
Optimized Routing for Large-
Scale InfiniBand Networks

Torsten Hoefler, Timo Schneider,
and Andrew Lumsdaine

Open Systems Lab
Indiana University

1

Effect of Network Congestion

2

Microbenchmarks
(NetPIPE, IMB ping pong

Netgauge one_one) Lower Bound!

Reality? 3 2 1 0
Congestion Factor

CHiC Supercomputer:
• 566 nodes, full bisection IB fat-tree
• effective Bisection Bandwidth: 0.699

Full Bisection Bandwidth != Full Bandwidth
 expensive topologies do not guarantee high bandwidth
 deterministic oblivious routing cannot reach full bandwidth!

 see Valiant’s lower bound
 random routing is asymptotically optimal but looses locality

 but deterministic routing has many advantages
 completely distributed
 very simple implementation

 InfiniBand routing:
 deterministic oblivious, destination-based
 linear forwarding table (LFT) at each switch
 lid mask control (LMC) enables multiple addresses per port

3

InfiniBand Routing Continued
 offline route computation (OpenSM)
 different routing algorithms:
 MINHOP (finds minimal paths, balances number of

routes local at each switch)
 UPDN (uses Up*/Down* turn-control, limits choice but

routes contain no credit loops)
 FTREE (fat-tree optimized routing, no credit loops)
 DOR (dimension order routing for k-ary n-cubes, might

generate credit loops)
 LASH (uses DOR and breaks credit-loops with virtual

lanes)
4

Why do Credits Loop?
 IB uses credit-based p2p flow-control

 egress messages sent only if receive-buffer available

 very similar to deadlocks in wormhole-routed systems

5

How to deal with Credit Loops?
 prevent (UP*/Down*, turn-based routing)

 resolve (LASH, use VLs to break cycles)

 ignore (MINHOP, DOR, not as bad as it
sounds, might deadlock but can be
“resolved” with packet timeouts)
 discouraged by IB spec

6

Some Theoretical Background
 model network as G=(VP[VC, E)
 path r(u,v) is a path between u,v 2 VP

 routing R consists of P(P-1) paths
 edge load l(e) = number of paths on e 2 E

 edge forwarding index ¼(G,R)=maxe2E l(e)
 ¼(G,R) is a trivial upper bound to congestion!

 goal is to find R that minimizes ¼(G,R)
 shown to be NP-hard in the general case

7

Two heuristics based on SSSP
 we propose two heuristics:
 P-SSSP
 P2-SSSP

 P-SSSP starts a SSSP run at each node
 finds paths with minimal edge-load l(e)
 updates routing tables in reverse

 essentially SDSP
 updates l(e) between runs

 let’s discuss an example …

8

P-SSSP Routing (1/3)

9

Step 1:
Source-node 0:

P-SSSP Routing (2/3)

10

Step 2:
Source-node 1:

P-SSSP Routing (3/3)

11

Step 3:
Source-node 2:

¼(G,R)=2

P2-SSSP
 simply run a single SSSP for each route
 better (expensive) heuristic, lower ¼(G,R)

12

¼(G,R)=1

How to Assess a Routing?
 edge forwarding index is a trivial upper bound
 ability to route permutations is more important

 bisect P into two equally-sized partitions
 choose exactly one random partner for each node
 £(P!/(P/2)!) combinations!

 our simulation approach:
 pick N (=5000) random bisections/matchings
 compute average bandwidth
 shown to be rather precise (Cluster’08)

13

Comparison to Real Systems
 ibdiagnet , ibnetdiscover, and ibsim
 we extracted topology and routing from:
 Thunderbird (SNL) – 4390 LIDs

 thanks to: Adam Moody & Ira Weiny

 Ranger (TACC) – 4080 LIDs
 thanks to: Christopher Maestas

 Atlas (LLNL) – 1142 LIDs
 thanks to: Len Wisniewsky

 Deimos (TUD) – 724 LIDs
 thanks to: Guido Juckeland and Michael Kluge

 Odin (IU) – 128 LIDs

14

Real-world Results

15

Real-World Bandwidth

Real-World Runtime

Some more Topologies

16

Fat-tree topologies

k-ary 2,3-cube topologies (torus)
(filled switches with endpoints)

Even more Topologies

17

2-ary n-cube topologies (hypercube)
(filled switches with endpoints)

random topologies
(12 nodes per switch)

Simulations are good, but still Simulations
 we implemented our routing with OpenSM’s file method

 tested it on the Deimos and Odin clusters (needs exclusive
admin access to whole machine – many thanks to Guido Juckeland)

 Odin is standard fat-tree, Deimos’ topology:

18

Benchmark Results Odin

19

Simulation
Benchmark

(Netgauge Pattern eBB)

Simulation predicts 5% improvement

Benchmark shows 18% improvement!

Benchmark Results Deimos

20

Simulation
Benchmark

(Netgauge Pattern eBB)

Simulation predicts 23% improvement

Benchmark shows 40% improvement!

Summing up and Future Work!
 we proposed two new routing heuristics for

deterministic oblivious routing (IB)

 simulation shows increase in effective bisection
bandwidth over standard OpenSM routing
 e.g., Odin 5%, Deimos 23%, Atlas 15%, Thunderbird 6%

 benchmarks show even higher improvements
 Odin 18%, Deimos 40%

 Credit-loops remain, but solution is obvious
(LASH-like VL principle)

21

Reproduce our Results!
 talk to us!

 play with our ORCS simulator
 http://www.unixer.de/ORCS

 benchmark your cluster (and talk to us)
 Netgauge pattern “ebb”
 http://www.unixer.de/research/netgauge

 ask questions – now!

22

Backup Slides

23

Backup Slides

Credit Loops Continued …

24

Source Network and Routes

Buffer
Dependency

Graph

Lower ¼(G,R) and lower bandwidth!?

 Yes!
 ¼(G,R) is just an upper bound
 example:

 no worries, I will not explain it here (refer to article for details)

25

