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Abstract—Lossless networks, such as InfiniBand use flow-
control to avoid packet-loss due to congestion. This introduces
dependencies between input and output channels, in case of
cyclic dependencies the network can deadlock. Deadlocks can
be resolved by splitting a physical channel into multiple virtual
channels with independent buffers and credit systems. Currently
available routing engines for InfiniBand assign entire paths from
source to destination nodes to different virtual channels. However,
InfiniBand allows changing the virtual channel at every switch.
We developed fast routing engines which make use of that fact
and map individual hops to virtual channels. Our algorithm
imposes a total order on virtual channels and increments the
virtual channel at every hop, thus the diameter of the network
is an upper bound for the required number of virtual channels.
We integrated this algorithm into the InfiniBand software stack.
Our algorithms provide deadlock free routing on state-of-the-
art low-diameter topologies, using fewer virtual channels than
currently available practical approaches, while being faster by a
factor of four on large networks. Since low-diameter topologies
are common among the largest supercomputers in the world, to
provide deadlock-free routing for such systems is very important.

I. INTRODUCTION

InfiniBand (IB) [1] is an interconnection network widely
used in high-performance computing (HPC) and datacenter
networks1. It uses point-to-point links between switches and
host channel adapters (HCAs). HCAs, which are identified by
a local ID (LID) connect compute nodes to the network. Traffic
between HCAs is routed using destination-based routing. Each
switch has access to a forwarding table, which maps each
possible combination of input port and destination LID to an
output port.

IB uses a credit-based flow control scheme to avoid packet
loss at congested switches. An output port can only send pack-
ets if it has credits at the input port of the next switch. Cyclic
dependencies between buffers can deadlock the network. An
example of such a deadlock is shown in Figure 1. Every HCA
(H1, H2, H3, H4 in Figure 1) wants to send data to an HCA
two hops away (clockwise). In the pictured scenario, none
of the packets are moving, because, e.g., packets injected via
channel 1 cannot move to the output port at the switch S1
because its buffer is already filled with other packets, which in
turn cannot leave S1 via channel 10 because the corresponding

1In Nov. 2015, 47.4% of the 500 most powerful supercomputers used IB,
see http://www.top500.org/

Fig. 1. Deadlock in an InfiniBand network. The dependencies between
channels form a cycle, which can be broken either with VL-layering or VL-
hopping. VL-hopping requires fewer resources.

input port at S2 is filled up (and so on). There is a dependency
e.g., between channel 1 and channel 10 because when sending
from H1 to H3 packets that use channel 1 need to use channel
10 next.

Credit-induced deadlocks in IB can be dealt with in multiple
ways: The problem can be ignored. Switches can employ time-
outs and drop packets in case a deadlock is detected, higher
level protocols need to ensure reliability. Another option is
to restrict routing, such that no cyclic channel dependencies
can be formed [2]. Both options are not discussed here,
since they have a negative performance impact: Ignoring the
problem means we forfeit the advantages of a lossless network,
restricted routing means we cannot fully use the (expensive)
physical network. Thus we focus on different techniques:
Layered Routing: Current IB routing engines break cyclic
channel dependencies by assigning some paths to different
virtual channels. Virtual channels, or Virtual Lanes (VLs) in
IB terms, have separate buffer resources and credit systems. If
two of the four paths in Figure 1 are assigned to VL 1 and the
remaining two to VL 2, no deadlock can occur. The number
of available VLs is small (each VL requires costly buffers).
Determining an optimal (minimal number of VLs) deadlock-
free layering is NP-complete [3].
VL-hopping: IB allows a packet to change its VL inside a
switch. The algorithms presented here assign different parts
of a single path to different VLs. In the example shown in
Figure 1, it is enough to put a single channel into a different
VL (c′ indicates c was moved to another VL), while layered
routing moves at least four channels, thus increasing chances
for a deadlock in the new layer.

http://www.top500.org/


TABLE I
NOTATION

SL Set of available SLs, in IB s ∈ SL is a number
between zero and maxSL (fifteen in IB)

V L Set of available VLs, in IB v ∈ VL is a number
between zero and maxVL (up to fifteen in IB).

I = (N,C) InfiniBand network graph, vertices N are
HCAs and switches, edges C are physical chan-
nels.

D = (C′, E) Channel dependency graph, vertices C′ are
virtual channels. We denote elements of C′

using superscripts to denote the VL, e.g., ap

is the virtual channel formed by using a with
VL p.

V (i, o, s) = v SL-to-VL mapping relation, takes input and
output channel i, o ∈ C and an SL value
s ∈ SL as its argument and returns the output
VL v ∈ V L. Every switch contains a table that
implements V for the input ports of that switch.

R(i, d) = o Routing relation, maps an input channel i ∈
C and a destination HCA d ∈ N to the next
output channel o ∈ C. Each switch implements
R for the local switch ports using a forwarding
table.

P (s, d) = (c0 . . . cn) The list of physical channels ci ∈ C traversed
by a packet injected by s ∈ N with destination
d. It can be obtained by successively applying
R.

R′(ip, d) = oq To route a packet which has the destination
d ∈ N and SL s ∈ SL encoded in its
header and arrived through the virtual input
channel ip ∈ C′, we first apply R(i, d) = o
then use V (i, o, s) = q to obtain q, thus
the packet is sent via the virtual channel oq .
To simplify notation we introduce the virtual
routing relation R′ to express this. The value of
p is irrelevant for routing: InfiniBand switches
cannot access the input VL.

S(i, d) = s If an HCA uses channel i ∈ C to inject a a
packet with destination d ∈ N it must use SL
s ∈ SL, this models PathRecords.

II. BACKGROUND

An InfiniBand network can be modeled as a directed graph
I = (N,C) where N is the set of HCAs and switches, while
C is the set of links (often referred to as physical channels)
connecting them. Each directed physical channel i = (t, h) ∈
N × N is connected to two endpoints, which we refer to
as t = tail(i) and h = head(i). IB links are full-duplex,
i.e., (t, h) ∈ C ↔ (h, t) ∈ C . InfiniBand uses destination
based routing, every packet contains its destination HCA in
the header. Every switch contains a table that determines the
output port for every possible destination. We model routing
as a relation R(i, d) = o which assigns an output channel
o ∈ C to a combination of input channel i ∈ C and destination
node d ∈ N . Routing happens only at switches; HCAs are
connected to exactly one input and one output channel and do
not forward packets, they only inject or consume them.

Routing tables in IB switches are programmed by the subnet
manager. The most widely used subnet manager is OpenSM.
When OpenSM is started, it detects the network topology
and programs the routing tables in switches according to an
algorithm selected by the user. After the network is fully
configured, the subnet manager keeps running. If a link fails,

it can update routing tables. Often the subnet manager is run
on a switch itself, instead of using a dedicated node.

IB supports up to 16 virtual lanes per physical channel2. VL
15 is used only by management traffic. Each VL has separate
buffers and its own credit system, thus, VLs implement
virtual channels. The output VL is determined based on the
combination of the physical channel a packet used to enter a
switch (input channel), the physical channel assigned to the
packet by the routing relation R (the output channel), and
the Service Level (SL). The SL of a packet is an integer
between 0 and 15, it cannot be changed while the packet
traverses the network, and is encoded in the packet header by
the sender of the packet. Every switch contains an SL-to-VL
mapping table which implements the relation V : (i, o, s) = v
where s, v ∈ [0, 15] and i, o ∈ C . To forward a packet with
destination d and service level s, the switch first determines
R(i, d) = o, then applies V (i, o, s) = v to forward the
packet on the virtual channel ov . There are two types of
VL buffer semantics: either there is one big buffer per VL
where input and output buffer share the same memory region
[3]–[5], or two disjoint buffers, one for sending and one for
receiving [6]. The DF-SSSP algorithm in OpenSM constructs
the CDG according to the two-buffer model. In this work, we
use the two-buffer model, since the one-buffer model predicts
deadlocks even for two switches connected with a single cable,
which does not match our experience with IB hardware.

The Service Level s is an important part of the routing, as it
determines which VL a packet will use in any switch, together
with the SL-to-VL mapping table. The SL-to-VL mapping
table is programmed into the switch by the subnet manager.
However, the SL has to be set in the packet before it arrives
at the first switch, thus it needs to be done by the host, even
though it is part of routing, which should be transparent for
the host. This dilemma is solved using PathRecord queries:
Before a host sends a packet to a destination, it should query
the subnet manager, which SL value should be used for
that source/destination pair. We model this with the relation
S(i, d) = s which assigns an SL value s ∈ SL to the
combination of input channel i ∈ C to which the sending
HCA is connected, and the destination HCA d ∈ N . Since
the subnet manager is a single endpoint, often running on
embedded hardware, this can lead to considerable startup
overhead [7]. Thus many IB applications do not perform
such queries, i.e., Open MPI [8] has to be compiled and run
with special flags in order to perform PathRecord queries.
While previously known VL-based solutions for deadlock-free
routing with InfiniBand, such as DF-SSSP and LASH require
PathRecord queries (unless a single VL is sufficient to ensure
deadlock freedom), we propose an algorithm for low-diameter
networks which uses multiple VLs to ensure deadlock-freedom
but relies solely on SL-to-VL mapping. All packets can be
injected into the network with the same SL.

Now that we have the notation defined to model an Infini-

2Currently available switches support only up to eight VLs, but all datas-
tructures are wide enough for 16.



Band network, we can formalize the dependencies between
channels: The nodes C ′ of the channel dependency graph
D = (C ′, E) are the virtual channels. Edges in the CDG are
formed by dependent virtual channels. Two virtual channels
am, bq are dependent if there exists a source/destination pair
s, d ∈ N and packets that travel from s to d first use channel
am then use bq immediately after that. To express which virtual
channels a packet uses we define the virtual routing relation
R′ (in contrast to the routing relation R which is defined on
physical channels):

R′(am, d) = bq ↔∃ s, d ∈ N : R(a, d) = b ∧
P (s, d) = c0 . . . ca−1, ca . . . ∧
∃k ∈ SL : V (ca−1, ca, k) = m ∧
V (a, b, k) = q ∧ S(c0, d) = s

Using R′ expressing E becomes straightforward:

(am, bq) ∈ E ↔∃d ∈ N, am ∈ C ′ : R′(am, d) = bq

If D is acyclic, there can be no credit-induced deadlocks,
which has been proven by Dally et al. [5]. The intuition of the
proof is that in an acyclic CDG we can define a total order
on the channels by sorting them topologically (only acyclic
graphs have a topological order), thus if (i, j) ∈ C ′ then i > j.
Consider the least channel in this order with a full queue, l.
Every channel, that l sends packets to is less than l, and thus
does not have a full queue. Therefore, l is not blocked, and
there is no deadlock.

III. INCREMENTING VLS TO AVOID DEADLOCKS

Current routing algorithms for InfiniBand, i.e., DF-SSSP
and LASH achieve deadlock-free routing with VL layering:
VLs are set for entire paths. No packet will be forwarded
from one VL to another in any switch, thus there exists no
(am, bq) ∈ E with m 6= q and we can create independent
layers of channel dependencies for each VL. If none of the
layers contains a cycle, D does not contain a cycle, and the
routing is deadlock-free. The problem with this approach is
that paths which contribute to a circle in the CDG need to
be moved into another layer in its entirety. Thus, chances are
that we get another cycle in that layer and have to move some
paths to the next layer. Deciding which paths should be moved
to which layer in order to minimize the number of used layers
is an NP-complete problem [3].

However, in this work we use a different approach, to our
knowledge first mentioned by Gopal [9]: If we impose an
ordering on the set of available VLs, i.e., VL = [0, 15] and
use ≤ as ordering constraint, we can increase the VL at every
hop, such that the following condition holds:

∀d ∈ N, ∀ip ∈ C ′ : R′(ip, d) = oq → q = p+ 1 (VLInc)

For every destination node d and every input channel ip the
output VL q is bigger (by one) than the input VL.

Theorem 1. The CDG is acyclic if the VL is incremented by
one in every hop, i.e., Equation VLInc holds.

Fig. 2. Example SL-to-VL based deadlock free minimal path routing in
diameter two networks.

Proof. Equation VLInc imposes a partial order on channel
nodes in D, for any (ip, oq) ∈ E, q = p+ 1. Thus D can be
topologically sorted because there are no channels from high
VLs to low VLs. This implies that D is a DAG.

Note that we can generalize Equation VLInc: We do not
require q = p+ 1. From the proof of Theorem 1 follows that
q > p (or any other total order among VLs) is sufficient.

Unfortunately there is no straightforward way to implement
routing which satisfies Equation VLInc (or a generalization
thereof) in InfiniBand: The output VL is decided only by
taking into account the physical input port, i.e., i, while we
would require ip, the combination of input port and input
VL. However, the input VL is not available in the function
V which decides the output VL. Instead we have only the SL
(which remains constant while data is forwarded). Changing
that has been proposed [10] but to the best of our knowledge
that feature is not available in IB.

However, we show that it is possible to construct V such
that the resulting CDG satisfies Equation VLInc. The diameter
of the network influences how this is done, we describe the
special case where all paths have at most length two (not
counting HCA-to-switch links) first. We name the resulting
algorithm DF-D2. We generalize it later to networks with
an arbitrary diameter, and name the general algorithm DF-
DN. Our algorithm does not provide routing itself, it takes an
existing routing R and ensures deadlock-freedom.

IV. INCREMENTING VLS IN DIAMETER-TWO INFINIBAND
TOPOLOGIES

In diameter-two networks we can make the CDG D acyclic
by leveraging the SL-to-VL mapping V , given that the routing
uses only minimal paths. A network has a diameter of two,
iff all shortest paths between any two HCAs contains at most
three switches (this implies the diameter of the network of
switches is two).

The main idea is to use VL 0 between the injecting HCA
and the second switch on each path, and VL 1 afterwards.
Figure 2 gives an example. Since each switch port can be
connected only to one vertex ∈ N , we can decide which output
VL should be used based on the type of the connected device.

The algorithm shown in Figure 3 generates the SL-to-VL
tables V for deadlock-free diameter-two (DF-D2) routing. For



Data: I = (N,C) : Diameter-two InfiniBand network
Result: S, V : SL-to-VL mapping, guarantees DL-freedom
forall (i, o) ∈ C2 do

s← head(i)
if s = tail(o) ∧ isSwitch(s) then

h← head(i)
if isSwitch(h) then

V (i, o, ∗)← 1
else

V (i, o, ∗)← 0
S(∗, ∗)← 0

Fig. 3. The DF-D2 Algorithm fills the SL-to-VL mapping table in such a
way that the VL is incremented after the first hop.

Fig. 4. Switch S3 cannot decide the output VL solely based on input and
output port, as in DF-D2, the SL needs to be taken into account.

each combination of input and output port (i, o) in any switch
we check if i is connected to an HCA or a switch. If i is
connected to an HCA, we add V (i, o, ∗) = 0 to the SL-
to-VL table, where ∗ means “for any SL” (in practice that
means we add 16 entries, one for each SL). If i is connected
to a switch, we use VL 1 instead. Every HCA should use
VL 0 when injecting packets, regardless of the destination,
which is expressed with S(∗, ∗)← 0 This algorithms runtime
complexity is linear in the total number of switch ports, since
OpenSM directly provides the list of input and output channels
for each switch.

V. INCREMENTING VLS IN ARBITRARY LOW-DIAMETER
INFINIBAND TOPOLOGIES

If the network I (without HCAs) has a diameter higher than
two, The algorithm shown in Figure 3 fails to provide deadlock
free routing. An example is given in Figure 4. Input port 3 of
switch S3 is connected to another switch, thus it will use VL
1 as output VL for any data arriving on port 3. However, this
will violate Equation VLInc: Data which originates from H2
should use VL 1, but data from H1 should use VL 2. However,
the switch cannot differentiate between both flows (with the
SL-to-VL mapping constructed by the in Figure 3), since the
input and output port are identical. Thus we need to leverage
the SL — H1 and H2 need to set different SL values when
sending data.

A possible solution to differentiate between different paths
(determined by their source destination pair) would be to give
every (s, d) ∈ N2 a different SL. Assume a specific pair (s, d)
is assigned SL z. Now we can walk the path (defined by
R) that messages from s to d will traverse, we denote that
path as list of used physical channels P (s, d) = (c0, c1, ...cn).

Fig. 5. DF-DN: We traverse each route, collect the relevant SL-to-VL table
entries in traversal order, and stack them from top to bottom. Then we scan
from left to right until we find an SL which increments the VL at every hop
or has unused entries (set to zero) so that we can set them such that the VL
is incremented at every hop.

We know that for every switch the position along the path
determines which input and output VL must be used, if we
start with VL 0 and increment the VL by one at every hop:
A switch which is characterized by the input/output port
combination (cl, cl+1) needs to assign the output VL l + 1
to any packet which arrives with an SL of z. Thus we can
generate an entry V (cl, cl+1, z) = l + 1 to the SL-to-VL
table. While a SL-to-VL table built in that way will satisfy
Equation VLInc, it is not practical for InfiniBand networks,
since InfiniBand only offers 16 different SLs, however, the
number of SLs required by the approach described above is
quadratic in the number of HCAs, it allows for a maximum
of four HCAs. The number of required VLs is equal to the
diameter of the network graph3.

To make incrementing VLs practical for InfiniBand net-
works, we have to make better use of available SLs
than the algorithm outlined above. Instead of giving each
source/destination pair its own SL, we collect which in-
put/output port combinations uses which output VL. This is
done along all possible paths. Figure 5 gives an example: In
the network shown, assume we scan the highlighted path from
source H1 to destination H2. We remember all the switches
on the path (except the first and last one), so our path for this
example is S3, S4, S6. We collect all the relevant parts (where
the input/output port matches that of the currently scanned
path) of the SL-to-VL tables in switches along that path in
traversal order, as indicated in Figure 5. The highlighted path
is not necessarily the first one which is examined, thus there
are already some non-zero entries in our example (initially
we populate all SL-to-VL tables with zero). Now we scan all
columns from left to right, until we find a column where either
the VL increases by one in every line, or it can be made into
that by changing zero entries to non-zeros. If such a column

3minus two, if we count the first and last hop (from/to HCAs) as well



Data: I = (N,C) : InfiniBand network, R : Routing function
Result: H,V : SL-to-VL mapping, guarantees DL-freedom
cache[0 . . .maxVL][0 . . .maxSL]← 0
forall (u, v) ∈ N2 : (u 6= v) ∧ isHCA(u) ∧ isHCA(v) do

cout ← (u, x) ∈ C
s← head(cout)
for i← 0 . . .maxVL do

cin ← cout
cout ← R(cin, v)
forall k ∈ SL do

cache[i][k]← V (cin , cout , k)
s← head(cout)
if s = v then

found ← false
for sl ← 0 . . .maxSL do

if found = true then
break

found ← true
for j ← 0 . . . i do

vl ← cache[j][sl ]
found ← found ∧ (vl ∈ {0, j + 1})

if found = true then
for j ← 0 . . . i do

cache[j][sl ]← j + 1
V (cin , cout , sl)← j + 1

else
Error Not enough SLs!

S(cout, v)← sl
break

if i = maxVL then
Error Not enough VLs!

Fig. 6. The DF-DN Algorithm fills the SL-to-VL mapping table in such a
way that the VL is incremented after the first hop.

is found, the position of the column gives us the SL we will
use.

The DF-DN algorithm, shown in Figure 6, provides details:
The outer loop iterates over all combinations of sources and
destinations. We traverse P (u, v) in the loop over i, if the path
is longer than maxVL hops, our algorithm will fail due to
an exhaustion of VLs. The cache structure holds the relevant
subset of V , which we modify once we find an appropriate
SL, for which all entries are monotonically increasing, or we
can make them monotonically increasing by setting unused
(zero) entries. The variable found keeps track of this.

VI. EVALUATION

To evaluate performance and test correctness of our routing
engine, we implemented the algorithms described in Sec-
tions IV and V in OpenSM. Our algorithms are implemented
as an extension of non-deadlock-free routing engines: First
we perform SSSP or MinHop routing (and only use one VL).
After that we assign VLs to hops, and program SL-to-VL
tables.

In order to evaluate the implementation with multiple dif-
ferent networks, we use the ibsim (version 0.6) InfiniBand
simulator. The ibsim utility simulates an IB network, thus
we can use tools such as OpenSM (version 3.3.19) on that
simulated network, furthermore we can obtain the network
configuration using ibnetdiscover (version 1.6.1) and ibdiagnet

(version 1.5.7). We wrote a tool to convert the output of these
tools into input files for the OMNet++ (version 4.6) based Flit-
level InfiniBand simulator ib-flit-sim (version 28.07.13). The
original version of ib-flit-sim does not support virtual lanes.
We added support for virtual lanes in the context of this work.
The OMNet++ simulator allows us to test correctness of our
routing engine.4

All experiments are performed using Centos 6.7, kernel
version 2.6.32. The host system is an Intel i5-4590 CPU @
3.30GHz and 8 GB RAM.

A. Slim Fly Topologies

We generated InfiniBand networks for different Slim
Fly [11] topologies5 shown in Figure 7. To verify that dead-
locks are indeed a problem on this topology, we simulated
a network with the given topologies in ib-flit-sim with the
following parameters: 800 credits per port, an MTU of 2KiB,
10 GiB full duplex links, and a message size of 128 KiB. The
routing tables are created with the SSSP routing engine from
OpenSM. The traffic pattern is generated such that every host
sends a message to a different receiver. If we find cycles in
the CDG, we select sender/receiver such that they utilize paths
which contribute to a cycle in the CDG if possible (otherwise
the selection is random). Routing is generated with OpenSM,
using the SSSP routing engine. All communication uses VL
zero. To lower memory usage and runtime of the ib-flit-sim
simulation we simulated only two (instead of p) HCAs per
switch for the deadlock simulations.

To resolve deadlocks we applied existing deadlock-free
routing engines LASH and DF-SSSP as well as our proposed
DF-D2 heuristic together with MinHop and SSSP. The UPDN
routing engine fails to work with most evaluated topologies
because it is unable to identify a set of root switches. We
can see in Figure 9 that LASH is able to find deadlock free
configurations with two VLs for all networks. Note that in
practice LASH and DF-SSSP utilize all available VLs, by
balancing routes across them. The numbers reported here are
the results before the balancing step is performed. For the
topologies with more than 50 switches (350 hosts), the DF-
SSSP heuristic is suboptimal, it requires three instead of two
VLs, while our heuristic gives the optimal result.

By itself that would not be a surprising result. After all,
with LASH we already have a routing engine capable of
delivering deadlock free routing using the minimal number of
VLs. However, our heuristic has two advantages over LASH: it
does not require path queries and it is much faster. In Figure 8
we show that our heuristic is capable of routing the largest
evaluated network two orders of magnitude faster than LASH,
while outperforming DF-SSSP by a factor of three. Figure 8
shows a boxplot [12] of eleven measurements per combination
of network and routing engine. The thicker line inside the
boxes marks the median value, the boxes extend to lowest and

4Our toolchain can be downloaded from https://spcl.inf.ethz.ch/Research/
Scalable Networking/DFDN/.

5All topologies were obtained from https://spcl.inf.ethz.ch/Research/
Scalable Networking/SlimFly/

https://spcl.inf.ethz.ch/Research/Scalable_Networking/DFDN/
https://spcl.inf.ethz.ch/Research/Scalable_Networking/DFDN/
https://spcl.inf.ethz.ch/Research/Scalable_Networking/SlimFly/
https://spcl.inf.ethz.ch/Research/Scalable_Networking/SlimFly/


p Switches Hosts Time to DL
5 18 90 no DL
7 50 350 40.5 us

11 98 1078 9.2 us
17 242 4114 22.3 us
19 337 6403 8.1 us

Fig. 7. Balanced Slim Fly topologies. The
parameter p determines how many HCAs are
attached per switch, the network is then built
such that it provides full global bandwidth.
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Fig. 8. Performance of different OpenSM rout-
ing engines for Slim Fly topologies. Our heuris-
tics outperforms LASH by orders of magnitude
and outperforms DF-SSSP by a factor of three.
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Fig. 9. Required VLs for Slim Fly topologies,
for different routing engines. DF-SSSP is sub-
optimal for larger networks, LASH and DF-D2
deliver the optimal result.

highest value within the 1.5 interquartile range. In Figure 9
the low dispersion of the measurements and the logarithmic
scale make most boxes appear as a single line. For the two
smallest networks for which data is plotted the measurements
for DF-D2+SSSP and DF-D2+MinHop are overlapping, thus
only three boxes are visible.

B. Dragonfly Topologies

We evaluated our heuristic on different Dragonfly [13]
topologies (obtained from the topology collection which ac-
companies the Slim Fly technical report), they vary in size
between 18 and 1058 switches. The results are shown in
Figure 10. All used Dragonfly topologies are balanced con-
figurations with full global bandwidth. A Dragonfly topology
consists of g groups, the a routers within a group are fully
connected, if groups are contracted into a single vertex the
resulting graph is again fully connected. To obtain such a
network, each router is connected to p HCAs, a − 1 routers
in its own group and h routers in other groups. To obtain full
global bandwidth we chose a = 2p = 2h and g = ah + 1
The number of HCAs, denoted as n, can be calculated with
n = gap = (ah+1)2p2 = (2p2+1)2p2 = 4p4+2p2. For our
experiments we varied the number of HCAs per switch from
p = 2 to p = 8.

For Dragonfly topologies LASH and DF-DN (combined
with MinHop and SSSP) both deliver the optimal result of
3 VLs used to provide deadlock-freedom, however DF-DN
was able to do so 68 times faster than LASH, and more than
three times faster than DF-SSSP for the largest network with
p = 8, which implies 16512 HCAs.

Figure 13 shows a boxplot of the runtimes of LASH, DF-
SSSP, and DF-DN for Dragonfly topologies of different sizes.
The runtimes for DF-DN+MinHop and DF-DN+SSSP are very
similar, thus we plot both in one set of boxes, labeled DF-DN.
LASH is roughly two orders of magnitude slower than DF-DN,
while DF-DN requires 28 seconds to route the largest network,
LASH requires 3.5 hours. Note that the routing engine not
only has to be run when the network is initially deployed,
but also in the case of link failures. Thus we consider LASH
impractical for large networks. DF-SSSP is four times slower
than DF-DN, it requires 121 seconds to perform deadlock-free
routing.

C. Orthogonal Fat-Tree Topologies
The Orthogonal Fat-Tree [14] (OFT) topology is based on

the idea of stacking two Single-Path Trees (SPT) on top of
each other. An SPT consists of two layers of routers. The
R1 routers in the first layer have a router-to-router radix of
r1 and the R2 routers in the second layer r2. HCAs are
be connected only to the first layer of routers and router-to-
router links have an endpoint in both layers, thus r1 HCAs
are attached to each router in the first layer. Connections are
formed such that there is only a single path between any two
HCAs, and the number of used switches in the second layer
is minimized. How to construct such networks for arbitrary
values of r1 and r2 is not straightforward. When constructing
networks, it is a common requirement that switches have a
certain number of ports. This can be reached by combining
multiple SPTs into a Stacked SPT (SSPT). Building an SSPT
with r1 = r2 = k requires stacking two 2 SPTs, the resulting
structure is called Two-Level k-OFT [15]. We generated OFTs
for k = 3, 4, 6, 8, 14, 16, 18. As shown in Figure 11, DF-DN
outperforms DF-SSSP on all networks of medium and large
size by a large margin. LASH saves one and sometimes two
VLs compared to DF-DN, however, for the largest network
they are equal. This is a positive result for DF-DN, given
LASHs running time is orders of magnitude higher.

D. Real-World Topologies
We evaluated our heuristic on several real-world networks.

The results are shown in Figure 12. None of those was
constructed as a low-diameter topology, yet our heuristic is
capable of providing deadlock-free routing for all of them. In
the case of Juropa our heuristic requires only six VLs, while
DF-SSSP requires nine. LASH on the other hand failed to
provide deadlock-free routing on that topology.

VII. RELATED WORK

In this work, we discuss credit-induced deadlocks in Infini-
Band networks. Our notation is based on that of Dally and
Seitz [5], who showed the connection between deadlocks and
the channel dependency graph. The key idea for the heuristics
presented here is to increment the VL at every hop. This
scheme has been introduced by Gopal [9], and was used
recently by Besta and Hoefler [11] in the context of diameter-
two networks. To the best of our knowledge, VL hopping has
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Fig. 13. Performance of different OpenSM routing engines for Dragonfly
topologies. Our heuristics outperforms LASH by orders of magnitude (while
delivering equal results) and outperforms DF-SSSP by a factor of four, while
delivering better results.

not been used in InfiniBand networks before, our heuristic to
program the SL-to-VL mapping tables is novel. Our heuristics
also target low-diameter networks [13]–[15], which are an area
of active research, since they offer high-performance (small
number of hops) at relatively low cost.

Some existing routing algorithms for InfiniBand, namely
DOR and Fat-Tree provide topology-aware, deadlock-free
routing for specific networks topologies. They are deadlock-
free as long as there is no change in network structure. Often
performance decreases even in case of single link failures and
these routing engines will fall-back to a general-purpose, non-
deadlock-free algorithm. Domke et al. [16] propose fail-in-
place network design and suggest network-agnostic routing
in order to keep up the high throughput, even in presence
of link or switch failures. The Up/Down routing scheme for
InfiniBand [17] offers deadlock-free routing for non-structured
networks. It uses a tree structure in order to disallow paths
which create channel dependency cycles. However, Up/Down
routing does not offer shortest-path routing. LASH [18] is

another topology agnostic, deadlock-free routing engine for
InfiniBand. It computes shortest-paths between nodes and
assigns paths to VL layers, such that a minimal number of VLs
are utilized. Since this is an NP-hard problem, LASHs network
initialization time exceeds reasonable values, e.g., 3.5h for
a Dragonfly topology with 9702 HCAs. Daryin et al. [10]
proposed a VL-incrementing scheme to provide deadlock-
free InfiniBand routing, however, they did not design any
implementation using SL-to-VL tables. Instead they suggest
to replace the SL-to-VL table with a VL-to-VL table that
takes the input VL into account to determine the output VL
for the next hop. This would require fundamental changes to
IB, which are not necessary, because we have shown that
DF-DN and DF-D2 can increment VLs using only SL-to-
VL tables. Hoefler et al. [4] introduced the SSSP routing
algorithm. SSSP provides balanced shortest-path routing and
minimizes the number of paths per edge globally. However,
SSSP routing is not deadlock-free, which is why Domke et al.
introduced DF-SSSP [3]. DF-SSSP performs SSSP routing and
subsequently, assigns each path to a VL layer in order to break
channel dependency cycles. It uses a heuristic to minimize
the number of VLs for path layering in polynomial time. We
show that our heuristic, which takes SL-to-VL mapping into
account is faster and requires less VLs in many practical
networks. Nue-Routing [19] is similar to DF-SSSP in that
it does not make use of SL-to-VL mapping for InfiniBand.
Nue-Routing combines the layering technique with restricted
routing: it performs layering with a given number of VLs,
while using an “escape path” based on restricted routing.
If the number of available VLs is smaller than what would
be required to obtain deadlock-freedom when solely relying
on layering, any paths still containing cycles are changed
such that they utilize the escape path. We view Nue-Routing
as complimentary to DF-DN: While DF-DN is well suited
for low-diameter networks, Nue-routing has advantages when
routing high-diameter networks.

To provide deadlock-free routing, DF-SSSP and LASH
require expensive PathRecord queries: A host needs to query
the Subnet Manager for the path SL before it can send any



messages. To avoid the SM to be a bottleneck, Tasoulas et
al. [7] propose a query caching scheme, distributed SMs have
been proposed as well [20]. In contrast, our DF-D2 algorithm
provides deadlock-free routing in diameter-two networks with-
out path queries.

VIII. CONCLUSION

The algorithms presented in this work make arbitrary
minimal-path based routing modules for InfiniBand deadlock-
free. They outperform existing approaches, such as DF-SSSP
and LASH on most low-diameter topologies both in terms
of used VLs and runtime. The number of used VLs is
bounded by the diameter of the graph. In our experiments
with low-diameter topologies, we did not find a case were
the number of available SLs was the limiting factor. Layering
based approaches cannot provide such bounds. We expect that
future networks, i.e., for Exascale machines, will make use
of low-diameter topologies, such as Dragonfly, Slim Fly or
Orthogonal Fat-Trees, for which our heuristic is very well
suited. Contrary to previous approaches [10], we do not require
any hardware changes.

Apart from providing deadlock-free routing, the DF-DN
algorithm for InfiniBand introduced in this work also opens
new avenues for future work on performance of InfiniBand
networks: Virtual channels in InfiniBand serve two purposes,
they provide deadlock freedom as well as Quality of Service
(QoS). However, in contemporary InfiniBand HPC networks
the capability to use VLs for QoS is often ignored, regardless
of strong evidence [21], [22] that it can increase perfor-
mance. Presumably because guaranteeing deadlock-freedom
takes precedence and consumes most of the available VLs. Our
proposed heuristic in conjunction with low-diameter topolo-
gies is able to change that: Not only do we require less
VLs to provide deadlock-freedom and thus can offer more
VLs to segregate different classes of traffic, but also the DF-
DN heuristic increments the VL at every hop. The arbiter
in InfiniBand switches is able to prioritize packets according
to their VL, thus DF-DN can be used to implement age-
based arbitration [23], which has been shown to improve the
performance by up to 37% [24], but has not been evaluated
yet on InfiniBand networks.
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