
Substream-Centric MaximumMatchings on FPGA
Maciej Besta, Marc Fischer, Tal Ben-Nun, Johannes De Fine Licht, Torsten Hoefler

Department of Computer Science, ETH Zurich

ABSTRACT
Developing high-performance and energy-efficient algorithms
for maximum matchings is becoming increasingly important
in social network analysis, computational sciences, schedul-
ing, and others. In this work, we propose the first maximum
matching algorithm designed for FPGAs; it is energy-efficient
and has provable guarantees on accuracy, performance, and
storage utilization. To achieve this, we forego popular graph
processing paradigms, such as vertex-centric programming,
that often entail large communication costs. Instead, we pro-
pose a substream-centric approach, in which the input stream
of data is divided into substreams processed independently
to enable more parallelism while lowering communication
costs. We base our work on the theory of streaming graph algo-
rithms and analyze 14 models and 28 algorithms. We use this
analysis to provide theoretical underpinning that matches the
physical constraints of FPGA platforms. Our algorithm deliv-
ers high performance (more than 4× speedup over tuned par-
allel CPU variants), low memory, high accuracy, and effective
usage of FPGA resources. The substream-centric approach
could easily be extended to other algorithms to offer low-
power and high-performance graph processing on FPGAs.

ACM Reference Format:
Maciej Besta, Marc Fischer, Tal Ben-Nun, Johannes De Fine Licht,

Torsten Hoefler, Department of Computer Science, ETH Zurich .
2019. Substream-Centric Maximum Matchings on FPGA. In The 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays (FPGA ’19), February 24–26, 2019, Seaside, CA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3289602.3293916

1 INTRODUCTION
Analyzing large graphs has become an important task. Exam-
ple applications include investigating the structure of Internet
links, analyzing relationships in social media, or capturing
the behavior of proteins [2, 43]. There are various challenges
related to the efficient processing of such graphs. One of
the most prominent ones is the size of the graph datasets,
reaching trillions of edges [13]. Another one is the fact that
processing such graphs can be very power-hungry [4].

Deriving and approximating maximum matchings (MM) [9]
are important and well-known graph problems. A matching
in a graph is a set of edges that have no common vertices.
Maximum matchings are used in computational sciences,
image processing, VLSI design, or scheduling [9, 59]. For
example, a matching of the carbon skeleton of an aromatic

Publication rights licensed to ACM. ACM acknowledges that this contribution
was authored or co-authored by an employee, contractor or affiliate of a national
government. As such, the Government retains a nonexclusive, royalty-free right
to publish or reproduce this article, or to allow others to do so, for Government
purposes only.
FPGA ’19, February 24–26, 2019, Seaside, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6137-8/19/02. . . $15.00
https://doi.org/10.1145/3289602.3293916

compound can be used to show the locations of double bonds
in the chemical structure [59]. As deriving the exact MM is
usually computationally expensive, significant focus has been
placed on developing fast approximate solutions [17].

To enable high-performance graph processing, various
schemes were proposed, such as vertex-centric approaches [24],
streaming [54], and others [58]. These approaches have the
advantage of being easily deployable in combination with the
existing processing infrastructure such as Spark [62]. How-
ever, they were shown to be often inefficient [46] and they are
not explicitly optimized for power-efficiency.

To enable power-efficient graph processing, several graph
algorithms and paradigms for FPGAs were proposed [8, 18,
19, 23, 37, 48, 50, 61, 64–67]. Unfortunately, none of them targets
maximum matchings. In addition, the established paradigms
for designing graph algorithms that were ported to FPGAs,
for example the vertex-centric paradigm, are not straightfor-
wardly applicable to the MM problem [55].

In this work, we propose the first design and implementation
of approximating maximum matchings on FPGAs. Our design is
power-efficient and high-performance. For this, we forego the
established vertex-centric paradigm that may result in com-
plex MM codes [55]. Instead, basing on streaming theory [26],
we propose a substream-centric FPGA design for deriving MM.
In this approach, we ❶ divide the incoming stream of edges
into substreams, ❷ process each substream independently, and
❸ merge these results to form the final algorithm outcome.

For highest power-efficiency, we execute phases ❶–❷ on
the FPGA; both phases work in the streaming fashion and
offer much parallelism, and we identify the FPGA as the best
environment for these phases. Conversely, the final gathering
phase, that usually takes < 1% of the total processing time
as well as consumed power and exhibits little parallelism, is
conducted on the CPU for highest performance.

To provide formal underpinning of our design and thus
enable guarantees of correctness, memory usage, or perfor-
mance, we base our work on the family of streaming models
that were developed to tackle large graph sizes. A special case
is the semi-streaming model [26], created specifically for graph
processing. It assumes that the input is a sequence of edges
(pairs of vertices), which can be accessed only sequentially
in one direction, as a stream. The main memory (can be ran-
domly accessed) is assumed to be of size O(n polylog(n))1

(n is the number of vertices in the graph). Usually, only one
pass over the input stream is allowed, but some algorithms
assume a small (usually constant or logarithmic) number of
passes. We investigate a total of 14 streaming models and a total
of 28 MM algorithms created in these models, and use the
insights from this investigation to develop our MM FPGA
algorithm, ensuring both empirical speedups and provable
guarantees on runtime, used memory, and correctness.

1O(polylog(n)) = O(logc(n)) for some constant c ∈ N

https://doi.org/10.1145/3289602.3293916
https://doi.org/10.1145/3289602.3293916


Towards these goals, we contribute:
• the first design and implementation of the maximum match-

ing algorithm on FPGAs,
• an in-depth analysis of the potential of using streaming

theory (14 models and 28 algorithms) for accelerating graph
processing on FPGAs,

• a substream-centric paradigm that combines the advan-
tages of semi-streaming theory and FPGA capabilities,

• detailed evaluation and high speedups over state-of-the-art
baselines on both CPUs and FPGAs.

2 BACKGROUND AND NOTATION
We first present the necessary concepts.

2.1 Graph-Related Concepts
Graph Model We model an undirected graph G as a tuple
(V, E); V = {v1, ..., vn} is a set of vertices and E ⊆ V × V
is a set of edges; |V| = n and |E| = m. Vertex labels are
{1, 2, ..., n}. If G is weighted, it is modeled by a tuple (V, E, w);
w(e) or w(u, v) denote the weight of an edge e = (u, v) ∈ E.
The maximum and minimum edge weight in G are denoted
with wmax and wmin. G’s adjacency matrix is denoted by A.
Compressed Sparse Row (CSR) In the well-known CSR for-
mat, A is represented with three arrays: val, col, and row.
val contains all A’s non-zeros (that correspond to G’s edges)
in the row major order. col contains the column index for
each corresponding value in val. Finally, row contains start-
ing indices in val (and col) of the beginning of each row in
A. CSR is widely adopted for its simplicity and low memory
footprint for sparse matrices.
Graph Matching A matching M ⊆ E in a graph G is a set of
edges that share no vertices. M is called maximal if it is no
longer a matching once any edge not in M is added to it. M
is maximum if there is no matching with more edges in it.
Maximum matchings (MM) in unweighted graphs are called
maximum cardinality matchings (MCM). Maximum matchings
in weighted graphs are called maximum weighted matchings
(MWM). Example matchings are illustrated in Figure 1.

1

Maximal matching

2

Maximum cardinality
matching (MCM)

3

Maximum weighted
matching (MWM)

10

10

91
2

2
2

31

2 2
4

Maximum weighted
matching approximation

10

10

91
2

2
2

31

2 2

Figure 1: Example matchings. The edges in matchings are represented by bold lines,
edge weights are represented with numbers.
MaximumWeighted Matching Given a weighted graph G =
(V, E, w), a maximum weighted matching is a matching M∗,
such that its weight w(M∗) = ∑e∈M∗ w(e) is maximized. An
algorithm provides an ε-approximation of M∗, if – for any
derived matching M – it holds that w(M∗)/w(M) ≤ ε.

2.2 Architecture-Related Concepts
FPGAs FPGAs aim to combine the advantages of Applica-
tion Specific Integrated Circuits (ASICs) and CPUs: they offer
ASIC’s high performance and low power usage, and they can
be reconfigured to enable execution of arbitrary circuits. Usu-
ally, the FPGA clock frequency is ≈200MHz, dependent on
the algorithm and the FPGA platform. This is an order of mag-
nitude less compared to high-end CPUs (up to 4.7GHz [33])

and below GPUs (up to 1.5GHz [49]). However, due to the
custom design deployed directly in hardware, multiple ad-
vantages such as low power consumption arise.
FPGA Components Configurable Logical Blocks (CLBs) [57],
also known as Adaptive Logic Modules (ALMs) [60], imple-
ment the FPGA custom logic. To improve locality and reduce
wiring overhead, CLBs are grouped together into clusters
(called fabrics [57] or LABs [60]). Next, Block Random Access
Memory (BRAM) allows to store small amounts of data (up
to 20 kbits per BRAM [31]) and provides fast data access,
acting similarly to a CPU cache. Usually, hundreds of BRAM
units are distributed over a single FPGA.
FPGA+CPU Hybrid computation systems consist of a host
CPU and an attached FPGA. First ❶, an FPGA can be added
to the system as an accelerator; the host main memory is
separated from the FPGA private DRAM memory and data
must be transferred over PCIe. Often, the FPGA is configured
as a PCIe endpoint with a direct memory access (DMA) con-
troller, allowing to move data between the host and the FPGA
without the need of CPU resources. PCIe is high-bandwidth
oriented, but exhibits high overhead and latency for small
packets [15]. This drawback is overcome by storing often
accessed data in the private DRAM using the memory con-
troller, or storing the data on chip in the FPGA’s BRAM.
Second ❷, the CPU and the FPGA can be directly linked by
an interconnect, such as Intel’s QuickPath Interconnect (QPI),
providing a coherent view to a single shared main memory.
Examples of these systems include Intel HARP [51] and the
Xilinx Extensible Processing Platform [56]. The direct main
memory access allows to share data without the need to copy
it to the FPGA. To prevent direct physical main memory ac-
cesses, HARP provides a translation layer, allowing the FPGA
to operate on virtual addresses. It is implemented in both
hardware as a System Protocol Layer (SPL) and in software,
for example as a part of the Centaur framework [52]. More-
over, a cache is available to reduce access time. According
to Choi et al. [15], systems with direct interconnect exhibit
lower latency and higher throughput than PCIe connected
FPGAs. In our substream-centric FPGA design for deriving MM,
we use a hybrid CPU+FPGA system to take advantage of both the
CPU and the FPGA in the context of graph processing.

3 FROM SEMI-STREAMING TO FPGAS
We first summarize the analysis into the theory of stream-
ing models and algorithms. We conducted the analysis to
provide formal underpinning of our work and thus ensure
provable properties, for example correctness, approximation,
or performance. Towards this goal, we analyzed 14 different mod-
els of streaming (simple streaming [30], semi-streaming [26],
insert-only [26], dynamic [5], vertex-arrival [16], adjacency-
list [45], cash-register [47], Turnstile [47], sliding window [20],
annotated streaming [11], StreamSort [3], W-Stream [22], on-
line [38], and MapReduce [21]) and 28 different MM algorithms.
We present the full analysis in a separate report2. Here, we
only provide the final outcome: the best candidates for adop-
tion in the FPGA setting are ❶ semi-streaming graph al-
gorithms that ❷ expose parallelism by decomposing the

2https://spcl.inf.ethz.ch/Parallel_Programming/Matchings-FPGA

2

https://spcl.inf.ethz.ch/Parallel_Programming/Matchings-FPGA


Reference Approx. Space #Passes Wgh1 Gen2 Par3

[26] 1/2 O(n) 1  
[41, Theorem 6] 1/2 + 0.0071 O(n polylog(n)) 2  
[41, Theorem 2] 1/2 + 0.003* O(n polylog(n)) 1  
[36, Theorem 1.1] O(polylog(n)) O(polylog(n)) 1  
[26, Theorem 1] 2/3 − ε O(n log n) O (log (1/ε) /ε)  

[6, Theorem 19] 1 − ε O
(

n polylog(n)/ε2
)

O
(

log log (1/ε) /ε2
)
 

[41, Theorem 5] 1/2 + 0.019 O(n polylog(n)) 2  
[41, Theorem 1] 1/2 + 0.005* O(n log n) 1  
[41, Theorem 4] 1/2 + 0.0071* O(n polylog(n)) 2  
[39] 1 − 1/e O(n polylog(n)) 1  
[28, Theorem 20] 1 − 1/e O(n) 1  

[35, Theorem 2] 1 − e−k kk−1
(k−1)! O(n) k  

[14] 1 Õ
(

k2
)

1  

[14] 1/ε Õ
(

n2/ε3
)

1  

[7, Theorem 1] nε Õ
(

n2−3ε + n1−ε
)

1  

[26, Theorem 2] 6 O(n log n) 1   ?
[44, Theorem 3] 2 + ε O(n polylog(n)) O(1)   ?
[44, Theorem 3] 5.82 O(n polylog(n)) 1   ?
[63] 5.58 O(n polylog(n)) 1   ?
[25] 4.911 + ε O(n polylog(n)) 1   ?
[29] 3.5 + ε O(n polylog(n)) 1   ?

[53] 2 + ε O
(

n log2 n
)

1   ?

[27] 2 + ε O(n log n) 1   ?

[26, Section 3.2] 2 + ε O(n log n) O
(

log1+ε/3 n
)

  ?

[6, Theorem 28] 1
1−ε O

(
n log(n)/ε4

)
O
(

ε−4 log n
)

 

[6, Theorem 22] 1
2
3 (1−ε)

O
(

n
(

ε log n−log ε

ε2

))
O
(

ε−2 log
(

ε−1
))

 

[6, Theorem 22] 1
1−ε O

(
n
(

ε log n−log ε

ε2

))
O
(

ε−2 log
(

ε−1
))

 

[17] 4 + ε O(n polylog(n)) 1  

Table 1: (§ 3)Comparison of algorithms formaximummatching. ∗Approximation
in expectation, 1Wgh: accepted weighted graphs, 2Gen: accepted general (non-
bipartite) graphs, 3Par: Potential for parallelization; k is the size of a given maximum
matching. : A given feature is offered. : A given feature is not offered. In the
context of parallelization: : a given algorithm is based on a method that is easily
parallelizable (e.g., sampling), : a given algorithm uses a method that may be com-
plex to parallelize (e.g., augmenting paths), ?: it is unclear how to parallelize a given
algorithm (e.g., it is based on a greedy approach).

incoming stream of edges for independent processing, for
example the MM algorithm by Crouch and Stubbs [17].

3.1 Why Semi-Streaming?
The semi-streaming model [26] was created specifically for
graph processing. It assumes that processing the incoming
stream of edges can utilize at most O(n polylog(n)) random
memory. Thus, algorithms under this model may address
the limited FPGA BRAM capacity better than algorithms in
models with weaker memory-related constraints.

3.2 Which Semi-Streaming MM Algorithm?
Table 1 compares the considered semi-streaming and related
MM algorithms. We identify those with properties suggesting
an effective and versatile FPGA design: low space consump-
tion, one pass, and applicability to general graphs. Finally,
virtually all designed algorithms are approximate. Yet, as we
show later (§ 5), in practice they deliver near-accurate results.

We conjecture that the majority of the considered MM
algorithms deliver limited performance on FPGA because
their design is strictly sequential: every edge in the incoming
stream can only be processed after processing the previous
edge in the stream is completed. However, we identify some
algorithms that introduce a certain amount of parallelism.
Here, we focus on the algorithm by Crouch and Stubbs [17],
used as a basis for our FPGA design (last row of Table 1). We
first outline this algorithm and then justify our selection.
Algorithm Intuition The MWM algorithm by Crouch and
Stubbs [17] delivers a (4 + ε)-approximation of MWM. It

consists of two parts. In Part 1, one selects L subsets of the
incoming (streamed) edges and computes a maximum cardi-
nality matching for each such subset. In Part 2, the derived
maximum matchings are combined into the final maximum
weighted matching. The approach is visualized in Figure 2.

Incoming
edges

Construct
substreams
using edge

weights

Greedy
merge

-approximation

 of MWM

Substreams
of edges

Maximum
cardinality
matchings

Compute
the   st MCM

Compute
the   nd MCM

Compute
the    th MCM

Figure 2: The design of the MWM algorithm of Crouch and Stubbs [17].

Algorithm Details The algorithm of Crouch and Stubbs [17]
provides a (4 + ε)-approximation to the MWM problem as-
suming an unordered stream of incoming edges with possible
graph updates (edge insertions). The basic idea is to reduce
the MWM problem to L ≡ O(polylog(n)) instances of the
MCM problem. Given the input stream of incoming edges E,

O
(

1
ε log n

)
many substreams are generated. Each substream

Ei is created by filtering the edges according to their weight.
Specifically, we have Ei = {e ∈ E | w(e) ≥ (1 + ε)i}. Since
an edge that belongs to substream i + 1 also belongs to sub-
stream i, it holds that Ei+1 ⊆ Ei. Next, for each substream,
an MCM Ci is constructed. The final (4 + ε)-approximation
to MWM is greedily constructed by considering the edges of
every Ci, in the descending order of i.

We select this algorithm as the basis of our substream-
centric FPGA design because it ❶ can be straightforwardly
parallelized, ❷ ensures only O(n polylogn) memory foot-
print as it belongs to the semi-streaming model, ❸ targets
general weighted graphs, ❹ its structure matches well the
design of a hybrid FPGA+CPU system: while substreams can
be processed in parallel on the FPGA, the greedy sequential
merging of substreams into the final MWM can be done on
the CPU, and ❺ it requires only one pass over the streamed
dataset of size O(m + n), limiting expensive data transfers
between the FPGA and DRAM. Now, we could not find other
algorithms that would clearly satisfy all the above criteria
simultaneously. However, we do not conclude that other algo-
rithms are unsuitable for an efficient FPGA implementation,
and leave developing such designs as future work.

3.3 How To Adapt Semi-Streaming to FPGAs?
In § 4, we describe the FPGA adaptation, design, and imple-
mentation of the selected semi-streaming MM algorithm. We
stream the edges as stored in the CSR representation. Our
substream-centric design implements a staged pipeline with
throughput of up to one edge per cycle.

4 MAXIMUM MATCHING ON FPGA
We now describe the design and implementation of the
substream-centric maximum matching for FPGAs.

4.1 Overview of the Algorithm
We start with a high-level overview of the MWM algorithm.
A pseudo code is shown in Listing 1. For each edge, we
iterate in the descending order of i over the L substreams,
identifying them by their respective weights (Line 11). The

3



1 //Input: ε, E, L. Output: T (a (4 + ε)-approximation of MWM). I/O
2
3 //PART 1 (Stream processing): compute L maximum matchings
4 C: List of Lists; //L lists to store edges in L substreams
5 MB: Matrix; //The matching bits matrix of size L × n
6 substream_weights: List; //The list of substream weights;

7 // substream_weights[i] = (1 + ε)i.
8 has_added: bool; // Controlling adding an edge to only one MCM
9 foreach(WeightedEdge e : E) {

10 has_added = false;
11 for(i = L − 1; i >= 0; i--) {
12 if(e.weight >= substream_weights[i]) {
13 if(!MB[e.u][i] && !MB[e.v][i]) {
14 MB[e.u][i] = 1; MB[e.v][i] = 1;
15 if(! has_added) {//Add e only once to the matchings
16 C[i].add(e); has_added = true;
17 } } } } } FPGA
18
19 //PART 2 (Post processing): combine L matchings into a MWM
20 T: List; //A list with the edges of the final MWM
21 tbits: List; //An array containing the matching bits of T
22 for(i = L − 1; i >= 0; i--) {
23 foreach(WeightedEdge e : C[i]) {
24 if(!tbits[e.u] && !tbits[e.v]) {
25 tbits[e.u] = 1; tbits[e.v] = 1;
26 T.add(e);
27 } } }
28 return T; CPU

Listing 1: (§ 4.1) The high-level overview of the substream-centric MWM,
based on the scheme by Crouch and Stubbs [17]

i-th substream weight is given by (1+ ε)i. For each maximum
matching Ci, we use a bit matrix MB to track if a vertex
has an incident edge to ensure that Ci remains a matching (i.e.,
that no two vertices share an edge). Bits included in MB are
called matching bits. Bits in MB associated with a vertex u, the
source vertex of a processed edge, (u-matching bits) determine
if u has an incident edge included in some matching; they
are included in column mbu of matrix MB. Matching bits
associated with vertex v, the destination vertex of a processed
edge, (v-matching bits) track the incident edges of v; they
are included in column mbv of matrix MB. Since there are L
matchings and n vertices, the bit matrix MB is a matrix of
size L × n. Furthermore, every matching stores its edges in a
list. If an edge is added, a flag is set to true to prevent that
the edge is added to multiple lists (Line 16). This reduces the
runtime of the post-processing part, in which we iterate in
the descending order over the L lists of edges to generate the
(4 + ε)-approximation to the maximum weighted matching.
Time & Space Complexity The space complexity is O(nL) to
track the matching bits, and O(min(m, n/2)L log(n)) to store
the edges of L maximum matchings. The time complexity is
O(mL) for substream processing on the FPGA and O(nL) for
substream merging on the CPU, giving O(mL + nL).
Reducing Data Transfer with Matching Bits Storage We as-
sume that the input is streamed according to the CSR order
corresponding to the input adjacency matrix. If we process a
matrix row, we load the edges from DRAM to the FPGA. Fur-
ther, we can store the matching bits mbu of vertex u in BRAM
on the FPGA, since they are reused multiple times. The matching
bits of v are streamed in from DRAM. Since the matching
bits for v are not used afterwards for the same matrix row,
we write them back to DRAM. Using this approach, we can
process the whole graph row by row and need to store only
the u-matching bits in BRAM.

4.2 Blocking Design for More Performance
Problem of Data Dependency We cannot start processing the
next row of the adjacency matrix until the last matching bits
of the previous row have been written to DRAM, because we

1 //Input and Output: as in Listing 1. I/O
2
3 //PART 1 (Stream processing): compute L maximum matchings
4 for(Epoch k = 1; k <= ⌈n/K⌉; k++) {
5 Load u-matching bits from DRAM into double-buffered BRAM
6 Merge the K rows of edges (loaded from DRAM into one stream S)
7 with a merging network (Figure 4), apply lexicographic order
8 // Process each edge
9 foreach(WeightedEdge e : S) {

10 Matching bits requester loads matching bits (e.v) from DRAM
11 //Apply the 8 stage pipeline for each edge
12 Stage 1: extract v-matching bits from a data chunk ,
13 determine BRAM address
14 Stage 2: load the matching bits for e.u from BRAM
15 Stage 3: wait for one cycle due to the latency of the BRAM
16 Stage 4: store the arriving BRAM data in a register , select

17 the correct matching bits , compute el[i] = e.w = (1 + ε)i

18 Stage 5: compute the matching
19 Stage 6: write u-matching bits to BRAM , write
20 v-matching bits to double -buffered BRAM if required
21 Stage 7: determine the least significant bit in te,
22 store them in variable i
23 Stage 8: write the edge to DRAM at C[i]
24 (if part of a matching), write v-matching bits to DRAM
25 }
26 Wait till all writes to DRAM are committed} FPGA
27
28 //PART 2 (Post processing): As in Listing 1. CPU

Listing 2: (§ 4.1–§ 4.4) The pseudocode of the substream-centric MWM algorithm,
enhanced with the blocking optimization and a lexicographic ordering.

might require accessing the same v-matching bits again (read
after write dependency). In such a design, the waiting time
required after each row could grow, decreasing performance.
Solution with Blocking Rows We alleviate the data depen-
dency by applying blocking. We merge K adjacent rows to
become one stream; we call the merged stream of K rows an
epoch, and denote the k-th epoch (starting counting from 1)
as k. There are ⌈n/K⌉ epochs in total. To enable merging the
rows, we define a lexicographic ordering over all edges.
Lexicographic Ordering Let a tuple (u, v, w, k) denote an
edge with vertices u, v, weight w, and associated epoch k =
⌊(u − 1)/K⌋+ 1. Then, the lexicographic ordering is given by:
(ua, va, wa, ka) < (ub, vb, wb, kb) iff ka < kb ∨ (ka = kb ∧ va <
vb) ∨ (ka = kb ∧ va = vb ∧ ua < ub); the edge weight is ig-
nored. An example is in Figure 3 (top). The lexicographic
ordering is implemented by a simple merging network.
Advantages ofBlocking At the end of each epoch, v-matching
bits are written to DRAM. This reduces the number of such
transfers from n to n/K. Moreover, if edges in different rows
share the same v-matching bits, only one load from DRAM is
required. Finally, u-matching bits can be kept in BRAM, since
they are reused multiple times.
Further Optimizations To achieve a performance of up to one
processed edge per cycle, we pipeline the processed edges, we
distribute the u-matching bits over multiple BRAMs (to facili-
tate reading data from different addresses), and we double
buffer u-matching bits to reduce latencies.

4.3 Input and Output Format
The input to the FPGA algorithm is a custom variant of
the Compressed Sparse Row (CSR) format. An example is
given in Figure 3 (bottom). The format has two parts: The
pointer_data and the graph_data. First, the pointer_data
stores information about the start and end of each row of the
adjacency matrix. An entry contains three parts: the ID of
the data chunk with information about where the first edge is
stored, the data chunk offset denoting the offset of the first
edge from the start of the data chunk, and the number of
associated edges (a data chunk refers to data of a given size at

4



an aligned memory address). Each entry uses 32 bits, making
an entry of the pointer_data 96 bits. We fit five entries (480
bits) in a data chunk. Second, the graph_data is a stream of
edges. One entry consists of the column index and the edge
weight. The row identifier is given by the corresponding entry
in the pointer_data. One graph_data entry requires 64 bits,
allowing to store eight edges in a data chunk.

Our custom data layout has different advantages over the
usual CSR format. First, a single entry of the pointer_data
already gives all required information about the start and
length of the row of the adjacency matrix. This entails some re-
dundancy compared to the traditional CSR, but only requires
one load from DRAM to resolve a given edge. Further, CSR
splits the column indices and values. We merge them together
in one stream, reducing the number of random accesses.

The output of the FPGA consists of L substreams of edges.
The i-th stream contains edges of the maximum matching Ci.
We use 128 bits for each edge: 32 bits each for the vertex IDs,
the edge weight, and the assigned index i of the maximum
matching (which could be omitted). A single data chunk
therefore contains four output edges.

4.4 Details of Processing Substreams on FPGA
We explain the interaction of the FPGA modules dedicated to
generating the lexicographic ordering (Part 1) and computing
the maximum matchings (Part 2); see Figure 4 and Listing 2.
4.4.1 Generating Lexicographic Ordering. As input to the FPGA,
we get the address pointing to the start of pointer_data, the
number of vertices n, the number of edges m, a pointer pout
where we write the output to, and an offset value o to distin-
guish the L output streams (start of output stream i is at pout +
i · o). The pointer requester is responsible for requesting the
data chunks holding the pointer_data. The requested point-
ers arrive at the pointer receiver. Given a data chunk, the
pointer receiver unwraps the five pointers, and passes them
to the edge requester. The pointer_data from the pointer re-
ceiver is passed to four different queues Q0, Q1, Q2, Q3, where

1 2 3 4 5 6 7 8 9 10

2

1

4

3

6

5

8

7

10

9

1 5

9

2

7

3 4

6

5

3 2

2

1

3

9

7

8

Epoch 1

Epoch 2

Epoch 3

Lexicographic
ordering

Example lexicographic ordering and epochs

pointer_data

graph_data

(2,1) (3,5) (6,2) (7,3) (8,4) (5,9) (9,5) (8,6) (6,7) (7,3) (8,2) (9,1) (10,9) (9,3) (10,7) (10,8)(8,2)

Data chunk 0 Data chunk 1 Data chunk 2

(0,0,5) (1,0,2) (1,2,1) (1,3,1) (1,4,3) (2,2,2) (2,4,1) (3,0,1) (3,1,1)

Example pointer and graph data (custom compressed sparse row (CSR) format)

Figure 3: An example input adjacency matrix, its annotated lexicographic ordering
illustrated by arrows (K = 4), and and its custom compressed sparse row (CSR)
format. The entries of the adjacency matrix denote the weight of an edge.

every queue gets a subset of the pointers dependent on K.
Assume for simplicity that the vertex IDs start at 0 and (K
mod 4) = 0. Then, to be precise, given a pointer p(u) pointing
to row u, we assign p(u) to Qi if (u mod K) ≥ K/4 · i ∧ (u
mod K) < K/4 · (i + 1). For example, with K = 16, Q0 stores
p(u) with u = 0, 1, 2, 3, 16, 17, 18, 19, 31 . . ., and Q1 stores p(u)
with u = 4, 5, 6, 7, 20, . . .. The pointer_data is loaded from the
queues into a BRAM array BP of size K, where every entry
holds two pointers (2K pointers are therefore stored in total).
If an entry i of BP has pointers p(u′) and p(u′′), it holds that
i = (u′ mod K) = (u′′ mod K) and p(u′′) requests edges
for an epoch after p(u′). Therefore, only the first pointer in
an entry is valid to use and we have random access to K valid
pointers in total. To describe the mechanism that determines
the selection of the next pointer to request new edges, we
first inspect further processing steps.

The edge receiver gets data chunks containing graph_data
from the framework and unwraps them (we use the Centaur
framework [52] to access main memory independently of
the CPU). Information regarding the offset and number of
edges which are valid for a data chunk request is also passed
from the edge requester to the edge receiver. Next, an edge
e = (u, v, w) is passed from the edge receiver to the merger.
There, the edge is inserted in a starting queue (with ID (u
mod K)). The merger merges the K streams in lexicographic
ordering. It consists of a series of merging elements, where
each element has two input queues and an output port. The
element compares edges in its queues and outputs the edges
according to the lexicographic ordering. The merging ele-
ments form a binary tree, such that for a given K, there are
K/2 starting elements with K starting queues in total.

The edge requester can observe the size of the starting
queues of the merger. It operates in two modes to determine
a pointer to new edges. In mode 1, one selects a pointer p(u)
from queue Qi as the next candidate if the corresponding
starting (merger) queue (u mod K) does not overflow, and
store the pointer in BRAM BP at position (u mod K). If
mode 1 fails (for example, if there is no empty space at the
appropriate position in BP), then mode 2 selects the pointer
according to the merger starting queue which has the least
amount of edges. Note that the edge requester also takes the
requests which are in flight into account to predict the future
size of the starting queue. This approach ensures that the
merger queues do not overflow and their load is balanced.

For a row u which has no edges, a special information
is passed from the edge requester to the edge receiver. It
then inserts an artificial edge in the merger. This allows to
overcome problems, where a merging element waits for new
input, but does not receive any, since the adjacency matrix
row is empty. The merging network filters these edges at the
output port (they are not passed on).

4.4.2 Deriving L Maximum Matchings. The stream in lexico-
graphic ordering is passed to the matching bits requester.
This module requests the v-matching bits from DRAM. It can
only operate when the bits of the epoch before have been
acknowledged. Also, it only processes edges belonging to
the current epoch which is defined by the state controller.
The requested data is received in the matching bits receiver.

5



Centaur framework (described in more detail in Evaluation, § 5)

1

Pointer Requester
Request the pointers

to the rows of the
adjacency matrix

(pointer_data)

2 Pointer Receiver
Receive pointers,
put them into one
of the four queues

Queue Queue

3 Edge Requester
Ask for new edges, use pointers
associated with the edge queue

that have space left

4 Edge Receiver
Receive a new edge,

put them into one
of the queues

Queue
Queue

5 Merger
Merge the network
using a binary tree

FPGA
modules that
generate the
lexicographic
order of edges

1

Matching Bits
Requester: request

v-matching bits
for edges

2

Matching Bits
Receiver: receive

v-matching bits
from DRAM

Pending-Queue

Bit-Queue

3

Edge Processor
Process edges,
update BRAM

values

BRAM
Double bu ered array

storing u-matching bits

Valid-
-Array

Queue

4

Matching Bits
Writer: write
matching bits

to DRAM

5

BRAM Matching
Bits Receiver

Receive matching
bits for the next
epoch for BRAM

6

Acknowledgement
Receiver: receive
acknowledgements

of matching bits that
have been written

7

BRAM Matching
Bits Requester

Request matching
bits for the next
epoch for BRAM

8

Edge Writer
Writes edges
back to DRAM

FPGA modules that compute
the L maximum matchings in parallel

Stream of edges

in lexicographic
order

Accelerator Functional Unit (AFU)

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Merger
(merging
network)
details

Part 1
(§ 4.4.2):
Generate

lexicographic
order

Part 2
(§ 4.4.3):
Derive L

Maximum
Matchings
in parallel

Starting
queue

Figure 4: (§ 4.4) The interaction of the FPGA modules to approximate MWM. For clarity, the State Controller and the Read/Write Interface modules are omitted.

It passes the full data chunk to the edge processor. Using
the matching bits and the ordered stream of edges, the edge
processor computes the L maximum matchings in parallel
in an 8-stage pipeline (Listing 2, Lines 10–24). In Stage 1,
v-matching bits for a given edge are extracted from a data
chunk. Further, the address of the u-matching bits in BRAM
is computed. Since the more up-to-date v-matching bits might
also be stored in BRAM, this address is also determined. In
Stage 2, read requests to fetch the matching bits from BRAM
are issued. Stage 3 only waits one clock cycle for BRAM to
return the data. In Stage 4, the BRAM data arrives and is
stored in a register. The stage also decides if v-matching bits
are taken from the data chunk or from BRAM. Further, the
stage computes the matching value te indicating if an edge
e = (u, v, w) belongs to substream Ei; te[i] = w ≥ (1 + ε)i for
i ∈ {0, . . . , L− 1}. In Stage 5, the actual matching is computed.
As the BRAM data from Stage 4 may already be obsolete, the
computed values are also stored in registers for instant access
in the next cycle. The result is passed to Stage 6, in which the
updated u-matching bits (and if required also the v-matching
bits) are written back to BRAM. In Stage 7, the maximum
matching with the highest index, to which the edge is as-
signed, is determined. Finally, Stage 8 passes the edge to the
edge writer to write it back to DRAM (if the edge is used in
a matching) and also passes the updated v-matching bits to
the matching bits writer for writing back to DRAM.

The BRAM storing the u-matching bits is double buffered.
While the first BRAM buffer is used in the edge processor,
the matching bits for the next epoch are loaded from DRAM
to the second BRAM buffer. Since an epoch can alter the
u-matching bits required for the next epoch, we write the
according updates also in the double buffered BRAM if re-
quired. To prevent that stale data from DRAM overwrites the
more up-to-date data, we use a register (the valid-array) as
flag. After an epoch, the access is redirected to the BRAM
containing the loaded data. The BRAM matching bits re-
quester requests the according data from DRAM, and the
BRAM matching bits receiver unwraps the data chunks. It
passes the data to the edge processor. There, Stage 6 checks
for data from the BRAM matching bits receiver and updates
the according entry in the BRAM.

The acknowledgement receiver tracks the number of write
acknowledgements from the framework and determines if
all v-matching bits have been committed to DRAM when an
epoch ends. When all edges from the epoch are processed,
the state controller indicates the start of the next epoch.

4.5 Substream Merging on the CPU
After the L MCMs are written to DRAM, the CPU inspects
them in the decreasing order to compute the final maximum
matching (4 + ε)-approximation.

5 EVALUATION
We now illustrate the advantages of our hybrid (CPU+FPGA)
MWM design and inspect resource and energy consumption.
For every benchmark, each tested algorithm was synthesized, routed,
and executed on the hybrid FPGA platform specified below.
Compared Algorithms Since to our best knowledge no MWM
algorithms for FPGAs are available, we compare our design to
three state-of-the-art CPU implementations. In total, we eval-
uate three CPU and two CPU+FPGA algorithms; see Table 2.
First ❶, we implement a sequential CPU-only version of the
substream-centric MWM, based on the scheme by Crouch and
Stubbs [17], as presented in Listing 1 (CS-SEQ). Second ❷, we
parallelize the algorithm with OpenMP’s parallel-for state-
ment to compute different maximum matchings in parallel
(CS-PAR). Third ❸, we implement the algorithm by Ghaf-
fari [27] (G-SEQ) that provides a (2 + ε)-approximation to
MWM with time complexity of O(m) and space complexity
of O(n log(n)) bits. Thus, this algorithm is optimal in the as-
ymptotic time and space complexity. We compare these three
algorithms to our optimized FPGA+CPU implementation,
SC-OPT ❹ (SC-SIMPLE ❺ is consistently outperformed by
SC-OPT and we thus usually exclude it for clarity of presen-
tation). To our best knowledge, we report the first performance
data for deriving maximum matchings on the FPGA.
Implementation Details We implement our algorithms on a
hybrid CPU+FPGA system using the Centaur framework [52],
which provides a standard interface to the Accelerator Func-
tional Unit (AFU), the custom FPGA implementation, al-
lowing to access main memory independently of the CPU.
Centaur consists of a software and a hardware part. The soft-
ware part allows to start and stop hardware functions, to
allocate and deallocate the shared memory, and pass input
parameters to the FPGA. The hardware part is responsible for
bootstrapping the FPGA, setting up the QPI endpoint, and
handling reads and writes to the main memory.

Algorithm Platform Time complexity

Crouch et al. [17] Sequential (CS-SEQ) CPU O(mL + nL)
Crouch et al. [17] Parallel (CS-PAR) CPU O(mL/T + nL)
Ghaffari [27] Sequential (G-SEQ) CPU O(m)
Substream-Centric, no blocking (SC-SIMPLE) Hybrid O(m + nL2)
Substream-Centric, with blocking (SC-OPT) Hybrid O(m + n/K + nL)

Table 2: (§ 5) Overview of the evaluated MWM algorithm implementations.

6



K16 K17 K18 K19 K20 K21

Kronecker Graph

0

 2000

 4000

 6000

 8000

10000

12000

14000

T
im

e
 [

m
s
]

Runtime (lower is better)

SC-OPTG-SEQ

CS-PAR

CS-SEQ

K16 K17 K18 K19 K20 K21

Kronecker Graph

0

 20

 40

 60

 80

100

120

140

160

M
ill

io
n
 e

d
g
e
s
/s

Throughput (higher is better)
SC-OPT

G-SEQ

CS-PAR

CS-SEQ

Figure 5: (§ 5.1) Influence of graph size n on performance (synthetic power-law
graphs). K = 32, L = 64, T = 4, ε = 0.1.

Setup We use Intel HARP 2 [51], a hybrid CPU+FPGA system.
It is a dual socket platform where one socket is occupied by
an Intel Broadwell Xeon E5-2680 v4 CPU [32] with 14 cores
(28 threads) with up to 3.3 GHz clock frequency. Each core
has 32 KByte L1 cache and there is 35 MByte L3 cache in total.
An Arria-10 FPGA is in the other socket. The used FPGA has
speed grade 2 [34]. It provides 55 Mbit in 2,713 BRAM units
and 427,200 ALMs. The FPGA is connected to the CPU by
one QPI and two PCIe links. The system runs Ubuntu 16.04.3
LTS with kernel 4.4.0-96 as the operating system. All host
code is compiled with gcc 5.4.0 and the -O3 compile flag.
Datasets The input graphs are shown in Table 3. We use both
synthetic (Kronecker) power-law graphs of size up to n =
221, m = 48n from the 10th DIMACS challenge [1] and real
world KONECT [40] and SNAP [42] graphs. For unweighted
graphs, we assigned weights uniformly at random with a
fixed seed. The value range is given by [1, (1 + ε)L−1 + 1].
Graph Type Reference m n

Kronecker Synthetic power-law DIMACS 10 [1] ≈48n 2k ; k = 16, . . . , 21
Gowalla Social network KONECT [40] 950,327 196,591
Flickr Social network KONECT [40] 33,140,017 2,302,925
LiveJournal1 Social network SNAP [42] 68,993,773 4,847,571
Orkut Social network KONECT [40] 117,184,899 3,072,441
Stanford Hyperlink graph KONECT [40] 2,312,497 281,903
Berkeley Hyperlink graph KONECT [40] 7,600,595 685,230
arXiv hep-th Citation graph KONECT [40] 352,807 27,770

Table 3: Selected used graph datasets. Kx denotes a Kronecker graph with 2x vertices.

Measurements The runtime is measured by clock_gettime
with parameter CLOCK_MONOTONIC_RAW, allowing the nanosec-
ond resolution. The runtime of the FPGA implementations
is determined by the Centaur framework. We execute each
benchmark ten times to gather statistics and we use box plot
entries to visualize data distributions.

5.1 Scaling Size of Synthetic Graphs
We first evaluate the impact from varying graph sizes (syn-
thetic power-law Kronecker graphs), for the fixed amount of
parallelism (the weak scaling experiment). The results are illus-
trated in Figure 5. The throughput for CS-SEQ and CS-PAR
stays approximately constant below ≈12M edges/s. G-SEQ
decreases in performance as the graph size increases. We con-
jecture that this is due to the increasing size of the hash map
used to track pointers. This increases the time for inserts and
deletes, and might also require re-allocations to increase the
space. The performance for SC-OPT increases from ≈135M
to ≈140M edges/s. This is because the initial (constant) over-
head (due to reading from DRAM) becomes less significant
with larger graphs. We conclude that the substream-centric
SC-OPT outperforms comparison targets for all consider
sizes of power-law Kronecker graphs.

Gowalla Stanf. Berk./Stanf. Flickr LiveJournal1 Orkut

Graph

0

 4000

 8000

12000

16000

20000

T
im

e
 [

m
s
]

Runtime (lower is better)

SC-OPT

G-SEQ

CS-PAR

CS-SEQ

Gowalla Stanf. Berk./Stanf. Flickr LiveJournal1 Orkut

Graph

0

 20

 40

 60

 80

100

120

140

M
ill

io
n
 e

d
g
e
s
/s

Throughput (higher is better)

SC-OPT

G-SEQ

CS-PAR

CS-SEQ

Figure 6: (§ 5.2) Influence of graph dataset G on performance (real-world graphs).
K = 32, L = 64, T = 4, ε = 0.1.

5.2 Processing Different Real-World Graphs
We next analyze the performance of the considered designs
for different real-world graphs; the results are illustrated
in Figure 6. CS-SEQ and CS-PAR achieve sustained ≈3M
edges/s and ≈10M edges/s, respectively. The performance
of SC-OPT is ≈45M edges/s for small graphs due to the
initial overhead of reading data from DRAM. Compared to
the experiment with Kronecker graphs, the performance of
both SC-OPT and G-SEQ is lower for all graphs except Orkut.
The reason is the average vertex degree: it equals ≈48 in Kro-
necker graphs compared to ≈14 in Flickr and LiveJournal1. If
the ratio is high, G-SEQ can drop many edges without further
processing in an early phase. This reduces expensive updates
to the hash map and lists. For SC-OPT, the waiting time (of
data dependencies) lowers the performance. Still, substream-
centric SC-OPT ensures highest performance for all con-
sidered real-world graphs.

5.3 Scaling Number of Threads T
In the CPU versions, one can compute in parallel different
maximum matchings in SC-PAR using T threads. In the fol-
lowing, we run a strong scaling experiment (fixed graph size,
varying T) for a power-law Kronecker graph. Figure 7 illus-
trates the results. Since G-SEQ and CS-SEQ are not multi-
threaded, they do not scale with T. The parallelized CS-PAR
reaches up to ≈40M edges/s, a ≈6× improvement over the
sequential version, and an ≈14× improvement over the par-
allel version with one thread. Therefore, the algorithm is
still ≈3× slower than SC-OPT which achieves up to ≈140M
edges/s on the K20 Kronecker graph. Scaling is limited since
the parallel version takes L passes over the stream, whereas
the other CPU algorithms process the input in one pass. The
bandwidth usage of the parallel version with T = 64 threads
is ≈32 GB/s (≈44M edges and 64 passes in one second),
assuming no data sharing. Note that we only parallelize the
stream-processing part which computes the L = 64 maxi-
mum matchings. However, as our analysis shows that the
post-processing part takes <1% of the computation time of
the maximum matching, parallelization of post-processing
would provide hardly any benefit. We conjecture that the scal-
ing of SC-PAR stops due to bandwidth limitations and the
limited computational resources of 14 cores. Finally, SC-OPT
is the fastest regardless of T used by other schemes.

5.4 Approximation Analysis
We briefly analyze how well in practice SC-OPT approxi-
mates the exact MWM. The results are in Figure 8 (SC-OPT,
SC-SIMPLE, CS-SEQ, and CS-PAR produce the same results).

7



1 2 4 8 16 32 64

Threads (T)

0

 2000

 4000

 6000

 8000

10000

12000

14000

T
im

e
 [

m
s
]

Runtime (lower is better)

SC-OPT G-SEQ

CS-PAR

CS-SEQ

1 2 4 8 16 32 64

Threads (T)

0

 20

 40

 60

 80

100

120

140

M
ill

io
n
 e

d
g
e
s
/s

Throughput (higher is better)

SC-OPT

G-SEQ

CS-PAR

CS-SEQ

Figure 7: (§ 5.3) Influence of the number of threads T on performance. The input
graph is Kronecker with n = 220, K = 32, L = 64, ε = 0.1.

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.4 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

 1

1.2

1.4

1.6

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o
 (

re
la

ti
v
e
)

Approximation (lower is better)

Each data point is the ratio
of the exact MWM size to the

approximated MWM size.
Exact matchings are derived

with Lemon Graph Library

G-SEQ

CS-SEQ,

CS-PAR,

SC-SIMPLE,

SC-OPT

K16 K17 K18. K19 K20 K21

Graph

0

0.2

0.4

0.6

0.8

 1

1.2

1.4

1.6

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o
 (

re
la

ti
ve

)

Approximation (lower is better)

Each data point is the ratio
of the exact MWM size to the

approximated MWM size.
Exact matchings are derived

with Lemon Graph Library

G-SEQ

CS-SEQ,

CS-PAR,

SC-OPT

Figure 8: (§ 5.4)Approximation analysis. The input graph is Kronecker with n = 219

(left). L = 128, T = 4, and ε = 0.1 (right).

The accuracy is negligibly (≈3%) lower than that of G-SEQ
for a fixed ε and varying n (Kronecker graphs). The higher ε
becomes, the more advantage over G-SEQ SC-OPT has. As
higher ε entails less circuit complexity (fewer substreams are
processed independently, assuming a fixed L [17]), we con-
clude that the substream-centric MWM SC-OPT scheme
provides better approximation than G-SEQ when physical
resources become more constrained.

5.5 Influence of Blocking Parameter K
We also analyze the performance impact from K, a parameter
that determines how many rows in the streamed-in adjacency
matrix are merged together using a lexicographic ordering.
Figure 9 illustrates the results. On one hand, the CPU schemes
cannot take significant advantage when K increases, showing
that no cache locality is exploited. On the other hand, FPGA-
based SC-OPT accelerates from ≈125M to ≈175M edges/s.
This is up to 2× faster than the work-optimal G-SEQ and up
to 55× faster than CS-SEQ. This is expected as the amount of
stalling is reduced by a factor of n/K. Moreover, increasing
K allows to share more matching bits between edges. The
performance impact is reduced when K reaches 256. We con-
jecture this is because of the random access to the matching
bits, approaching the peak random bandwidth. Furthermore,
G-SEQ outperforms all other CPU implementations with up
to ≈90M edges/s. Compared to CS-SEQ (≈3.15M edges/s)
and CS-PAR (≈5.6M edges/s), this is >15×. Finally, par-
allelization comes with high overhead, such that the four
threads in CS-PAR achieve less than 2× speedup compared
to CS-SEQ. We conclude that our blocking scheme enables
SC-OPT to achieve even higher speedups.

5.6 Influence of Maximum Matching Count L
Finally, we analyze the impact of L on performance. L is
the number of substreams and thus maximum matchings
computed independently. CS-SEQ and CS-PAR achieve high
performance with up to ≈400M edges/s for L = 1. The

1 2 4 8 16 32 64 128 256

Block Size (K)

0

 2000

 4000

 6000

 8000

10000

12000

14000

16000

T
im

e
 [

m
s
]

Runtime (lower is better)

SC-OPT
G-SEQ

CS-PAR

CS-SEQ

No
order

1 2 4 8 16 32 64 128 256

Block Size (K)

0

 20

 40

 60

 80

100

120

140

160

180

M
ill

io
n
 e

d
g
e
s
/s

Throughput (higher is better)

SC-OPT

G-SEQ

CS-PARCS-SEQ

No
order

Figure 9: (§ 5.5) Influence of epoch size K on the performance. The input graph
is Kronecker with n = 220 . L = 128, T = 4, and ε = 0.1.

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.4 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

 1

1.2

1.4

1.6

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o
 (

re
la

ti
v
e
)

Approximation (lower is better)

Each data point is the ratio
of the exact MWM size to the

approximated MWM size.
Exact matchings are derived

with Lemon Graph Library

G-SEQ

CS-SEQ,

CS-PAR,

SC-OPT

1 2 4 8 16 32 64 128 256 512

Maxim

0

 20

 40

 60

 80

100

120

140

160

180

200

M
ill

io
n
 e

d
g
e
s
/s

Throughput (higher is better)

SC-OPT

G-SEQ

CS-PAR

CS-SEQ

um Matchings (L)

Figure 10: (§ 5.6) Influence of L on performance. The input graph is Kronecker
(n = 220, K = 32, T = 4). As L changes, ε changes as follows: for 1 ≤ L ≤ 32, we
select ε = 0.6, for 64 ≤ L ≤ 128 we select ε = 0.1, and for 256 ≤ L ≤ 512 we select
ε = 0.03; wmax is given by wmax = (1 + ε)L . We restricted the range of L for SC-OPT
due to the significant runtime required to generate different bitstreams for evaluation.

performance drops linearly with L (X-axis has a logarithmic
scale) to ≈800k edges/s for CS-SEQ and ≈1.3M edges/s for
CS-PAR. G-SEQ also drops in performance as L increases
due to ε and wmax. Since L increases, we also increase the
range of the weight (L influences the approximation by ε =

L
√

wmax − 1). Thus, for L = 1 the maximum edge weight is
given by wmax = 1, allowing G-SEQ to drop many edges in
an early phase. The drop of performance between L = 32
and L = 64 are due to a change in ε, requiring G-SEQ to
store more data. Similarly, we change ε between L = 128 and
L = 256. SC-OPT keeps its performance at ≈140M edges/s
(≈330ms) and outperforms other schemes.

5.7 FPGA Resource Utilization
Table 4 shows the usage of FPGA resources. As maximum
matchings are computed on the FPGA in one clock cycle,
the number of computed matchings L influences the amount
of used logic. Moreover, for SC-OPT, K and L determine
the FPGA layout. Specifically, K influences the BRAM usage,
since every element in the merging network requires two
queues which are each mapped to one BRAM unit. We also
consider the amount B [bits] of BRAM allocated to storing the
matching bits. SC-OPT requires only 21% of Arria-10’s BRAM
and 32% out of all ALMs for a design that outperforms other
targets by at least ≈2× (Figures 9–10); these speedups can be
increased even further by maximizing circuitry utilization.

FPGA Algorithm Parameters Used BRAM Used ALMs

SC-SIMPLE log B = 12, L = 8 5.6 MBit (10%) 89,388 (21%)
SC-SIMPLE log B = 18, L = 6 21 MBit (38%) 88,920 (21%)
SC-OPT K = 32, L = 512 11.5 MBit (21%) 151,998 (32%)
SC-OPT K = 256, L = 128 24.8 MBit (45%) 350,556 (82%)

Table 4: (§ 5.7) FPGA resource usage for different parameters.

5.8 Energy Consumption
We estimate the energy consumption of SC-SIMPLE and SC-
OPT using the Altera PowerPlay Power Analyzer Tool; see

8



Table 5. Furthermore, the host CPU (Broadwell Xeon E5-2680
v4) has TDP of 120 Watt [32] when all cores are in use. This is
an upper bound for CS-PAR at T = 64. FPGA designs reduce
consumed energy by at least ≈88% compared to the CPU.

Algorithm Parameters Energy Consumption [W]

SC-SIMPLE log B = 18, L = 6 14.714
SC-SIMPLE log B = 12, L = 8 14.598
SC-OPT K = 32, L = 512 14.789
SC-OPT K = 256, L = 128 14.789
SC-OPT K = 32, L = 64 14.657
CS-PAR T = 64 120

Table 5: (§ 5.8) Estimated energy consumption for different parameters.

5.9 Design Space Exploration
We now briefly analyze the interaction between the perfor-
mance of our FPGA design and the limitations due to the
clock frequency. The resource usage, determined by L and
B, influences the frequency upper bound due to wiring and
logic complexity. We applied a grid search to derive feasible
frequencies for SC-SIMPLE; see Figure 11. Dark grey indi-
cates 400MHz, light grey indicates 200MHz. Two factors have
shown to limit the performance. First ❶, while computing
the matching, we use an addition with a variable that uses
L bits. Thus, the addition complexity grows linearly with L.
More importantly ❷, the BRAM signal propagation limits the
frequency. For example, for SC-SIMPLE and log B = 13, the
place and route report shows that the reset signal to set all
BRAM units to zero becomes the critical path.

log B

1

2

4

8

16

32

64

128

256

512

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

L

400 MHz 200 MHz

x

x x

x

x

x - the highest possible value of B for a given L

Figure 11: (§ 5.9) Design space exploration: the used (available) frequencies.

5.10 Optimality Analysis
We also discuss how far the obtained results are from the
maximum achievable performance numbers; we focus on the
most optimized SC-OPT. SC-OPT can process up to ≈175M
edges/s. This is close to the optimum due to different reasons:
Firstly, the implementation can process up to 1 edge per cycle
(200M edges/s). Thus, the achieved performance is optimal
within only ≈12%. Second, assuming that edges are read
aligned from memory, it allows to read 8 edges per read
request. Further, if every edge requires its own data chunk
with matching bits, it needs 1 request per edge. Overall, this
results in 1.25 read requests per edge. Under this assumption,
the performance is limited to 160M edges/s. SC-OPT results
are higher than this bound, which is possible because the
matching bits can be shared between edges.

6 BEYOND SUBSTREAM-CENTRIC MM
We now briefly discuss how to apply our substream-centric
FPGA design to other streaming graph algorithms. First, we
identify some MM schemes that also divide the streamed
dataset into substreams and can straightforwardly be adopted

to the hybrid CPU+FPGA system. The MWM algorithm
by Grigorescu et al. [29] reduces the MWM problem to
O(ε−1 log(n)) instances of maximum matchings, which could
be processed on the FPGA analogously to our design; its
merging phase could also be executed on the CPU. All our
optimizations, such as blocking, are applicable in this case.
Moreover, the MWM algorithm by Feigenbaum et al. [26,
Algorithm 4] does not divide the stream of edges into sub-
streams, but its design would potentially allow for applying
our blocking scheme. A key part of this algorithm is main-
taining a certain value qe associated with each edge e. Given
an edge e = (u, v, w), qe depends on values qu and qv as-
sociated with vertices u and v. We can apply the blocking
pattern by storing qu for u in BRAM, and streaming in qv for
v. Next, the MWM algorithm by Ghaffari [27] provides a
(2 + ε)-approximation. The algorithm compares the weights
of incoming edges to values φ, indexed by u or v. Therefore,
it can be computed on the FPGA using the blocking pattern
by storing the values φu in BRAM, and streaming φv from
DRAM, similarly to matching bits in our design. Further,
as the algorithm requires postprocessing to derive the final
result, it could be also delegated to the CPU.

We also identify algorithms unrelated to matching that
could be enhanced with our design. The random triangle
counting algorithm by Buriol et al. [10] is also a suitable
candidate for the presented blocking pattern. The algorithm
requires three passes. In pass 1, the number of paths of length
two in the input graph is computed. In pass 2, a random path
of length two is selected. In pass 3, the stream is searched for
a certain edge, dependent on the randomly selected path. To
reduce variance, passes 2–3 are run in parallel using a pre-
determined number of random variables (up to a million).
This also implies that in pass 3 every edge in the stream must
be checked against a million edges. To reduce the workload,
a hash map used. The map is filled with edges which are
expected to occur. We propose the following approach to
exploit the blocking pattern: the CPU fills a hash map for
each epoch with edges expected to arrive. The map is passed
to the FPGA. The edges for this epoch are streamed in and
compared to the pre-filled hash map. If the epoch changes,
the next hash map is passed over.

7 RELATED WORK
Our work touches on various areas. We now discuss related
works, briefly summarizing the ones covered in previous
sections (streaming models in § 3 and streaming maximum
matching algorithms in § 3.2, Table 1, and § 6).
Graph Processing on FPGAs The FPGA community has re-
cently gained interest in processing graphs on FPGAs. First,
some established CPU-related schemes were ported to the
FPGA setting, for example vertex-centric [23, 24], GAS [65],
edge-centric [67], BSP [37], and MapReduce [64]. There are
also efforts independent of the above, such as FPGP [18],
ForeGraph [19], and others [8, 37, 48, 50, 61, 66]. These works
target popular graph algorithms such as BFS or PageRank.
None of them proposes any scheme for the important problem of
finding graph matchings, targeted in this work.
GraphMatchings and FPGAs The only work related to match-
ings and FPGAs that we are aware of merely uses matchings

9



to enhance FPGA segmentation design [12], which is unrelated
to deriving matchings and graph processing in general.
Streaming Models and Algorithms We investigate the rich
theory of streaming models [3, 5, 11, 16, 20–22, 26, 30, 38, 45,
47] and identify the semi-streaming model [26] as the best can-
didate for using together with FPGAs to deliver algorithms
with provable properties that match FPGA characteristics
such as limited memory. We then investigate semi-streaming
algorithms for maximum matchings [6, 7, 14, 17, 25–29, 35,
36, 39, 41, 44, 53, 63] and identify the scheme by Crouch
and Stubbs [17] that we use as the basis for our substream-
centric design that ensures low-power, high-performance, and
high-accuracy general maximum weighted matchings on FPGAs.
Hybrid FPGA+CPU Platforms Finally, our work is related
to the study of hybrid CPU+FPGA platforms [52, 64]. We
illustrate a case study with maximum matchings and show
that hybrid platforms can outperform state-of-the-art parallel CPU
designs in both performance and power consumption.

8 CONCLUSION
An important problem in today’s graph processing is de-
veloping high-performance and energy-efficient algorithms
for approximating maximum matchings. Towards this goal,
we propose the first maximum matching algorithm for FP-
GAs. Our algorithm is substream-centric: the input stream is
divided into substreams that are processed independently on
the FPGA and merged into the final outcome on the CPU.
This exposes parallelism while keeping communication costs
low: only O(m) data must be streamed from DRAM to the
FPGA. Our algorithm is energy-efficient (88% less consumed
energy over a tuned CPU variant) and provably accurate,
fast (speedups of >4× over parallel CPU baselines), and
memory-efficient (O(nlogcn) required storage).

The underlying FPGA design uses several novel optimiza-
tions, such as merging rows of the graph adjacency matrix
and ordering resulting blocks lexicographically. This enables
low utilization of FPGA resources (only 21% of Arria-10’s
BRAM and 32% out of all ALMs) while outperforming CPU
baselines by at least ≈2×. Both the FPGA implementation
and the substream-centric approach could be extended to
other graph problems.

Finally, to the best of our knowledge, the proposed design
is the first to combine the theory of streaming with the FPGA
setting. Our insights coming from the analysis of 14 streaming
models and 28 streaming matching algorithms can be used
to develop more efficient FPGA designs.

AcknowledgementsWe thank Mohsen Ghaffari for inspiring discussions that
helped us better understand graph streaming theory. We also thank David Sidler for
his help with the FPGA infrastructure. Funded by the European Research Council
(ERC) under the European Union’s Horizon 2020 programme grant No. 678880. TBN
is supported by the ETH Zurich Postdoctoral Fellowship and Marie Curie Actions for
People COFUND program.

REFERENCES
[1] 10thDIMACSChallenge. KroneckerGeneratorGraphs, 2011.
[2] C. Aggarwal et al. Evolutionary network analysis: A survey. CSUR, 2014.
[3] G. Aggarwal et al. On the streamingmodel augmentedwith a sorting primitive. In FOCS, 2004.
[4] J. Ahn, S.Hong, S. Yoo,O.Mutlu, andK.Choi. A scalable processing-in-memory accelerator for

parallel graph processing. Computer Architecture News, 2016.
[5] K. J. Ahn et al. Graph sketches: sparsification, spanners, and subgraphs. In PODS, 2012.
[6] K. J. Ahn and S. Guha. Linear programming in the semi-streamingmodelwith application to

themaximummatching problem. In ICALP, 2011.

[7] S. Assadi et al. Maximum matchings in dynamic graph streams and the simultaneous
communicationmodel. In SODA, 2016.

[8] B. Betkaoui et al. A framework for FPGA acceleration of large graph problems: Graphlet
counting case study. In FPT, 2011.

[9] J. A. Bondy et al. Graph theorywith applications. 1976.
[10] L. S. Buriol et al. Counting triangles in data streams. In PODS, 2006.
[11] A. Chakrabarti et al. Annotations in data streams. In ICALP, 2009.
[12] Y.-W. Chang et al. Graph matching-based algorithms for FPGA segmentation design. In

ICCAD, 1998.
[13] A. Ching et al. One trillion edges: Graph processing at Facebook-scale. VLDB, 2015.
[14] R. Chitnis et al. Kernelization via samplingwith applications to findingmatchings and related

problems in dynamic graph streams. In SODA, 2016.
[15] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei. A quantitative analysis on

microarchitectures ofmodernCPU-FPGAplatforms. InDAC, 2016.
[16] G. Cormode et al. Independent sets in vertex-arrival streams. arXiv:1807.08331, 2018.
[17] M. Crouch and D.M. Stubbs. Improved streaming algorithms for weighted matching, via

unweightedmatching. In LIPIcs-Leibniz Inf., 2014.
[18] G.Dai et al. FPGP:GraphProcessing Framework on FPGA. In FPGA, 2016.
[19] G.Dai et al. ForeGraph: Exploring large-scale graph processing onmulti-FPGA architecture. In

FPGA, 2017.
[20] M.Datar et al. Maintaining stream statistics over slidingwindows. SIAM J. onComp., 2002.
[21] J. Dean et al. MapReduce: simplified data processing on large clusters. CACM, 2008.
[22] C.Demetrescu et al. Trading off space for passes in graph streaming problems. TALG, 2009.
[23] N. Engelhardt andH. K.-H. So. Gravf: A vertex-centric distributed graph processing framework

on FPGAs. In FPL, 2016.
[24] N. Engelhardt andH. K.-H. So. Vertex-centricGraph Processing on FPGA. In FCCM, 2016.
[25] L. Epstein et al. Improved approximation guarantees for weighted matching in the semi-

streamingmodel. J. onDiscreteMathematics, 2011.
[26] J. Feigenbaumet al. On graph problems in a semi-streamingmodel. Theoretical CS, 2005.
[27] M.Ghaffari. Space-optimal semi-streamingfor (2+ ε)-approximatematching. arXiv:1701.03730,

2017.
[28] A.Goeletal. Onthecommunicationandstreamingcomplexityofmaximumbipartitematching.

In SODA, 2012.
[29] E. Grigorescu et al. Streamingweightedmatchings:Optimalmeets greedy. arXiv:1608.01487,

2016.
[30] M. R.Henzinger et al. Computing on data streams. ExternalMem. Alg., 1998.
[31] Intel. Intel Core i7-8700KProcessor, 2017.
[32] Intel. Intel Xeon Processor E5-2680 v4, 2017.
[33] Intel. Stratix 10GX/SXDeviceOverview, 2017.
[34] Intel Arria. Intel Arria 10DeviceOverview, 2017.
[35] M. Kapralov. Better bounds formatchings in the streamingmodel. In SODA, 2013.
[36] M. Kapralov et al. Approximatingmatching size from random streams. In SODA, 2014.
[37] N. Kapre. CustomFPGA-based soft-processors for sparse graph acceleration. InASAP, 2015.
[38] C. Karande et al. Online bipartitematchingwith unknowndistributions. In STOC, 2011.
[39] R.M. Karp et al. An optimal algorithm for on-line bipartitematching. In STOC, 1990.
[40] KONECT. Konect network dataset, 2017.
[41] C. Konrad et al. Maximummatching in semi-streamingwith few passes. APPROX-RANDOM,

2012.
[42] J. Leskovec andA. Krevl. SNAPDatasets: Stanford large network dataset collection, 2014.
[43] A. Lumsdaine et al. Challenges in Parallel Graph Processing. Par. Proc. Let., 2007.
[44] A.McGregor. Finding graphmatchings in data streams. InAPPROX-RANDOM, 2005.
[45] A.McGregor et al. Better algorithms for counting triangles in data streams. In PODS, 2016.
[46] F.McSherry et al. Scalability! but atwhatCOST? InHotOS, 2015.
[47] S.Muthukrishnan et al. Data streams: Algorithms and applications. Foundations and Trends®

in Theoretical Computer Science, 2005.
[48] E. Nurvitadhi et al. Graphgen: An FPGA framework for vertex-centric graph computation. In

FCCM, 2014.
[49] NVidia. GEFORCEGTX 1080 Ti, 2017.
[50] T. Oguntebi et al. Graphops: A dataflow library for graph analytics acceleration. In FPGA, 2016.
[51] N. Oliver et al. A reconfigurable computing system based on a cache-coherent fabric. In

ReConFig, 2011.
[52] M.Owaida et al. Centaur: A framework for hybridCPU-FPGAdatabases. In FCCM, 2017.
[53] A. Paz andG. Schwartzman. A (2+epsilon)-approximation formaximumweightmatching in

the semi-streamingmodel. In SODA, 2017.
[54] A. Roy et al. X-stream: Edge-centric graph processing using streaming partitions. In SOSP, 2013.
[55] S. Salihoglu et al. Optimizing graph algorithms on Pregel-like systems. VLDB, 2014.
[56] M. Santarini. Zynq-7000 EPP sets stage for new era of innovations. Xcell, 2011.
[57] L. Shang et al. Dynamic power consumption inVirtex™-II FPGA family. In FPGA, 2002.
[58] Y. Simmhan et al. Goffish: A sub-graph centric framework for large-scale graph analytics. In

EuroPar, 2014.
[59] N.Trinajstićetal.Onsomesolvedandunsolvedproblemsofchemicalgraphtheory. International

Journal ofQuantumChemistry, 1986.
[60] J. Tyhach et al. Arria™ 10 device architecture. InCICC, 2015.
[61] G.Weisz et al. Graphgen for coram:Graph computation on FPGAs. InCARL, 2013.
[62] M. Zaharia et al. Apache Spark: a unified engine for big data processing. CACM, 2016.
[63] M. Zelke. Weightedmatching in the semi-streamingmodel. Algorithmica, 62(1-2):1–20, 2012.
[64] J.Zhanget al. Boosting theperformanceof FPGA-basedgraphprocessorusinghybridmemory

cube: A case for breadth first search. In FPGA, 2017.
[65] J. Zhou et al. Tunao: A high-performance and energy-efficient reconfigurable accelerator for

graph processing. InCCGRID, 2017.
[66] S. Zhou et al. High-throughput and energy-efficient graph processing on FPGA. FCCM, 2016.
[67] S.Zhouetal. AcceleratingGraphAnalyticsonCPU-FPGAHeterogeneousPlatform. SBAC-PAD,

2017.

10


	Abstract
	1 Introduction
	2 Background and Notation
	2.1 Graph-Related Concepts
	2.2 Architecture-Related Concepts

	3 From Semi-Streaming to FPGAs
	3.1 Why Semi-Streaming?
	3.2 Which Semi-Streaming MM Algorithm?
	3.3 How To Adapt Semi-Streaming to FPGAs?

	4 Maximum Matching on FPGA
	4.1 Overview of the Algorithm
	4.2 Blocking Design for More Performance
	4.3 Input and Output Format
	4.4 Details of Processing Substreams on FPGA
	4.5 Substream Merging on the CPU

	5 Evaluation
	5.1 Scaling Size of Synthetic Graphs
	5.2 Processing Different Real-World Graphs
	5.3 Scaling Number of Threads T
	5.4 Approximation Analysis
	5.5 Influence of Blocking Parameter K
	5.6 Influence of Maximum Matching Count L
	5.7 FPGA Resource Utilization
	5.8 Energy Consumption
	5.9 Design Space Exploration
	5.10 Optimality Analysis

	6 Beyond Substream-Centric MM
	7 Related Work
	8 Conclusion
	References

