
October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

Parallel Processing Letters
c© World Scientific Publishing Company

The Effect of Network Noise on Large-Scale Collective Communications

Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine

Open Systems Laboratory

Indiana University

Bloomington IN 47405, USA

{htor,timoschn,lums}@cs.indiana.edu

Received July 2009
Revised August 2009

Communicated by A.K. Jones

ABSTRACT

The effect of operating system (OS) noise on the performance of large-scale applications
is a growing concern and ameliorating the influence of OS noise is a subject of active
research. A related problem is that of network noise that arises from the shared use
of the interconnection network by parallel processes of different allocations or other
background activities. To characterize the effect of network noise on parallel applications,
we conducted a series of experiments with a specially crafted benchmark and simulations.
Experimental results show a decrease in the communication performance of a parallel
reduction operation by a factor of 2 on 246 nodes on an InfiniBand fat-tree and by several
orders of magnitude on a BlueGene/P torus. Simulations show how influence of network
noise grows with the system size. Although network noise is not as well-studied as OS
noise, our results clearly show that it is an important factor that must be considered
when running and analyzing large-scale applications.

Keywords: network noise, operating system noise, network contention, collective com-
munication performance.

1. Introduction

The influence of external effects on the performance of large-scale parallel applica-

tion has attracted recent interest [1,8,9,16,24,26]. Even though such effects usually

impose a relatively small overhead to applications when run at smaller scales, they

can become problematic at larger scale. For example, a single context switch ev-

ery second is very unlikely to cause a measurable perturbation to a small-scale

application run. However, it was shown before that such small periodic events can

significantly perturb large-scale applications if they resonate with synchronization

(caused by communication). The effect of such local perturbations can be multiplied

by global (collective) communication operations.

Most existing studies focus on perturbations on the host side, that is, operating

1

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

2 Parallel Processing Letters

system (OS) noise. Some perturbations are caused by resource-sharing between the

application process and entities that belong to the computing platform such as OS

daemons or monitoring processes. Other delays are caused by external events such

as hardware interrupts, translation lookaside buffer (TLB) misses, context switches

or cache misses—all of which result from time-sharing the main CPU among differ-

ent processes. Due to the serial nature and obvious source of such overheads, it is

possible to minimize their influence. One possibility would be to use low-noise oper-

ating systems specialized for high performance computing such as Catamount [17]

or BlueGene Linux [22].

In addition to OS noise, network noise can affect parallel application perfor-

mance in a similar way. Just like processes sharing a computing resource can in-

terfere with each other, parallel processes sharing an interconnection network can

suffer from similar interference. The effects of network noise manifest themselves in

an application very much like OS noise. Network noise can throttle messages in the

network which effectively leads to a lower bandwidth and can delay waiting pro-

cesses. Figure 1 compares the influence of network noise and OS noise in a parallel

application with four processes (1 . . . 4). The black arrows represent communication,

green (light) areas show computation, and the red (darker) areas represent overhead

caused by OS or network noise, respectively. Timeslices are indicated by horizontal

dashed lines.

2 3 41

(a) No Noise

2 3 41

(b) OS Noise

2 3 41

(c) Network Noise

Fig. 1. Different sources of noise.

In the noiseless case, every process performs some computation for 1 timeslice,

then all processes exchange data in a binomial tree pattern with rank 1 as the root.

In this pattern, rank 1 sends data to ranks 2 and 3, and rank 2 forwards the message

to rank 4. All data transmissions have a latency of 2 timeslices in our example.

Between two consecutive transmissions, there is always a gap of 1 timeslice that

models the sender’s host overhead. Figure 1(a) shows the unperturbed (expected)

case. In Figure 1(b), rank 2 can not progress and send data to rank 4 after it

received the message from rank 1 because it is delayed (interrupted) by OS noise

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

The Effect of Network Noise on Large-Scale Collective Communications 3

for 2 timeslices. So both, rank 2 as well as rank 4 finish 2 slices later than in the

noiseless case. Figure 1(c) demonstrates network noise: The data transfer from rank

1 to rank 2 is slowed down by congestion in the network that doubles the latency.

As a result, rank 2 and 4 receive their data 2 timeslices later than in the noiseless

case.

Other effects, such as the resonance observed with OS noise, may also amplify

the effects of network noise but require complex interactions of different communica-

tions. Similar to OS noise, network noise can be absorbed in synchronization times

or can accumulate in communication algorithms. Section 3 discusses absorption and

accumulation of network noise in detail.

Whereas OS noise can be modeled with statistical methods [1, 9] or signal pro-

cessing methods [30], modeling network noise seems much harder. Common sources

of network noise are: different applications that share the same network, file I/O

operations, or monitoring activities. The network topology and the network rout-

ing also play an important role in this context and make a precise prediction or

modeling of the perturbation hard.

The main contributions of this work are:

(1) The design of a microbenchmark to assess the influence of random background-

communication on specific communication patterns.

(2) Benchmark results for fat-tree (InfiniBand) and three-dimensional torus topolo-

gies (BlueGene/P).

(3) A simulation methodology that can be applied to arbitrary networks and com-

munication patterns.

(4) Simulation results for existing as well as artificial fat-tree and torus systems.

We describe the benchmark and present results for different supercomputer sys-

tems in Section 2. In Section 3 we show a simulation methodology to assess the

influence of network noise on existing large-scale networks. In Section 4 we present

a way to generate future large-scale networks based on current established design

principles and we assess their properties with regards to network noise. Finally, in

Section 5, we talk about the design and simulation of large-scale torus topologies.

1.1. Related Work

Petrini, Kerbyson, and Pakin discuss in [26] that frequent short noise intervals to-

gether with a synchronizing collective operation such as MPI Allreduce can cause a

dramatic performance loss at large scale. In this particular case, the performance

loss was caused by the resonance between the fine-grained OS noise and the syn-

chronizing global communication.

Several studies, such as [1, 8, 9, 16, 24, 29], measure, model and quantify the

influence of OS noise on parallel applications. However, no previous study considers

the network as a source of additional noise.

Braccini, Del Bimbo and Vicario [4] examine the effect of network load on the

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

4 Parallel Processing Letters

bandwidth of point-to-point TCP/IP connections by inducing load on the data

link layer in small Ethernet networks. Kerbyson demonstrated the sensibility of

application performance to bandwidth and latency at scale by changing the link-

speed of an InfiniBand network in [18].

Badia, Labarta, and Gimenez [3] model the performance of parallel Message

Passing Interface (MPI) applications based on traces. The used network model

considers a varying traffic function that influences the transmission speed. However,

their work does not investigate the influence of background traffic.

Sottile, Chandu, and Bader [31] also model the performance of parallel applica-

tions based on MPI traces. The authors recognize the effect of network noise and

use a simple statistical model to assess the variation in latency and bandwidth. The

applied model for collective communication only assumes log2(P) message trans-

missions on P processes. Our work extends this model by fully simulating collective

algorithms and the influence of the interconnection topology. We did not choose the

tracing approach to allow for simple extrapolation of communication algorithms to

large process counts.

Mraz showed in [23] that OS noise can cause delays for global communication

patterns. He uses a ring pattern that represents the worst case in this spectrum.

Mraz concludes that the observed delays result either from other processes or from

interrupt processing without considering variances in the network transmission.

In a previous work [14], we investigated the influence of static routing and

congestion to large scale networks. This analysis only considered congestion in a

given allocation without external perturbations or dependencies between messages

in collective operations. In this work, we extend the model to give a more accurate

dependency-based prediction of the running time of collective operations. We also

analyze the effects of perturbations from other applications in the network.

2. Design of a Microbenchmark

We describe a microbenchmark scheme to measure the influence of network noise

on collective communication. For this, we assume that communication of different

applications, input/output operations, or monitoring services are the biggest source

of network noise on parallel systems. Possible ways to prevent different applications

from interfering are to run at most one application at any given time or to ensure

that all applications use disjoint parts of the network. Although partitioning seems

simple for some network topologies such as tori (one can allocate a partition of

the network that is not crossed by other processes), it can be hard for topologies

such as fat-trees that use a common “backplane”. Partitioning a toroidal system into

network disjoint allocations often comes at the cost of system utilization. Commonly

used greedy allocation strategies often degenerate to a pseudo-random allocation

(through fragmentation) after scheduling a sufficient number of different jobs. Thus,

network noise is a very common phenomenon on current parallel systems.

We investigate MPI collective operations that play a critical role for many large-

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

The Effect of Network Noise on Large-Scale Collective Communications 5

scale applications. Many applications, such as POP [5], CTH [11] and SAGE [19]

rely on global allreductions which act as implicit synchronization points. Ferreira,

Bridges, and Brightwell showed in [8] that those applications are significantly in-

fluenced by OS noise. Based on those results and the application study by Raben-

seifner [27], we focus our investigation on the collective operations MPI Allreduce,

MPI Reduce and MPI Bcast. For our studies we assume the communication of small

data because large-scale applications commonly communicate very small number of

elements. POP, for example, relies on a global 8-byte reduction operation.

For our benchmark, we assume that it is unlikely to get a noise-less partition.

Thus, we have to accept the usual background network noise and we choose a pro-

active approach which generates noise on top of the normal background noise. For

this, we assume that the background noise follows a normal distribution during the

run of the benchmark, which enables us to consider the differences to our artificially

generated noise. We call the measured noise perturbation in the following.

Our benchmark simulates the collective communication of an MPI applica-

tion and a background noise pattern. To achieve this, we split the full allocation

(MPI COMM WORLD) into two process-disjoint communicators: the application

communicator and the perturbation communicator. The ratio between the size of the

application communicator and the perturbation communicator will be called pertur-

bation ratio in the following. For example, a perturbation ratio of 0.1 in an allocation

of 100 processes means that 10 of the processes execute a perturbation communica-

tion and 90 other processes benchmark a collective communication. The selection

of MPI COMM WORLD ranks for each communicator is randomized in order to

model fragmented allocations. The random partitioning of MPI COMM WORLD is

repeated before each benchmark.

The communicators are “warmed up” (cf. Gropp’s comments on correct bench-

marking [10]) before each use. The benchmark uses the collective benchmarking

principles and the synchronization scheme proposed in [13]. Each iteration starts

with a global synchronization. All processes in the perturbation communicator com-

municate with a random large-messagea permutation pattern. Simultaneously, all

processes in the independent application communicator measure the time that is

needed to perform a specific collective MPI operation. Then, in a second step, the

benchmark of the collective operation is repeated without the perturbing commu-

nication. This procedure is repeated multiple times with different communicators

and perturbation ratios and analyzed statistically to show the influence of network

noise. The benchmark is schematically shown in Figure 2.

2.1. Benchmark Results on Fat-Trees

We implemented the described benchmark scheme in the open-source tool Net-

gauge [12] and performed several tests on the CHiC cluster system. The CHiC

aWe used 10 MiB in all our benchmarks.

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

6 Parallel Processing Letters

create two random communicators

with given rat io and warm them up

MPI_Bcast(..);

synchronize clocks on all ranks and

 start next step synchronously

t

t

0 72 5

random pattern

3 4 6 1

synchronize clocks on all ranks and

 start next step synchronously

MPI_Bcast(..);

0 2 5

pert

nopert

Fig. 2. One round of the used benchmarking scheme on 8 processes and a perturbation ratio of
5/8=0.625. Two process-disjoint communicators perform perturbation and collective communica-
tion, respectively.

system comprises 528 quad-core nodes connected with a full bisection bandwidth

SDR InfiniBand fat-tree network. InfiniBand uses crossbar switches with 24 ports.

All benchmarks were done with Open MPI 1.2.8 and with one process per node to

keep the effect of OS noise minimal. We also performed runs with multiple processes

per node that showed much higher perturbations. However, it is unclear if this per-

turbation results from contention while accessing the local network interface, OS

noise, or network noise. Thus, we present only benchmarks with one process per

node which isolates the effect of network noise.

First, we prove the existence of network noise in a small allocation of 32 nodes.

As described earlier, the benchmark randomly splits the 32 nodes into two disjoint

communicators of varying sizes and measures an 8-byte allreduction operation in

one communicator and a perturbation communication (point-to-point exchanges of

10 MiB messages) in the other communicator. We repeated the operation with 128

random splits for each perturbation ratio and recorded each measurement point.

Figure 3 shows a boxplot of the different times that are needed to finish the allre-

duction with varying communicator sizes. The boxplot shows the distribution of

single measurements for the perturbed and unperturbed run. The jump at 16 pro-

cesses indicates a protocol or algorithm change in the collective implementation of

Open MPI. The horizontal black bars in the middle of each box represent the sam-

ple median, while the upper and lower end of the box indicates the 25th and 75th

percentile. The whiskers show the total range of the sample. The notches in the

middle of the boxes indicate whether two samples show a statistically significant

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

The Effect of Network Noise on Large-Scale Collective Communications 7

2 4 6 8 12 16 20 24 28 32

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

Nodes in collective communicator

T
im

e
 [
u
s
]

with perturbation

no perturbation

Fig. 3. Boxplot of network noise in a 32-node allocation on an InfiniBand fat-tree system while
performing an allreduction operation with varying perturbation ratio.

difference. The samples are different with a 95% confidence if the notches do not

overlap [7]. This shows that the effect of background contention (network noise) on

randomly permuted allocations is significant on fat-tree networks with full bisection

bandwidth.

In the second experiment, we aim to quantify the influence with a larger number

of processes and different perturbation ratios. Figure 4 shows the relative slowdown

caused by perturbation. Each data-point represents the average time of 128 mea-

surements. The points have a high variance because of other jobs on the system

(background network noise) and the relatively small set of the random mappings.

We used the least squares method to fit a linear function to each set of measure-

ments. This fit only demonstrates the general trend with growing perturbation ratio.

We see that even a relatively small perturbation is able to cause significant delays

of up to 50% of the latency of the measured collective operations.

We remark again that the influence on the communication performance is signif-

icant even though the perturbation communication and the collective operation run

in different process-disjoint communicators. Our benchmarks also show how much

small jobs on large cluster systems could be delayed due to the traffic of larger jobs

or even a collection of other small jobs.

In the third experiment, we investigate the scaling of the influence of network

noise with the number of used nodes in the cluster and a fixed perturbation ratio. We

used the same benchmark methodology and present the scaling of an allreduction

with a fixed perturbation ratio of 1/2 in Figure 5. As expected, the effect of network

noise grows with the number of communicating processes. The dent in the curve is

reproducible on the CHiC system.

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

8 Parallel Processing Letters

0.2 0.4 0.6 0.8

1
0
0

1
5
0

2
0
0

2
5
0

Perturbation Ratio

S
lo

w
d
o
w

n
 r

e
la

ti
v
e
 t
o
 u

n
p
e
rt

u
rb

e
d
 r

u
n
 [
%

]
Broadcast with 208 nodes

Reduce with 492 nodes

Allreduce with 492 nodes

Fig. 4. Average slowdown due to network noise for fixed allocations with different perturbation
ratios on an InfiniBand fat-tree.

0 100 200 300 400 500

1
1

0
1

2
0

1
3

0
1

4
0

1
5

0

Number of Nodes in Allocation

S
lo

w
d

o
w

n
 r

e
la

ti
v
e

 t
o

 u
n

p
e

rt
u

rb
e

d
 r

u
n

 [
%

]

Fig. 5. Slowdown of an allreduction operation with increasing allocation size and a fixed pertur-
bation ratio of 1/2 on an InfiniBand fat-tree with full bisection bandwidth.

2.2. Benchmark Results on Torus Networks

We showed that network noise has a significant effect even on full bisection band-

width InfiniBand networks. This is due to the deterministic oblivious routing strat-

egy in InfiniBand as explained in [14]. Assuming the same model, we would expect

a much higher slowdown on toroidal networks.

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

The Effect of Network Noise on Large-Scale Collective Communications 9

32 64 128 2561
e
−

0
2

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

Number of Nodes in Allocation

T
im

e
 [
m

s
]

with perturbation

no perturbation

Fig. 6. Boxplot of the collective latencies with background noise and a perturbation ratio of 1/2
on the three-dimensional torus network of a BlueGene/P.

We used our microbenchmark to study the effects on Eugene: a BlueGene/P

system at the Oak Ridge National Lab. Eugene consists of 1024 quad-core PPC 450

processors. We used the system in SMP mode, which means that exactly one MPI

process is mapped onto each node. We hereby note that the default allocation strat-

egy on BlueGene/P prevents network noise because the job scheduler ensures that

each allocation is convex. This means that no message in one allocation will cross

another allocation (if dimension-order mesh routing is used). OS noise also is not

existent on BlueGene/P systems running the CNK operating system according to

Yoshii et al. [33]. Thus, we must consider the following benchmark results carefully.

All measurement results on the BlueGene/P system had a very high variance

in the perturbed case while the unperturbed runs were nearly noise-free. Because

of the variance in the perturbation run, we plotted the graphs as boxplots and

real times. We show the benchmark results of 50 runs with random mappings and

a perturbation ratio of 1/2 in Figure 6. The median is represented by the middle

horizontal line, the height of the box shows the 75th percentile and the upper and

lower whiskers the maximal values. Note that the low variance for the runs without

perturbation makes the boxes appear as horizontal lines only. The measurements

reveal that perturbation communication on a random process mapping significantly

influences the running time of collective communications on BlueGene/P. The large

variations (up to several orders of magnitude) seem to indicate that the network

scheduling could be potentially improved. It appears that the large (10 MiB) mes-

sages of the perturbation communication are able to delay small (8-byte) messages

more than would be mandated by the bandwidth limits. Thus, we point out that

the high delays in the benchmarks seem to be a property of this particular system

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

10 Parallel Processing Letters

1

0

2

45 6

3

7 3

2

1

Level 0

Fig. 7. Binomial tree pattern among 8 processes.

rather than a fundamental property of torus networks. We will analyze the prop-

erties of torus networks under the influence of network noise with a simulation in

Section 5.

Getting the necessary large allocations to analyze large networks is often not

possible or too expensive. Thus, we designed a simulation scheme to model the

effects of network noise on communication patterns at large-scale machines. In the

following section, we discuss our simulation methodology that enables an abstract

analysis of the influence of network noise on large-scale collective communication

with different underlying network topologies.

3. Simulating Network Noise

We propose a simple dependency-based simulation scheme to assess the influence

of network noise to complex application communication patterns. Communication

patterns can be modeled as multiple point-to-point messages with dependencies on

their execution order. For example, a small-message broadcast operation is often

implemented with a binomial tree. Such an algorithm usually consists of ⌈log2(P)⌉

communication rounds on P processes. The execution order mandates that each

non-root and non-leaf (inner) process receives data before it sends this data to its

children. A broadcast tree for 8 processes with 3 communication levels is shown in

Figure 7. This scheme allows the construction of a global dependency graph where

the send operations depend on previous receives at all inner processes in the tree.

The communication starts at the root process (0 in Figure 7) and terminates at

the children (4,5,6,7 in Figure 7). We model now the execution of this binomial

tree on a 16-node fat-tree network with full bisection bandwidth built from 8-port

switches. For our example we assume the random process-to-node mapping π =

(3, 6, 5, 13, 7, 9, 0, 10) of the application communicator. This means that process 0

is mapped to node 3, process 1 to node 6, process 2 to node 5 and so on. We

assume now that we are in the third level of the broadcast tree from Figure 7

and thus, the communicating processes are P = {(3, 7), (1, 5), (2, 6), (0, 4)}. If we

apply mapping π, then the processes translate to the communicating nodes π(P) =

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

The Effect of Network Noise on Large-Scale Collective Communications 11

4x4 4x4 4x4 4x4

4x4 4x4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4,8,

12

5,9,

13

6,10,

14

7,11,

15
0,8,

12

1,9,

13

2,10,

14

3,11,

15
0,4,

12

1,5,

13

2,6,

14

3,7,

15

0,4,

8
1,5,

9

2,6,

10

3,7,

11

0,

1

2,

3

4,

5

6,

7

8,

9

10,

11

12,

13

14,

15

0,

1

2,

3

4,

5

6,

7

8,

9

10,

11

12,

13

14,

15

(0) (1)(2)
(3)

(4) (5)(6) (7)

1

> 7 > 0 > 9 > 1 0

1

1

1

1

1

1

1

up-routes

down-routes
Level 1

Level 0

Fig. 8. Schematic example network with 8 processes performing the third level of a binomial
broadcast on 8 processes. Processes are mapped randomly to nodes and process numbers are
indicated in brackets (e.g., process 6 runs on node 0). Communication peers are prefixed with >

and occupied links are indicated with arrows and the number of messages using the link. Each link
is annotated with the targets that it routes to.

{(13, 10), (6, 9), (5, 0), (3, 7)}. We also assume an ideally balanced routing where

each link between level 0 and 1 in the fat-tree serves three endpoints and each

link between level 1 and 0 serves exactly two endpoints. We can now route each of

the four messages separately and mark the channels that they pass. We assume, in

our model, that all passed channels are occupied by the message. The node layout,

routing, process assignment, and tree-message routing of the third level is shown in

Figure 8.

Now we add random perturbation communication. Each node, which is

not part of the application communicator, sends a message to a ran-

dom peer that is also not part of the application communicator. In

our example, the perturbation communication consists of the pairs C =

{(1, 4), (2, 11), (4, 15), (8, 12), (11, 14), (12, 1), (14, 8), (15, 2)}. Each message in the

perturbation set C is also routed through the network. Figure 9 shows the bino-

mial tree example from Figure 8 with added perturbation communication.

This scheme is repeated for each level of the collective communication (whereas

the perturbation communication remains constant). We can now annotate the graph

in Figure 7 with the maximum congestion for each message along the path that it

traverses. For example, the communication from process 0 to process 4 (node 3 to

node 7) in Figure 9 has a maximum congestion of 2 along the path (on the up-link

between level 0 and 1).

Each edge in the communication graph is now annotated with the maximum con-

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

12 Parallel Processing Letters

4x4 4x4 4x4 4x4

4x4 4x4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4,8,

12

5,9,

13

6,10,

14

7,11,

15
0,8,

12

1,9,

13

2,10,

14
3,11,

15
0,4,

12

1,5,

13

2,6,

14

3,7,

15
0,4,

8

1,5,

9

2,6,

10

3,7,

11

0,

1

2,

3

4,

5

6,

7

8,

9

10,

11

12,

13

14,

15

0,

1

2,

3

4,

5

6,

7

8,

9

10,

11

12,

13

14,

15

(0) (1)(2)
(3)

(4) (5)(6) (7)

1+1

> 4 > 1 1 > 1 5 > 1 2 > 1 4 > 1 > 8 > 2> 7 > 0 > 9 > 1 0

1

1

1+1

1

1+1

1+1

1+1

+ 1

+ 1

+ 1

+ 2

+ 1

+ 1

+ 1 + 1+ 1

+ 1

Fig. 9. Schematic example of Figure 8 with perturbation communication prefixed with ”+” at
the links. Communication peers are indicated with >.

1

0

2

45 6

3

7 3

2

1

Level 0

2

1
1

2

2

2

2

Fig. 10. Binomial tree pattern with 8 processes annotated with the maximum congestion along
each path.

gestion along the corresponding logical link in the network simulation. Figure 10

shows the fully annotated binomial tree graph after a simulation of all levels. Then,

a breadth first search (BFS) is started at the root node and the longest path in the

dependence graph is reported as the time for this collective operation (we assume

that the finishing time of the last process of the collective operation is significant).

The BFS will find the longest path 0-1-3-7 with a total congestion of 5. The whole

simulation is performed with and without perturbation. The congestion of the un-

perturbed run (3 in this example) can be simply subtracted to get the overhead

caused by the perturbation.

With this approach, we model the whole communication and all dependencies.

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

The Effect of Network Noise on Large-Scale Collective Communications 13

Thus, our model also captures the effect of noise absorption and accumulation as

described by Malony et al. and Wolf and Malony in [21,32]. Both effects happen in

our example: The congestion in level 3 between rank 0 and 4 is absorbed (as we see

in the BFS), while the congestion between rank 0 and 1, in level 1, and node 3 and

7, in level 3, accumulate.

3.1. Simulating Real-World Installations

To assess the influence of network noise to large-scale installations, we used Infini-

Band network maps of large real-world systems (generated from ibnetdiscover

and ibdiagnet output as described in [28]). We investigate several large-scale clus-

ter systems. The Thunderbird (TBird) system is the largest installation with 4391

endpoints. The second largest system, the Ranger system at the Texas Advanced

Computing Center, is connected with two 3456 port Sun Magnum switches and

had a total of 3908 active endpoints during the query. The third-largest system,

in our simulation, the Atlas system at the Lawrence Livermore National Lab, had

1142 endpoints when the network structure was queried. The CHiC system at the

Technical University of Chemnitz, had 566 endpoints during the query and the

Odin system at Indiana University, has 128 endpoints. All networks are based on

fat-tree topologies [20] with 24-port crossbars. Thunderbird is designed with half bi-

section bandwidth and all other systems have full bisection bandwidth. We showed

in [14] that the effective bisection bandwidth of the systems is significantly lower

with 40.6%, 57.6% and 55.6% for Thunderbird, Ranger and Atlas, respectively. We

used our network simulator [28] for those simulations, as well as for the simulations

in this paper.

Figure 11 shows the average results of 1000 simulation runs of the binomial tree

pattern, which is often used for small message reductions and broadcasts. We see

clearly that the slowdown caused by network noise increases significantly with the

network size and with the perturbation ratio. The simulations resemble the trend

in the benchmark results presented in Section 2.1. However, different architectural

properties of the real-world networks (e.g., CHiC is not a pure fat-tree or TBird has

only half bisection bandwidth) prohibit general statements about scaling with the

network size. To be able to make such statements, we generate and analyze fat-tree

networks of different sizes and similar properties (full bisection bandwidth) in the

next section.

4. Large-Scale Fat-Tree Networks

To simulate future large-scale networks and to evaluate the scaling with the

system size, we extended our study with the simulation of large fat-tree net-

works. We used the recursive method described by Öhring et al. in [25] to gen-

erate extended generalized fat-trees (XGFTs). An extended generalized fat-tree

XGFT(h, m1, ..., mh, w1, ...wh) of height h is generated in h recursion steps. In

each step s, the XGFT(s, m1, ..., mh, w1, ...wh) is built by ms copies of XGFT(s −

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

14 Parallel Processing Letters

a

a

a

0.3 0.4 0.5 0.6 0.7

1
5
0

2
0
0

2
5
0

3
0
0

Perturbation Ratio

S
lo

w
d
o
w

n
 r

e
la

ti
v
e
 t
o
 u

n
p
e
rt

u
rb

e
d
 r

u
n
 [
%

]

c

c

c

o

o

o

t

t

t

r

r

r

t
r
a

c

o

TBird (4391)

Ranger (3908)

Atlas (1142)

CHiC (566)

Odin (128)

Fig. 11. Simulated networks with tree pattern.

1, m1, ..., mh, w1, ...wh) and w1 · · ·ws additional new top-level nodes. Exact con-

struction and wiring rules can be found in [25] and are omitted due to space restric-

tions.

All generated trees are built from 24-port switches and are designed to have

full bisection bandwidth. The generated fat-tree topologies are shown in Table 1.

Figure 12 shows the topology for an exemplary XGFT(2, 12, 6) with 12 leaf switches

Table 1: Layout of the simulated fat-tree networks.

Layout # Endpoints # Switches

XGFT(2,12,6) 144 18

XGFT(2,24,12) 288 36

XGFT(3,12,8,12,4) 1152 240

XGFT(3,12,16,12,8) 2304 480

XGFT(3,12,24,12,12) 3456 720

XGFT(4,12,12,6,12,12,3) 10368 3024

XGFT(4,12,12,12,12,12,6) 20736 6048

and 144 ports. We used the fat-tree optimized routing of OpenSM [34] together with

ibsim to generate realistic routes for the networks.

4.1. Simulation Results

We analyzed the influence of network noise with growing network sizes and a fixed

perturbation ratio of 1/2. Figure 13 shows the simulated influence of network noise

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

The Effect of Network Noise on Large-Scale Collective Communications 15

Fig. 12. An XGFT(2, 12, 6) network.

0 5000 10000 15000 20000

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

Number of Nodes in Allocation

S
lo

w
d
o
w

n
 a

t
R

a
ti
o
 o

f
0
.5

 [
in

 %
]

Fig. 13. Slowdown with increasing communicator size and a fixed perturbation ratio of 1/2.

to application runs on half of the nodes of fat-tree networks while the other half

communicates randomly, as described in Section 3. Our simulation results resemble

the trend in the benchmark results from Section 2.1

5. Large-Scale Toroidal Networks

We also generated different toroidal networks to analyze the effects of network noise

on such architectures. The advantages of toroidal networks (k-ary n-cubes) with low

dimensionality are discussed by Dally [6]. We analyze two- and three-dimensional

implicit torus networks with different numbers of endpoints. Such k-ary n-cubes can

be constructed by assigning an n-digit number to each endpoint. Each digit ranges

from 0 . . . k−1. Figure 14 shows a 3-ary 2-cube. Two endpoint are connected if their

numbers differ by exactly one digit (Hamming distance equals one) and if this digit

differs by 1 (the digits of each dimension form a ring 0 . . . k−1, so all computations

are modulo k).

We used the OpenSM dimension order routing to route the networks. Thus, our

simulation resembles destination-based routing as it is used in InfiniBand. Table 2

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

16 Parallel Processing Letters

00 01 02

10 11 12

20 21 22

Fig. 14. 3-ary 2-cube network with endpoint numbering.

shows the detailed layouts of all simulated k-ary n-cubes.

Table 2: The simulated k-ary n-cube networks.

2-d Layout # Endpoints 3-d Layout # Endpoints

10-ary 2-cube 100 4-ary 3-cube 64

14-ary 2-cube 196 5-ary 3-cube 125

17-ary 2-cube 289 6-ary 3-cube 216

20-ary 2-cube 400 7-ary 3-cube 343

22-ary 2-cube 484 8-ary 3-cube 512

24-ary 2-cube 576 9-ary 3-cube 728

26-ary 2-cube 676 10-ary 3-cube 1000

28-ary 2-cube 784 12-ary 3-cube 1728

30-ary 2-cube 900 14-ary 3-cube 2744

31-ary 2-cube 961 15-ary 3-cube 3375

44-ary 2-cube 1936 17-ary 3-cube 4912

54-ary 2-cube 2916 18-ary 3-cube 5832

70-ary 2-cube 4900 19-ary 3-cube 6859

77-ary 2-cube 5929 20-ary 3-cube 8000

83-ary 2-cube 6889

89-ary 2-cube 7921

5.1. Simulation Results

We analyze the influence of network noise on a tree pattern with growing per-

turbation ratio and a fixed network size of 10000 (2d) and 8000 (3d) endpoints

in Figure 15, respectively. The simulation shows that background noise can delay

the communication in a tree pattern by up to 12 times. It also shows that three-

dimensional torus networks are less affected than two-dimensional networks. This

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

The Effect of Network Noise on Large-Scale Collective Communications 17

0.0 0.2 0.4 0.6 0.8

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

Perturbation Ratio

S
lo

w
d
o
w

n
 r

e
la

ti
v
e
 t
o
 u

n
p
e
rt

u
rb

e
d
 r

u
n
 [
%

]
2d torus

3d torus

Fig. 15. The slowdown for 100-ary 2-cube and 20-ary 3-cube executing a binomial tree pattern.

0 2000 4000 6000 8000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Number of Nodes in Allocation

S
lo

w
d
o
w

n
 a

t
R

a
ti
o
 o

f
0
.5

 [
in

 %
]

2d torus

3d torus

Fig. 16. The influence of background communication on k-ary 2-cubes and k-ary 3-cubes of
different sizes and perturbation ratio 1/2.

is very likely due to the higher bisection bandwidth in three-dimensional networks

with the same number of endpoints.

Figure 16 shows the influence of network noise on two- and three-dimensional

torus networks of different sizes. The perturbation ratio was fixed to 1/2 in this

simulation. The simulation resembles the results of the previous experiment. Appli-

cations on three-dimensional torus networks seem less affected by random network

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

18 Parallel Processing Letters

noise then those on two-dimensional torus networks. This seems rather natural be-

cause the higher bisection bandwidth network allows to route some of the random

traffic without contention while a network with a low bisection bandwidth forces

the traffic on contending paths.

6. Conclusions and Future Work

We show that network noise can have a significant effect on the performance of

parallel applications at all scales. Our results indicate that the slowdown grows with

the network size and also affects small applications in large networks if allocations

are fragmented. The main factors that influence network noise are the network type,

routing scheme and the node allocation policy. We conclude that intelligent node

allocation strategies are necessary to avoid fragmentation and mitigate the influence

of network noise. We point out that the quality of such allocations depends on the

network topology and the routing. For example, allocating convex sets of nodes

like it is done on BlueGene/P systems in conjunction with dimension order routing

along shortest paths effectively avoids network noise from other allocations. Similar

strategies seem to be hard to find for fat-tree networks because the higher levels of

the tree are shared by many endpoints.

We also point out that network noise must be considered as a source of errors

in addition to OS noise when analyzing large-scale application runs.

Interesting future directions are the analysis of the effects of network noise on

more topologies and mapping strategies of real-world machines and applications.

This directly leads to the idea to design noise-minimizing topology-dependent com-

munication algorithms that could be used in collective operations. We also plan to

improve the simulation accuracy, which currently bases in distinct communication

levels, to a more precise (and more resource-intensive) LogGP-based models [2,15].

Acknowledgments

Thanks to Adam Moody and Ira Weiny (LLNL) who provided the Atlas system

topology, Christopher Maestas (Sandia) who provided the input file for the Thun-

derbird cluster, and Len Wisniewski (Sun) and the TACC who provided the Ranger

input. The authors also thank Frank Mietke (TUC) for supporting work with the

CHiC cluster system. This work was supported by the Department of Energy project

FASTOS II (LAB 07-23), a grant from the Lilly Endowment and a gift the Silicon

Valley Community Foundation on behalf of the Cisco Collaborative Research Ini-

tiative. Thanks to Natalia Berezneva for editorial comments that improved the

presentation of the article.

References

[1] S. Agarwal, R. Garg, and N. Vishnoi. The Impact of Noise on the Scaling of Col-
lectives: A Theoretical Approach. In 12th Annual IEEE International Conference on
High Performance Computing, December 2005.

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

The Effect of Network Noise on Large-Scale Collective Communications 19

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incor-
porating Long Messages into the LogP Model. Journal of Parallel and Distributed
Computing, 44(1):71–79, 1995.

[3] R. M. Badia, J. Labarta, and J. Gimenez. DIMEMAS: Predicting MPI applications
behavior in Grid environments. In Workshop on Grid Applications and Programming
Tools (GGF ’03), 2003.

[4] A. Braccini, A. Del Bimbo, and E. Vicario. Interprocess communication dependency
on network load. Software Engineering, IEEE Transactions on, 17(4):357–369, 1991.

[5] K. Bryan. A numerical method for the study of the circulation of the world ocean. J.
Comput. Phys., 135(2):154–169, 1997.

[6] W. J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE
Trans. Comput., 39(6):775–785, 1990.

[7] J. D. Emerson and H. Strenio. Box-plots and batch comparison. Understanding Ro-
bust and Exploratory Data Analysis, 1983.

[8] K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing application sensitivity
to OS interference using kernel-level noise injection. In SC ’08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ, USA,
2008. IEEE Press.

[9] R. Garg and P. De. Impact of Noise on Scaling of Collectives: An Empirical Eval-
uation. In Yves Robert et al., editors, HiPC 2006, 13th International Conference,
volume 4297 of LNCS, pages 460–471. Springer, 2006.

[10] W. Gropp and E. L. Lusk. Reproducible Measurements of MPI Performance Charac-
teristics. In Proceedings of the 6th European PVM/MPI Users’ Group Meeting, pages
11–18, London, UK, 1999. Springer-Verlag.

[11] E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M.
Mcglaun, S. V. Petney, S. A. Silling, P. A. Taylor, and L. Yarrington. CTH: A Software
Family for Multi-Dimensional Shock Physics Analysis. In in Proceedings of the 19th
International Symposium on Shock Waves, held at, pages 377–382, 1993.

[12] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm. Netgauge: A Network Per-
formance Measurement Framework. In High Performance Computing and Commu-
nications, HPCC 2007, Houston, USA, Proceedings, volume 4782, pages 659–671.
Springer, Sep. 2007.

[13] T. Hoefler, T. Schneider, and A. Lumsdaine. Accurately Measuring Collective Oper-
ations at Massive Scale. In Proceedings of the 22nd IEEE International Parallel &
Distributed Processing Symposium (IPDPS), Apr. 2008.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine. Multistage Switches are not Crossbars:
Effects of Static Routing in High-Performance Networks. In Proceedings of the IEEE
International Conference on Cluster Computing. IEEE Computer Society, Oct. 2008.

[15] F. Ino, N. Fujimoto, and K. Hagihara. LogGPS: A Parallel Computational Model for
Synchronization Analysis. In PPoPP ’01: Proceedings of the eighth ACM SIGPLAN
symposium on Principles and practices of parallel programming, pages 133–142.

[16] K. Iskra, P. Beckman, K. Yoshii, and S. Coghlan. The Influence of Operating Systems
on the Performance of Collective Operations at Extreme Scale. In Proceedings of
Cluster Computing IEEE International Conference, 2006.

[17] S. M. Kelly and R. Brightwell. Software architecture of the light weight kernel, Cata-
mount. In Cray User Group Annual Technical Conference, May 2005.

[18] D. J. Kerbyson. A Look at Application Performance Sensitivity to the Bandwidth
and Latency of Infiniband Networks. In in Proc. of Workshop on Communication
Architectures for Clusters (CAC), IEEE/ACM Int. Parallel and Distibuted Processing
Symposium (IPDPS), Rhodes, Greece, March 2006.

October 1, 2009 12:45 WSPC/INSTRUCTION FILE netnoise

20 Parallel Processing Letters

[19] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, and M. Git-
tings. Predictive performance and scalability modeling of a large-scale application. In
Supercomputing ’01: Proceedings of the ACM/IEEE conference on Supercomputing,
pages 37–37, New York, NY, USA, 2001. ACM.

[20] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing.
IEEE Trans. Comput., 34(10):892–901, 1985.

[21] A. D. Malony and S. S. Shende. Overhead compensation in performance profiling. In
In Proceedings of the European Conference on Parallel Processing (Euro-Par), pages
119–132. Springer-Verlag, 2004.

[22] J. E. Moreira, George A., Charles Archer, R. Bellofatto, P. Bergner, J. R. Brun-
heroto, M. Brutman, J. G. Castanos, P. Crumley, M. Gupta, T. Inglett, D. Lieber,
D. Limpert, P. McCarthy, M. Megerian, M. P. Mendell, M. Mundy, D. Reed, R. K.
Sahoo, A. Sanomiya, R. Shok, B. E. Smith, and G. G. Stewart. Blue Gene/L pro-
gramming and operating environment. IBM Journal of Research and Development,
49(2-3):367–376, 2005.

[23] R. Mraz. Reducing the variance of point to point transfers in the IBM 9076 parallel
computer. In Supercomputing ’94: Proceedings of the 1994 ACM/IEEE conference on
Supercomputing, pages 620–629, New York, NY, USA, 1994. ACM.

[24] A. Nataraj, A. Morris, A. D. Malony, M. Sottile, and P. Beckman. The ghost in the
machine: observing the effects of kernel operation on parallel application performance.
In SC ’07: Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pages
1–12, New York, NY, USA, 2007. ACM.

[25] S. R. Öhring, Ma. Ibel, S. K. Das, and M. J. Kumar. On generalized fat trees. In IPPS
’95: Proceedings of the 9th International Symposium on Parallel Processing, page 37,
Washington, DC, USA, 1995. IEEE Computer Society.

[26] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In
Proceedings of the ACM/IEEE SC2003 Conference, page 55. ACM, 2003.

[27] R. Rabenseifner. Automatic MPI Counter Profiling. In Proceedings of 42nd CUG
Conference, 2000.

[28] T. Schneider and T. Hoefler. ORCS: An Oblivious Routing Congestion Simulator.
Technical report, Indiana University, Computer Science Department, February 2009.

[29] M. Sottile and R. Minnich. Analysis of microbenchmarks for performance tuning of
clusters. In CLUSTER ’04: Proceedings of the 2004 IEEE International Conference
on Cluster Computing, pages 371–377, Washington, DC, USA, 2004. IEEE Computer
Society.

[30] M. J. Sottile. A measurement and simulation methodology for parallel computing per-
formance studies. PhD thesis, Albuquerque, NM, USA, 2006.

[31] M. J. Sottile, V. P. Chandu, and D. A. Bader. Performance analysis of parallel pro-
grams via message-passing graph traversal. In 20th International Parallel and Dis-
tributed Processing Symposium, Proceedings, Rhodes Island, Greece. IEEE, 2006.

[32] F. Wolf, A. Malony, S. Shende, and A. Morris. Trace-Based Parallel Performance
Overhead Compensation. In In Proc. of the International Conference on High Per-
formance Computing and Communications, September 2005.

[33] K. Yoshii, K. Iskra, P. C. Broekema, H. Naik, , and P. Beckman. Characterizing the
Performance of Big Memory on Blue Gene Linux. Technical report, Argonne National
Lab, March 2009. ANL/MCS-P1589-0309.

[34] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang. Optimized InfiniBand Fat-tree
Routing for Shift All-To-All Communication Patterns. In Proceedings of the Interna-
tional Supercomputing Conference 2007 (ISC07), Dresden, Germany.

