routing using virtual channels for infini-

band networks. In Actas de las XII Jornadas de Paralelismo, Valen-

cia, Espaa, 2001.
[25] M. D. Schroeder, A. Birell, M. Burrows, H. Murray, R. Needham,

T. Rodeheffer, E. Satterthwaite, and C. Thacker. Autonet: A high-

speed, self-configuring local area network using pointto -point links.

IEEE Journal on Selected Areas in Communications, 9(8), 10 1991.
[26] G. M. Shipman, T. S. Woodall, R. L. Graham, A. B. Maccabe, and

P. G. Bridges. Infiniband scalability in open mpi. In Proceedings of

IEEE Parallel and Distributed Processing Symposium, April 2006.
[27] S. Sur, M. J. Koop, and D. K. Panda. High-performance and scalable

mpi over infiniband with reduced memory usage: an in-depth per-

formance analysis. In SC ’06: Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, page 105, New York, NY, USA,

2006. ACM.
[28] D. Turner, A. Oline, X. Chen, and T. Benjegerdes. Integrating new

capabilities into netpipe. In J. Dongarra, D. Laforenza, and S. Or-

lando, editors, Recent Advances in Parallel Virtual Machine and

Message Passing Interface,10th European PVM/MPI Users’ Group

Meeting, Venice, Italy, September 29 - October 2, 2003, Proceed-

ings, volume 2840 of Lecture Notes in Computer Science, pages

37–44. Springer, 2003.
[29] A. Vishnu, M. Koop, A. Moody, A. R. Mamidala, S. Narravula, and

D. K. Panda. Hot-spot avoidance with multi-pathing over infini-

band: An mpi perspective. In CCGRID ’07: Proceedings of the

Seventh IEEE International Symposium on Cluster Computing and

the Grid, pages 479–486, Washington, DC, USA, 2007. IEEE Com-

puter Society.
[30] E. Zahavi. Optimized infiniband fat-tree routing for shift all-to-

all communication patterns. In Proceedings of the International

Supercomputing Conference 2007 (ISC07), Dresden, Germany.

