Non-Blocking Collective Operations for MPI-2

Torsten Hoefler,'* Jeffrey M. Squyres,® George Bosilca,? Graham Fagg,?
Andrew Lumsdaine,! and Wolfgang Rehm*

!Open Systems Laboratory 2Dept. of Computer Science
Indiana University University of Tennessee
501 N. Morton Street 203 Claxton Complex
Bloomington, IN 47404 USA Knoxville, TN 37996
{htor,lums}@cs.indiana.edu {bosilca,fagg}@cs.utk.edu
3(Cisco Systems “Dept. of Computer Science
San Jose, CA Technical University of Chemnitz
95134, USA Chemnitz, 09107 GERMANY
jsquyres@cisco.com {htor,rehm}@cs.tu-chemnitz.de

August 17, 2006

Version 1.0
Abstract

We propose new non-blocking interfaces for the collective group communication functions
defined in MPI-1 and MPI-2. This document is meant as a standard extension and written in
the same way as the MPI standards. It covers the MPI-API as well as the semantics of the
new operations.

1 Introduction

Non-blocking collective operations are not included in the current Message Passing Interface (MPI,
[2]) standard. The Journal of Development (JoD, [3]), a compilation of ideas that were consid-
ered but ultimately not included in the standard, documents ”split collectives”. Split collectives
offer some of the benefits of non-blocking collective operations, but are somewhat limited in their
applicability. For example, while they enable overlapping of computation and communication for
collective operations, they do not allow multiple outstanding collective operations on the same
communicator or matching with blocking collective operations. These limitations were recognized
by IBM and in response they designed a more fully-functional interface for their Parallel Environ-
ment (PE). Unfortunately, this interface was only implemented in the PE and applications using
this interface were not portable. MPI users value portability and so the IBM implementation was

1.1 A new Approach 2 NON BLOCKING COLLECTIVE OPERATIONS

discontinued in the latest version of the PE due to low usage. In this document we define a new in-
terface that has the same advantages of the IBM interface and we provide reference implementation
to ensure portability.

1.1 A new Approach

Our new interface fits the programmer’s needs much more naturally to the existing MPI standard,
even if the MPI implementation gets more complicated (e.g. has to handle proper nesting). Our
API design is derived from the current MPI API design. We use the same MPI_REQUESTS in
our interface as are used in the MPI-2 standard for non-blocking point-to-point operations and we
offer similar semantics like the blocking collective operations.

1.2 Organization of the Document

The following section defines special terms used throughout the document. Section 2 introduces
the newly proposed interface for non-blocking collectives.

1.3 Terms

A basic differentiation has to be made between non-blocking collectives, which define a non-blocking
interface, and the different progress types. We define two progress types for collective operations
in general:

Synchronous Progress Progress that is only made when the user thread enters the MPI library
(e.g. with calls to MPI_.WAIT, MPI_TEST).

Asynchronous Progress Progress that is made independently of the user program (e.g., a sep-
arate communication thread is used or the hardware supports collective communication of-
fload).

2 Non Blocking Collective Operations

Many applications benefit from overlapping communication and computation using non-blocking
MPI point-to-point operations. The same mechanism can be applied to collective operations which
are defined in a blocking manner in the MPI-2 standard. For example a parallel 3D Fast Fourier
Transformation could overlap the often-used and scalability limiting MPI_ALLTOALL operation
with local calculation to utilize the architecture more efficiently.

Additionally, these applications benefit from avoiding a phenomenon that we call pseudo-synchronization,
which is introduced with most blocking collective operations. A collective operation is finished on
a given process as soon as its part of the overall communication is done and the communication
buffer can be accessed. This does not indicate that other processes have completed, or for that

2.1 General Rules for Non-Blocking Colle@iviNCOnBlu@ic#iodG COLLECTIVE OPERATIONS

matter even started the collective operation. However, most algorithms introduce a synchroniza-
tion due to data dependencies (it is obvious that every process has to wait for the root process in
a MPI_BCAST). The application waiting time in blocking collective calls results from the pseudo-
synchronization and it limits the scalability of highly parallel MPI codes. Non-blocking collective
operations allow to perform the pseudo-synchronizing collective operation in the background and
so would allow some limited asynchronism and load imbalance between processes.

We define a new interface, similar to the non-blocking point-to-point interface. We do not use a
tag because all collective operations must follow the ordering rules for collective calls. This means
that the user has to ensure proper ordering (especially in threaded environments).

A call to a non-blocking barrier would look like:

1 MPI_Ibarrier(comm, request);
/* computation, other MPI communtications */

MPI_Wait(request, status);

The MPI_IBARRIER call returns a request (similar to non-blocking point-to-point communication)
that can be used as any MPI_LREQUEST with MPI_WAIT and MPI_TEST. The user might need to call
MPI_TEST to progress the collective operation in the background (especially in non-threaded envi-
ronments), otherwise the whole collective might be performed blocking in the according MPI_WAIT
without any possibility of overlapping.

2.1 General Rules for Non-Blocking Collective Communication

This section defines common rules for all non-blocking collective operations:

e Non-blocking collective communications can be nested on a single communicator. However,
the MPI implementation may limit the number of outstanding non-blocking collectives to
some arbitrary number. If a new non-blocking communication gets started, and the MPI
library has no free resources, it fails and raises an exception.

e The send buffer must not be changed for an outstanding non-blocking collective operation,
and the receive buffer must not be read until the operation is finished (after MPI_TEST,
MPI_WAIT).

e All request administration functions (MPI_CANCEL, MPI_TESTALL, MPI_TESTANY ...) de-
scribed in Section 3.7 of the MPI-1.1 [1] standard are supported for non-blocking collective
communications.

e The order of issued non-blocking collective operations defines the matching of them (compare
the ordering rules for collective operations in the MPI-1.1 standard).

e Non-blocking collective operations and blocking collective operations can match each other.

2.2 Example Routines 2 NON BLOCKING COLLECTIVE OPERATIONS

2.2 Example Routines

This section describes some routines in the style of the MPI-2 standard. Not all routines are
explained explicitely due to the similarity to the MPI-standardized ones. The new features are
summarized in ” Other Collective Routines”.

2.2.1 Barrier Synchronization

MPI_IBARRIER(comm, request)

IN comm communicator (handle)
OUT request request (handle)

int MPI_Ibarrier (MPI_Comm comm, MPI_Request* request)

void MPI::Comm::Ibarrier(MPI::Request *request) const = 0

MPI_IBARRIER(COMM, REQUEST, IERR)
INTEGER COMM, IERROR, REQUEST

MPI_IBARRIER initializes a barrier on a communicator. MPI_WAIT may be used to block until it
is finished.
Advice to users. A non-blocking barrier sounds unusable because MPI_-BARRIER is defined
in a blocking manner to protect critical regions. However, there are codes that may move
independent computations between the MPILIBARRIER and the subsequent Wait/Test call
to overlap the barrier latency.

Advice to implementers. A non-blocking barrier can be used to hide the latency of the
MPI_BARRIER operation. This means that the implementation of this operation should
incur only a low overhead (CPU usage) in order to allow the user process to take advantage
of the overlap.

2.2.2 Broadcast

MPI_IBCAST (buffer, count, datatype, root, comm, request)
INOUT buffer starting address of buffer (choice)

IN count number of elements in buffer (integer)
IN datatype data type of elements of buffer (handle)
IN root rank of the broadcast root (integer)

IN comm communicator (handle)

ouT request request (handle)

int MPI_Ibcast(void* buffer, int count, MPI Datatype datatype, int root, MPI_Comm comm,
MPI _Request* request)

void MPI::Comm::Ibcast(void* buffer, int count, const MPI::Datatype& datatype, int
root, MPI::Request *request) const = 0

2.2 Example Routines 2 NON BLOCKING COLLECTIVE OPERATIONS

MPI_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERR)
<type> BUFFER(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR, REQUEST

Advice to users. A non-blocking broadcast can efficiently be used with a technique called
“double buffering”. This means that a usual buffer in which a calculation is performed
will be doubled in a communication and a computation buffer. Each time step has two
independent operations - communication in the communication buffer and computation in
the computation buffer. The buffers will be swapped (e.g. with simple pointer operations)
after both operations have finished and the program can enter the next round. Valiant’s
BSP model [4] can be easily changed to support non-blocking collective operations in this
manner.

2.2.3 Gather

MPI_IGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (integer)

IN sendtype data type of sendbuffer elements (handle)

OUT recvbuf starting address of receive buffer (choice, significant only at root)

IN recvcount number of elements for any single receive (integer, significant only at root)
IN recvtype data type recv buffer elements (handle, significant only at root)

IN root rank of receiving process (integer)

IN comm communicator (handle)

OUT request request (handle)

int MPI_Igather(void* sendbuf, int sendcount, MPI Datatype sendtype, void* recvbuf,
int recvcount, MPI Datatype recvtype, int root, MPI_Comm comm, MPI Request* request)

void MPI::Comm::Gather(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype,
void* recvbuf, int recvcount, const MPI::Datatype& recvtype, int root, MPI::Request
xrequest) const = 0

MPI_IGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT,
COMM, REQUEST, IERR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR, RE-
QUEST

2.2.4 Other Collective Routines

All other defined collective routines can be executed in a non-blocking manner as shown above.
The operation MPI_OPERATION is renamed to MPI_LIOPERATION and a request is added as last
element to the argument list.

2.3 Environment and Limits REFERENCES

General advice to users. Non-blocking collective operations can be used to avoid explicit
application synchronization and to overlap communication and computation in programs.
A common scheme for this would be “double buffering” (explained in Section 2.2.2) which
can easily be used to optimize programs written in the BSP model.

General advice to implementers. Most non-blocking operations will be used to overlap
communication with computation. The implementation of these operations should cause as
low overhead (CPU usage) as possible to free the CPU for the user process.

2.3 Environment and Limits

The number of outstanding (nested) non-blocking collective operations may be limited, especially
on hardware supported implementations. A new attribute, called MPI_ICOLL_MAX_OUTSTANDING
is attached to MPI_COMM_WORLD. The user can access this attribute with MPI_COMM_GET_ATTR,
described in the MPI-2 Standard Chapter 8.8. MPI_LICOLL_.MAX_OUTSTANDING must have the
same value on all processes in MPI_.COMM_WORLD.

However, the implementation should support at least 32767 outstanding operations. A software
implementation could use non-blocking send-receive to enable non-blocking collective operations,
where each outstanding operation uses exactly one tag value. A hardware implementation can fall
back to this software implementation if its capabilities are exhausted.

Acknowledgements

The authors want to thank Laura Hopkins from Indiana University for editorial comments and
extensive writing support.

References

[1] Message Passing Interface Forum. MPI: A Message Passing Interface Standard. 1995.

[2] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface. Tech-
nical Report, University of Tennessee, Knoxville, 1997.

[3] Message Passing Interface Forum. MPI-2 Journal of Development, July 1997.

[4] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103-111,

1990.

