
Improving Parallel Computing
Platforms

- programming, topology and routing -

Torsten Hoefler

Open Systems Lab
Indiana University

Bloomington, IN, USA

1

State of the Art (what we all know)

 “Moores law” mandates parallelism
 DMM (Clusters) and SMM (Manycores)

 DMM programming:
 Message Passing (de facto standard MPI)
 Task abstractions (CHARM++)

 SMM programming:
 Task parallelism (Cilk, TBB, OpenMP 3.0)
 Data (loop) parallelism (OpenMP, Cilk++)

 Languages:
 UPC, Chapel, Fortress, X10

2

Focus of this work
 Large-scale parallel computers
 DMM Model

 SMM obfuscates complexity (data distribution)!
 Traditionally MPI

 Large interconnection networks
 Topology, Routing issues

 Cluster computers
 commodity components keep cost low

 Scientific applications
 Upcoming graph/Informatics applications

3

Message Passing Interface
 1998: MPI 2.0 - Well-known (no introduction needed)

 MPI Forum convenes since Jan 2008
 Sep 2008: MPI 2.1 (merges and minimal changes)
 Sep 2009: MPI 2.2 (bugfixes, API compatibility)

 New scalable graph topology interface
 Enhancements to collectives (MPI_IN_PLACE, Reduce_scatter_block)
 Access restrictions to send buffers lifted
 Better support for libraries (MPI_Reduce_local)
 Deprecated C++ bindings (!)

 MPI 3 - Updates for the future
 Better interoperability, updated collective

operations, fault tolerance
4

Focus on MPI Collective Operations
 High level of abstraction

 Limited set of complex data movement operations

 Lifts MPI from “the assembler of parallel
programming” to “the C of parallel programming”

 Enables standard-optimizations, such as tree
structures for broadcast or reduce

 But also network-specific optimizations
 Performance portability across specialized architectures

is one of the key points of MPI
 Two examples: MPI_Barrier and MPI_Bcast on

InfiniBand

5

MPI_Barrier on InfiniBand
 Standard algorithm: Dissemination

 Uses rounds

6

Is this optimal?
 No! Refine the model (1:N ping pong):

7

Minimum around 5-10 processes!
Saturation

N-way Dissemination

8

k peers per round!
rounds

Today’s fastest MPI_Barrier on InfiniBand!

Refer to: Hoefler et al. “Fast Barrier Synchronization for
InfiniBand” IPDPS 2006, CAC workshop

40%

2nd Example: MPI_Bcast
 InfiniBand offers Multicast

 It’s unreliable, but runtime practically

 Constant-time algorithm in low-loss network

9

MPI_Bcast Results
 IMB 2-byte broadcast

10

41%

Refer to: Hoefler, Siebert et al. “A practically constant-time MPI Broadcast Algorithm
for large-scale InfiniBand Clusters with Multicast” IPDPS 2007, CAC workshop

Intermediate Conclusions
 High level of abstraction
 Simplifies implementation
 Offers optimization potential
 Enables performance portability

 New directions
 Nonblocking collective operations
 Sparse collective operations

11

Nonblocking Collective Operations
 Simple interface: MPI_Ibarrier()
 Standard MPI semantics

 Enable new programming techniques
 Decouple start from end (Hoefler et al. at SPAA’08)

 Relax synchronization (Hoefler et al. at PPoPP’10)

 Enable communication/computation overlap
 Hide latency (cf. Alexandrov’s “early binding”)

 Should be a standard technique for point-to-
point communications (is it yet?)

12

Overlap potential
 Polling vs. threaded progression
 64 InfiniBand nodes, MVAPICH vs. LibNBC

 We assume ideal overlap (threaded has constant overhead!)

13

Refer to: Hoefler, et al. “Implementation and Performance Analysis of Non-Blocking
Collective Operations for MPI” IEEE/ACM Supercomputing 2007 (SC07)

Applications?
 Conjugate Gradient (3d Poisson, points)

 Overlap boundary communication with local matrix product

14

Gigabit Ethernet (TCP)InfiniBand

Refer to: Hoefler, Gottschling et al. “Optimizing a Conjugate Gradient Solver with Non-Blocking
Collective Operations ” Elsevier PARCO, Sept. 2007

Some More Applications

15

3d Fast Fourier Transform (MPI_Alltoall): 3d-FFT Overhead

Parallel bzip2 Overhead (MPI_Gather) Medical Image Reconstruction Overhead

Refer to: Hoefler, Gottschling et al. “Leveraging Non-blocking Collective Communication in
High-performance Applications ” ACM SPAA’08

Sparse Collective Operations
 Now something completely different
 More power to the users!
 Specify arbitrary “flat” communication patterns

16

MPI-2.2 New Topology Interface
 MPI_GRAPH topology to specify communication

 Usable (scalable) since MPI-2.2
 Also added weights

 Enables intelligent process-to-node mapping
 Of course NP-hard for general graphs
 Discussed in literature (Träff, SC’02; Yu, SC’06)

 Scalable reference implementation available
 Already implemented in MPICH-2!

17

MPI-3 (?) Sparse Collective Interface
 Enables optimized communication schedules

 Message scheduling equivalent to graph coloring
 Again NP-hard in the general case
 Good heuristics are ongoing research

 Example:
 Sparse Gather

18

sendbuffer

receivebuffer

Scheduling Example

19

33%

Two “heavy” rounds in each topology

Cost depends on scheduling.

8 nodes, SX-8
Dimension-order scheduling

Refer to: Hoefler, Träff et al. “Sparse
Collective Operations for MPI”
IPDPS/HIPS 2009

Applications?
 Sparse collectives are implemented in LibNBC

 Trivial scheduling / usability study
 TDDFT/Octopus – trivial change (simpler than before)

20

Benzene example topology:

6 MPI processes
(METIS decomposition)

Standard stencil:

Refer to: Hoefler, Lorenzen et al. “Sparse Non-Blocking Collectives in Quantum Mechanical
Calculations” EuroPVM/MPI 2008

Intermediate Conclusions
 Collective operations are a good abstraction!

 Easy to use
 High-level problem specification
 Sparse collectives are even more powerful

 Overlapping computation and communication can
be beneficial
 Relatively hard to get right
 Depends on support in communication middleware
 Depends on the application or algorithm

 Process mapping seems important
 Is it?

21

Optimizing Collectives and Mappings
 Network is the most vital part

 Mandates collective algorithms and topology mappings
 Network is defined by:

 Topology (Torus, Hypercube, Fat-Tree, …)
 Endpoint technology (Myrinet, InfiniBand, Portals, …)

 LogGP models most networks well
 Ignores congestion in the network
 Assumes full bisection bandwidth (FBB) (?)

 Do FBB networks solve all problems?
 No! (why?)

22

Example: InfiniBand
 30.2 % of Top500 (Jun 2009)
 Static routing (1→5, 4 → 14):

 No full bandwidth (cf. Valiant’s bound)

23

Quantifying Congestion

24

Lower Bound!

Reality?

CHiC Supercomputer:
• 566 nodes, full bisection IB fat-tree
• effective Bisection Bandwidth: 0.699

3 2 1 0
Congestion Factor

Microbenchmarks
(NetPIPE, IMB ping pong

Netgauge one_one)

Refer to: Hoefler, Schneider et al. “Multistage Switches are not Crossbars:
Effects of Static Routing in High-Performance Networks ” IEEE Cluster 2008

Full Bisection Bandwidth != Full Bandwidth
 expensive topologies do not guarantee high bandwidth
 deterministic oblivious routing cannot reach full bandwidth!

 see Valiant’s lower bound
 random routing is asymptotically optimal but looses locality

 but deterministic routing has many advantages
 completely distributed
 very simple implementation

 InfiniBand routing:
 deterministic oblivious, destination-based
 linear forwarding table (LFT) at each switch
 lid mask control (LMC) enables multiple addresses per port

25

InfiniBand Routing Continued
 offline route computation (OpenSM)
 different routing algorithms:
 MINHOP (finds minimal paths, balances number of

routes local at each switch)
 UPDN (uses Up*/Down* turn-control, limits choice but

routes contain no credit loops)
 FTREE (fat-tree optimized routing, no credit loops)
 DOR (dimension order routing for k-ary n-cubes, might

generate credit loops)
 LASH (uses DOR and breaks credit-loops with virtual

lanes)
26

Some Theoretical Background
 model network as G=(VP[VC, E)
 path r(u,v) is a path between u,v 2 VP

 routing R consists of P(P-1) paths
 edge load l(e) = number of paths on e 2 E

 edge forwarding index ¼(G,R)=maxe2E l(e)
 ¼(G,R) is a trivial upper bound to congestion!

 goal is to find R that minimizes ¼(G,R)
 shown to be NP-hard in the general case

27

Routing based on SSSP
 we propose P-SSSP routing

 P-SSSP starts a SSSP run at each node
 finds paths with minimal edge-load l(e)
 updates routing tables in reverse

 essentially SDSP
 updates l(e) between runs

 let’s discuss an example …

28

P-SSSP Routing (1/3)

29

Step 1:
Source-node 0:

P-SSSP Routing (2/3)

30

Step 2:
Source-node 1:

P-SSSP Routing (3/3)

31

Step 3:
Source-node 2:

¼(G,R)=2

How to Assess a Routing?
 edge forwarding index is a trivial upper bound
 ability to route permutations is more important

 bisect P into two equally-sized partitions
 choose exactly one random partner for each node
 £(P!/(P/2)!) combinations!

 our simulation approach:
 pick N (=5000) random bisections/matchings
 compute average bandwidth
 shown to be rather precise (Cluster’08)

32

Comparison to Real Systems
 ibdiagnet , ibnetdiscover, and ibsim
 we extracted topology and routing from:
 Thunderbird (SNL) – 4390 LIDs

 thanks to: Adam Moody & Ira Weiny

 Ranger (TACC) – 4080 LIDs
 thanks to: Christopher Maestas

 Atlas (LLNL) – 1142 LIDs
 thanks to: Len Wisniewsky

 Deimos (TUD) – 724 LIDs
 thanks to: Guido Juckeland and Michael Kluge

 Odin (IU) – 128 LIDs

33

Real-world Results

34

Real-World Bandwidth

Real-World Runtime

Some more Topologies

35

Fat-tree topologies

k-ary 2,3-cube topologies (torus)
(filled switches with endpoints)

Simulations are good, but still Simulations
 we implemented our routing with OpenSM’s file method

 tested it on the Deimos and Odin clusters (needs exclusive
admin access to whole machine – many thanks to Guido Juckeland)

 Odin is standard fat-tree, Deimos’ topology:

36

Benchmark Results Odin

37

Simulation
Benchmark

(Netgauge Pattern eBB)

Simulation predicts 5% improvement

Benchmark shows 18% improvement!

Benchmark Results Deimos

38

Simulation
Benchmark

(Netgauge Pattern eBB)

Simulation predicts 23% improvement

Benchmark shows 40% improvement!

Intermediate Conclusions
 P-SSSP routing for deterministic oblivious routing

(IB) works better than established methods
 simulation shows increase in effective bisection

bandwidth over standard OpenSM routing
 e.g., Odin 5%, Deimos 23%, Atlas 15%, Thunderbird 6%

 benchmarks show even higher improvements
 Odin 18%, Deimos 40%

 Oblivious routing seems suboptimal
 Adaptive routing is hard
 Random routing needs bandwidth (we have enough in fat-trees)

39

Refer to: Hoefler, Schneider et al. “Optimized Routing for Large-Scale InfiniBand Networks”
IEEE Hot Interconnects 2009

Adaptive Routing in Myrinet
 512 nodes Myri 10G two-stage folded Clos network
 Netgauge, eBB with 50 MiB messages

40

Static routing Adaptive routing

Refer to: Geoffray, Hoefler “Adaptive Routing Strategies for Modern High Performance Networks”
IEEE Hot Interconnects 2008

Final Conclusions
 From a programmers perspective:

 Specify communication at a high level
 Communication pattern
 Communication intensity
 Process arrival pattern?

 We aim to simplify and extend specification possibilities
 From a system designer’s perspective:

 Optimize for applications
 Choose model carefully (endpoint, pattern)
 Design topology and routing accordingly
 Provide hints to the upper layers?

 Parallel systems need to be optimized as a whole

41

Acknowledgments & Questions
 Thanks to:

 Andrew Lumsdaine @IU (Ph.D., Postdoc Advisor)
 Wolfgang Rehm @TUC (M.Sc. Advisor)
 Timo Schneider @TUC (Student intern, Advisee)
 Christian Siebert @NEC (M.Sc. Student, Advisee)
 Jesper Larsson Traeff @NEC (Co-author)
 … and all other co-authors and colleagues!

 Questions?

42

Backup Slides

43

Backup Slides

Credit Loops

44

Source Network and Routes

Buffer
Dependency

Graph

Even more Topologies

45

2-ary n-cube topologies (hypercube)
(filled switches with endpoints)

random topologies
(12 nodes per switch)

