
Metamorphic Fuzzing of C++ Libraries
Andrei Lascu

Imperial College London
London, United Kingdom,

andrei.lascu10@imperial.ac.uk

Alastair F. Donaldson
Imperial College London

London, United Kingdom,
alastair.donaldson@imperial.ac.uk

Tobias Grosser
University of Edinburgh

Edinburgh, United Kingdom,
tobias.grosser@ed.ac.uk

Torsten Hoefler
ETH Zurich

Zurich, Switzerland,
htor@inf.ethz.ch

Abstract—We present a method for automated metamorphic
fuzzing of software libraries, implemented as an open-source tool,
MF++, targeting C++ libraries. Our approach works by automat-
ically synthesising equivalent sequences of calls to a library’s
API based on a user-provided specification, in a randomized
fashion. Equivalent call sequences are then tested using random-
ized inputs, and result mismatches reveal bugs in the library
implementation. This is an instance of metamorphic testing: it
avoids the oracle problem because we do not need to know the
expected results of a set of equivalent call sequences, only that
their results should match. Automated test case reduction can
then be used to find minimized equivalent call sequences that
trigger mismatches, as an aid to debugging. We evaluate MF++
with respect to four SMT solving libraries and two Presburger
arithmetic libraries, leading to the discovery of 21 bugs. We have
also successfully used MF++ and its test case reduction facilities
to automatically generate small test cases that exercise source
code not covered by the regression test suites of various libraries
under test. Unlike most test case generation techniques, the tests
we synthesise are equipped with an oracle by construction: the
equivalence-based oracle offered by our metamorphic approach.
We have submitted patches contributing new coverage-enhancing
test cases to the isl, Yices2 and Z3 projects. The developers of
these projects have accepted 21 tests based on our patches so far.

Index Terms—metamorphic testing, fuzzing, test case reduction

I. INTRODUCTION

Rigorous testing techniques are particularly important for
software libraries: a large number of applications may rely
on the correctness of a particular library. A high quality
manually-written test suite is essential for any serious library
implementation, but it is hard for library developers to anticipate
the large and diverse number of ways in which the library’s
functions might be invoked. Techniques for automating the
process of library testing are thus valuable.

Randomized testing—also known as fuzzing—can be readily
applied to find test cases that exercise library code in intricate
ways. Traditional mutation-based fuzzers, such as AFL [1] and
libFuzzer [2] are useful for finding example inputs that lead to
crashes or undefined behaviours, and automatic test generators
such as EvoSuite [3] and Randoop [4] can also be used to
generate tests that achieve high coverage of a library’s source
code. However, the oracle problem [5] limits the utility of
such techniques for functional testing. Without an oracle, one
cannot know whether the library has behaved in a functionally-
correct manner on a given random input. This is a barrier to

bug-finding, and limits the extent that generated tests are useful
for regression testing, even when they increase code coverage.

To overcome this, we investigate the following approach for
randomized functional testing of software libraries, which uses
metamorphic testing [6], [7] as a pseudo-oracle. The library
developer identifies a number of derived operations that can
be implemented using the primitive operations of the library.
A derived operation might directly mirror a primitive operation
offered by the library, or might require some combination of
primitive operations. For each derived operation, they provide
multiple equivalent implementations, some using the library’s
primitive operations, some using other derived operations,
and some using a mixture of both. A sequence of derived
operations can then be automatically expanded to a sequence
of primitive operations: each derived operation is replaced by
the body of one of its implementations, chosen at random. If
that implementation invokes other derived operations, they are
randomly expanded in turn. Derived operation implementations
can be mutually recursive, so that the expansion process can
lead to highly complex fully expanded sequences.

Without an oracle for the library under test, there is no
way to determine whether the library behaves appropriately
when a single expanded sequence of derived operations is
applied to an input. Our approach compensates for the lack
of a direct oracle by cross-checking the behaviour of multiple
expansions: a derived sequence is expanded several times, each
expansion is executed on a single input, and the computed
results are compared. Assuming the implementations of derived
operations are indeed equivalent, a result mismatch between
two expansions indicates that there must be a bug in one of the
library’s primitive operations. Test case reduction can then be
used to identify shorter equivalent sequences that still trigger
a mismatch, providing a good starting point for debugging.

Our approach is an instance of metamorphic testing [6],
[7]: each family of equivalent implementations of a derived
operation can be seen as a metamorphic relation. Furthermore,
there is scope for randomizing the derived operations used in
a test, the manner in which sequences are expanded, and the
inputs used for cross-checking. All in all this leads to a novel
approach for metamorphic fuzzing of software libraries.

In addition to bug-finding, our metamorphic fuzzing ap-
proach can be used for coverage-guided test case generation.
This involves (a) identifying statements that are not covered
by a library’s test suite but are covered during metamorphic
fuzzing, (b) injecting failing assertions before such statements,



(c) applying metamorphic fuzzing again to find test cases
that trigger the assertion failures (i.e. achieve the additional
coverage), and (d) using test case reduction to produce small
test cases that still trigger the assertions (i.e. still achieve
the extra coverage). Because the resulting reduced tests have
oracles by construction—they check equivalence of a pair of
minimised sequences of operations on a minimised input—they
are suitable for adding to library regression test suites.

We have implemented our approach in a tool, MF++,
intended for use by C++ library developers. Using MF++
requires some manual effort from the developer. Principally,
they identify suitable derived operations and provide equivalent
implementations of these (i.e., provide the metamorphic rela-
tions), and provide a function that checks whether the results
of two operation sequences are equivalent. The developer
provides this information in C++, allowing them to work
in the same language used for library development, with
its powerful features. This manual effort is a one-off cost:
once these ingredients have been provided, MF++ is able
to produce an endless stream of metamorphic test cases that
can be used to intensively test the library. If the developer
makes mistakes when providing these ingredients (e.g., they
provide derived operation implementations that turn out to be
inequivalent), MF++ will quickly flag these up as possible bugs
and automated test case reduction can then be used to yield a
simple reproducer test case that the developer can examine to
determine which operation implementation they need to fix.

We have evaluated MF++ with respect to 6 libraries: Z3 [8],
CVC4 [9], Yices2 [10], and Boolector [11] (mature SMT solvers
supporting various theories); and isl (Integer Set Library) [12]
and Omega [13] (Presburger arithmetic [14] libraries). Our
testing has revealed 21 bugs overall, in Z3, Yices2, isl and
Omega, 19 of which have been fixed in response to our reports.
We have used coverage-guided test case generation to synthesise
new, oracle-equipped test cases for the regression test suites
of isl, Yices2 and Z3, leading to 21 new tests being integrated
into open-source test suites so far. These coverage-guided tests
have shown value already by identifying two use-after-free
bugs in the Z3 code base.

In summary, our main contributions are:

1) A novel approach to metamorphic fuzzing of libraries
that allows randomized testing for functional properties;

2) The design and implementation of MF++, an implemen-
tation of this approach for C++ libraries;

3) The combination of metamorphic fuzzing and test case
reduction to enable coverage-guided test case generation;

4) A large evaluation over 6 libraries, leading to the
discovery and fixing of many previously unknown bugs;

5) A demonstration of the effectiveness of coverage-guided
test case generation, with 21 new test cases already
integrated into open-source library test suites.

Reproducibility. MF++ is open source [15], and we have
prepared an artifact that allows experimenting with the version
of the tool used for the experiments presented in this paper [16].

II. BACKGROUND

Metamorphic testing. Metamorphic testing aims to overcome
the oracle problem [5] by exploiting expectations on how the
outputs of a system under test (SUT) should be related when
applied to inputs that are associated in specific ways. As an
example (adapted from [7]), suppose program P computes the
length of the shortest path between two points in an undirected
graph. For two nodes a and b in a graph G, we can immediately
tell that P is faulty if we find that P (G, a, b) 6= P (G, b, a).
Importantly, we can know that P is faulty without requiring
an oracle for P—i.e., without actually knowing the length of
the shortest path from a to b.

The key to metamorphic testing is that, from domain
knowledge, some metamorphic relations (MRs) are expected
to hold for the SUT. Formally, an MR is a pair of binary
relations (R,S), such that if (x, y) ∈ R for inputs x and y,
then (f(x), f(y)) ∈ S, where f(a) results from executing the
SUT on input a. In our example, R = {((G, a, b), (G, b, a)) |
a and b are nodes of undirected graph G}, and S is “=”.
Metamorphic testing involves checking whether an MR indeed
holds for a selection of pairs of inputs. When an MR is violated
this either indicates that there is a bug in the SUT (if the MR
is accurate), or that the MR was poorly formulated.

Test case reduction. Randomized testing can lead to bug-
triggering test cases that are too large and complex for
developers to understand. A test case reducer takes a large
bug-triggering test case and yields a smaller, simpler test case
that still triggers the bug. Most test case reducers are based on
delta debugging [17], which involves systematically attempting
to remove portions of the test case that may be unnecessary for
triggering the bug of interest. Hierarchical delta debugging [18]
allows more efficient reduction by exploiting domain-specific
information about the structure of test cases. When a test
case triggers a functional error, it is important to preserve
validity of the test case during the reduction process. In §III-C
and §IV-C we describe the design and implementation of a
customised validity-preserving reducer tailored to work with
our metamorphic fuzzing approach.

III. DETAILS OF OUR APPROACH

Our approach to metamorphic library fuzzing repeatedly:
• generates multiple equivalent sequences of calls to func-

tions of the library under test;
• executes each equivalent sequence on the same randomly-

generated input;
• checks that the results computed by the sequences are all

equivalent;
• in the event of a mismatch, applies test case reduction to

yield minimised equivalent call sequences that expose the
mismatch, to aid in debugging.

It is the use of equivalent sequences that makes this a
metamorphic testing approach. These equivalences can be
viewed as metamorphic relations, and allow bugs to be
identified without knowledge of the result that a particular
sequence should compute, i.e., without an explicit oracle.



We now describe the approach in detail, focusing on the
ingredients the user needs to provide (§III-A), and how these
ingredients are used for metamorphic fuzzing (§III-B) and
exploited during test case reduction (§III-C). We then explain
an alternative use case for our approach: coverage-guided
generation of oracle-equipped test cases (§III-D). We also
discuss the rationale for requiring the user to specify equivalent
implementations of derived operations directly, rather than
attempting to synthesise them automatically (§III-E).

Running example. Suppose we wish to test an arbitrary-
precision integer arithmetic library that defines: a type,
BigInt, representing mathematical integers; binary functions
add, sub and mul and greaterThan implementing the +,
−, × and > operations; a unary function neg implementing
negation. We refer to these functions as the primitive operations
of the library. Suppose that literals are overloaded so that an
int literal can be used in a BigInt context.

A. User-provided Ingredients

To use our approach, the user must provide a number of
ingredients upfront. The payback for this one-off cost is the
ability to subsequently generate an unbounded number of
randomized metamorphic tests, with further manual effort
required only if the library’s API changes, or if the user wishes
to expose features of the library in a more detailed fashion.

Derived operations. The user must first decide on some
derived operations that can be implemented using the library
under test. These might directly mirror primitive operations of
the library, or might be operations that can only be implemented
by combining primitive operations. For our example, we
consider five derived operations: ADD and MUL, which mirror
the add and mul primitive operations, IDENTITY, which
takes a BigInt and should return a BigInt with the same
value, ABS, which should yield the absolute value of a BigInt,
and ZERO, which should yield a BigInt with the value 0.

Equivalent implementations of derived operations. For each
derived operation the user must provide at least two equivalent
implementations. Each operation should have at least one base
case implementation that uses only primitive operations of
the library; e.g., a base case implementation of MUL would
delegate to the mul primitive operation, while a base case
implementation of ABS could be:

BigInt ABS_BASIC(BigInt x) {
return greaterThan(x, 0) ? x : neg(x); }

There should also be at least one implementation for each
derived operation that achieves the effect of the operation in
a more complex way, using a combination of primitive and
derived operations; this is to ensure that the space of possible
equivalent implementations of derived operations is large and
interesting. A more interesting implementation of MUL could
implement multiplication by repeated addition:

BigInt MUL_BY_ADD(BigInt x, BigInt y) {
BigInt result = ZERO();
for (BigInt i = ZERO(); greaterThan(y, i);

i = ADD(i, 1))
result = ADD(result, x);

return result;
}

Instead of using the add function directly, we use the derived
operation ADD; similarly the literal 0 is replaced by ZERO.

For ADD, we could consider various implementations in
addition to the basic implementation that delegates to add,
e.g., exploiting the commutative law of addition:

BigInt ADD_COMMUTED(BigInt x, BigInt y) {
return add(y, x); }

or expressing addition in terms of subtraction and negation:
BigInt ADD_BY_SUB(BigInt x, BigInt y) {
return sub(a, neg(b)); }

The basic IDENTITY implementation would directly return
its argument. A more complex implementation could be:

BigInt IDENTITY_ADD_ZERO(BigInt x) {
return ADD(x, ZERO()); }

Notice that this does not refer to any primitive operations
of the library directly, but only to other derived operations.

An example alternative implementation of ABS is:
BigInt ABS_BY_SUB_AND_NEGATE(BigInt x) {
return greaterThan(x, ZERO())

? x : sub(x, MUL(2, neg(x))); }

Finally, suppose function rand returns a random BigInt.
We can complement the base case of ZERO, e.g:

BigInt ZERO_BY_SUB() {
BigInt temp = rand();
return sub(IDENTITY(temp), IDENTITY(temp)); }

BigInt ZERO_BY_MUL() {
return MUL(rand(), ZERO()); }

Random generation of library inputs. The user must provide
a means of randomly generating inputs of each data type
that a derived operation can consume. In §IV we describe
how the MF++ tool facilitates this. In our example, this
would require a source of random BigInt values, which
could be achieved by generating random machine integers
and promoting them to BigInt. The level of sophistication
associated with random generation is at the discretion of the
user: basic random generation suffices to get started with
our technique, but more sophisticated generation to ensure
particular properties or distributions over input values might
improve the effectiveness of testing.

Equivalence checks. The user provides a function,
equivalent(x1, x2), that decides whether two results generated
by the library under test are equivalent. The required notion of
equivalence for a particular library is usually obvious. We give
some practical examples when we discuss our case studies in
§V. For our BigInt example, equivalent means equal.

B. Randomized Metamorphic Testing

We now explain how the above user-provided ingredients
are used for metamorphic fuzzing.

Expanding derived operations. A derived operation is ex-
panded by selecting one of its implementations and recursively
expanding any derived operations used therein, until no derived



BigInt result = ZERO();

for (BigInt i = ZERO(); greaterThan(y, i); i = ADD(i, 1)) {

  result = ADD(result, x);

}

return result;

MUL(x, y)
return sub(i, neg(1));

return 0;

...

...

return add(x, result);

MUL_BY_ADD

ZERO_BASIC

ADD_COMMUTED

ADD_BY_SUB

ZERO_BY_MUL

return MUL(rand(), ZERO());

Fig. 1: Recursively expanding the MUL derived operation

operations remain. Figure 1 shows part of a possible expansion
of the MUL operation of our running example. First MUL is
expanded to MUL_BY_ADD, which involves two occurrences
each of the ADD and ZERO derived operations. The instances
of ADD are expanded to ADD_COMMUTED and ADD_BY_SUB,
which do not use further derived operations, so their expansion
is complete. One ZERO instance is expanded to ZERO_BASIC,
the other to ZERO_BY_MUL which uses the MUL and ZERO
derived operations; these would in turn need to be expanded.

Let expansions(OP) denote the (typically infinite) set of
possible expansions of derived operation OP . For an expansion
E ∈ expansions(OP), let execute(E, ~x) denote the result
obtained by executing E on input ~x using the library under
test. We have the following metamorphic relation (MR):
if E1, E2 ∈ expansions(OP) and ~x is a vector of inputs,
then equivalent(execute(E1, ~x), execute(E2, ~x)) should hold.
Using the formal definition of an MR in terms of binary
relations R and S (§II) we have R = {((E1, ~x), (E2, ~x)) |
∃OP . E1, E2 ∈ expansions(OP)}, and S = equivalent.

The testing process. A stream of random metamorphic test
cases is generated by repeating the following process.

A sequence of m initial input variables, x1, . . . , xm, are
declared, each initialized to a randomized value. A sequence
of n derived operations OP1,OP2, . . . ,OPn is then selected
at random. A particular derived operation may appear multiple
times in this sequence. For each 1 ≤ i ≤ n, a temporary
variable ti matching the return type of OP i is introduced
to capture the value returned by OP i.1 For each argument
required by OP i, a random choice is made between the in-
scope variables, i.e., the input variables x1, . . . , xm and the
result variables t1, . . . , ti−1 of earlier operations.

This leads to a set of input variables x1, . . . , xm (for some
m ≥ 0), each with a randomized initial value, and a sequence
of n derived operation invocations. The ith invocation in the
sequence has the form ti = OP i(~pi), where each parameter
in ~pi is either one of the input variables xj (1 ≤ j ≤ m), or
the result tj (1 ≤ j < i) of an earlier operation.

The invocation sequence is then replaced with k expanded
sequences, called equivalent variants. A variant v (1 ≤ v ≤ k)
is obtained by duplicating the invocation sequence, and then:

1For ease of presentation we assume operations have non-void return type;
in practice result variables are omitted for operations with void return type.

• replacing each definition and use of a result variable ti
with a variant-specific result variable ti,v ;

• replacing each derived operation OP i with a variant-
specific expansion Ei,v ∈ expansions(OP i).

The final step in generating a metamorphic test involves
asserting a postcondition: that equivalent(tn,1, tn,v) holds for
each 2 ≤ v ≤ k. Because each variant v is expanded from
the same sequence of derived operations, any one of these
assertions failing demonstrates that the equivalent expansions of
the sequence of derived operations have led to different results.
Such an assertion failure indicates that at least one library
function must be implemented incorrectly. The failure can be
investigated to pinpoint the bug in the library implementation.

C. Test Case Reduction

A test that triggers a postcondition failure may be very
complex and hard to understand: the sequence length n and
number of variants k may be large, certain derived operations
may have been expanded with a high recursion depth, and the
random inputs used for testing may also be intricate.

We propose a specialised form of hierarchical delta debug-
ging [18] to shrink tests down to a more digestible form. First,
variants can be systematically eliminated to identify the subset
of variants required to trigger the postcondition failure. Derived
operations can then be removed from the sequences of the
remaining equivalent variants, leading to a minimal set of
derived operations. The expansions of the derived operations
that remain can then be systematically simplified: each time a
non-base case implementation of a derived operation has been
used, the base case implementation can be tried instead, so
that non-trivial implementations remain only where they are
required in order for the postcondition failure to occur. Finally,
the test input that induces the failure can be simplified.

We note again that test case reduction is useful not only for
diagnosing bugs, but also for helping the developer to quickly
identify bugs in the ingredients they have provided.

D. Coverage-guided Test Case Generation

As discussed in the introduction, an alternative application
of our approach, beyond bug finding, is generation of oracle-
equipped test cases that increase coverage of the library under
test. We focus on statement coverage, but the approach could
be applied in the context of other measurable coverage criteria.



Suppose a library’s regression test suite covers a set S
of statements of the library implementation. If a randomly-
generated test case t covers a statement x /∈ S, then t identifies
a coverage gap: x is not covered by the current regression
test suite, but coverage of x is achievable, as demonstrated
by the test case t. The test case t has the potential to be
used to augment the library’s regression test suite. However,
being randomly-generated, t is likely to be large and complex.
Furthermore, if t does not come equipped with a test oracle,
there is little to be gained by adding t to the regression test
suite since the pass/fail status of t cannot be determined.

Our metamorphic fuzzing approach provides a solution
to these problems. First, generated test cases come with an
equivalence-based oracle by construction: a test case checks that
a number of equivalent variants do indeed compute equivalent
results. Second, test case reduction (§III-C) allows shrinking
a large test case to a small one that is still equipped with
a metamorphic oracle. This a form of cause reduction [19],
[20]: instead of reducing a test case with respect to a failure,
reduction is performed with respect to a coverage target.

Our coverage-guided approach differs fundamentally from
feedback-directed techniques such as EvoSuite [3] and Ran-
doop [4]. These techniques exploit feedback from the SUT
during test generation. In contrast, MF++ is a black-box fuzzer.
However, when MF++ turns out to have covered additional
code compared to a regression test suite, the process of using
test case reduction to obtain a small test is coverage-guided.

We explain how we have implemented this idea in §IV-D,
and discuss our experience using this approach to contribute
new test cases to open source projects in §V-C.

E. Discussion
Our approach requires the library developer to identify

suitably-interesting derived operations, and provide implemen-
tations that are indeed equivalent. The usefulness of the test
cases that can then be generated by our approach—in terms of
their bug-finding ability—is intimately related to the derived
operations (and implementations thereof) that the developer
has provided: trivially-equivalent implementations are unlikely
to lead to the discovery of bugs.

As emphasised above, the provision of derived operation
implementations by the user is a one-off effort, and test case
reduction serves as a debugging aid when the user gets things
wrong. One might ask whether equivalent implementations
of derived operations could be synthesised automatically, to
remove this burden completely. We regard this as an interesting
direction for future research, but believe that it would be very
challenging in the context of C++ libraries. Furthermore, a
library developer would need to understand the details of a
synthesised implementation in order to comprehend bugs found
by the approach, and their time might be better spent using
their domain expertise to write some simple implementations
of derived operations directly.

IV. DESIGN AND IMPLEMENTATION OF MF++
The approach described in §III is general and could be

instantiated in principle for the testing of libraries written in any

1 #include "bigint.h" // Include library header
2 #include "mfpp.h" // Include MF++ header
3

4 namespace mfpp {
5

6 namespace operations {
7 // Forward-declare signatures for derived operations
8 namespace ADD { BigInt placeholder(BigInt, BigInt); }
9 namespace MUL { BigInt placeholder(BigInt, BigInt); }

10 namespace ZERO { BigInt placeholder(); }
11 // Similar for other derived operations
12

13 namespace ADD { // Equivalent implementations of ADD
14 BigInt ADD_BASIC(BigInt a, BigInt b) {
15 return add(a, b);
16 }
17 BigInt ADD_BY_SUB(BigInt a, BigInt b) {
18 return sub (a, neg (b));
19 }
20 // Other implementations of ADD
21 }
22

23 namespace MUL { // Equivalent implementations of MUL
24 BigInt MUL_BASIC(BigInt a, BigInt b) {
25 return mul(a, b);
26 }
27 BigInt MUL_BY_ADD(BigInt a, BigInt b) {
28 BigInt result = ZERO::placeholder();
29 for (BigInt i = ZERO::placeholder();
30 greaterThan(b, i);
31 i = ADD::placeholder(i, 1))
32 result = ADD::placeholder(result, a);
33 return result;
34 }
35 // Other implementations of MUL
36 }
37

38 // More namespaces with implementations for ZERO, etc.
39 } // namespace operations
40

41 namespace generators {
42 BigInt rand() { return BigInt(std::rand()); }
43 BigInt byAdd(BigInt a, BigInt b) { return add(a, b); }
44 // Similar for other operators.
45 } // namespace generators
46

47 namespace checks {
48 bool equivalent(BigInt a, BigInt b) {
49 return a == b;
50 }
51 } // namespace checks
52 } // namespace mfpp
53

54 int main() {
55 initializeBigInt(); // Any necessary initialization
56 BigInt x1 = 42;
57 BigInt x2 = mfpp::fuzz<BigInt>();
58 // ...
59 BigInt xm = mfpp::fuzz<BigInt>();
60 mfpp::meta_test();
61 finalizeBigInt(); // Any necessary finalization
62 return 0;
63 }

Fig. 2: MF++ specification for the BigInt example

programming language. We now describe the implementation
of the MF++ tool for testing C++ libraries (and also C libraries,
due to the ease by which C code can be invoked from C++).

A. Specifying a Library

To use MF++ a developer writes a C++ file that (a) includes
the library header files plus an MF++-specific header, (b) uses
a series of C++ namespaces to describe the derived operations
and other user-provided ingredients, and (c) declares a main
method that serves as a template for the form of generated



tests. Collectively we call this a specification for the library
under test. Figure 2 illustrates a specification for the BigInt
example of §III. We discuss its various components.

Derived operations and implementations. An operations
namespace (lines 6–39 of Figure 2) is used to expose derived
operations and their implementations to MF++. Each operation
has its own sub-namespace, so there are namespaces for ADD,
MUL, etc., in our example. First, for each derived operation,
a function called placeholder is forward-declared. This
specifies the signature of the derived operation. The forward
declaration for the signature of ADD is on line 8, for example.

The forward declaration of a derived operation is followed by
its equivalent implementations. Two implementations of ADD
are shown on lines 13–21, inside the operations::ADD
namespace, matching the signature of ADD::placeholder.
Two implementations of MUL are shown on lines 23—36. Recall
from §III that MUL_BY_ADD uses the derived operations ZERO
and ADD. In the implementation of Figure 2 this is codified
via calls to ZERO::placeholder (lines 28 and 29) and
ADD::placeholder (lines 31 and 32). Because an MF++
specification is written in C++, implementations of derived
operations can use the full power of this language.

No implementations are provided for the placeholder
functions; they are literally placeholders. Calling e.g.,
ADD::placeholder indicates that some implementation
of ADD should be invoked.

Random input generation. Our approach requires a source
of random initial inputs, and it can be useful for imple-
mentations of derived operations to have access to random
generation (see the ZERO_BY_SUB and ZERO_BY_MUL
examples of §III). MF++ provides a templated function,
mfpp::fuzz<T>(), that can be invoked to request a
randomly-generated value of type T. The ingredients that
fuzz can use are specified via a generators namespace,
illustrated on lines 41–45 of Figure 2. This allows MF++ to
expand a call to mfpp::fuzz<BigInt>() to call either
generators::rand or generators::byAdd. In the
latter case, MF++ would need to provide two further BigInt
values, one for each parameter of generators::byAdd,
which it could do by using fuzz to generate additional values,
or re-using previously-generated values. The fuzz function
can also be invoked from implementations of derived operations
when random data is required. By exposing a number of
constructor operations to MF++, the user equips MF++ with
the ability to recursively generate interesting inputs.

Equivalence checks. A checks namespace, illustrated by
lines 47—51 of Figure 2, must include at least one binary
predicate that checks whether two values of one of the library’s
data types are equivalent. More than one such function can
be specified, so that if multiple checks are desired in the
postcondition of a test they can be specified separately. MF++
will ensure that the return type of the final operation in the
operation sequence that it generates matches the argument types
of the functions in the checks namespace (the argument types
must be the same for all such functions).

The test template. A main method specifies the skeleton
structure of a generated test. This should perform library setup
(line 55 of Figure 2), declare a number of input variables
(lines 56– 59), use a special mfpp::meta_test function
to instruct MF++ as to where it should insert the equivalent
operation sequences and postcondition checks (line 60), and
perform library tear-down (line 61). The harness can use a
mixture of randomly- and concretely-initialized inputs. In our
example, x1 is initialized with a specific value (line 56),
while x2 and xm are initialized to random values via calls to
mfpp::fuzz<BigInt>() (lines 57 and 59).

B. Implementing Test Case Generation

Given a specification, MF++ generates a test by outputting
a fresh C++ file that #includes the library’s headers, and
then contains a copy of the main function adapted such that
(1) each mfpp:fuzz<T>() call is expanded to a concrete
series of calls to functions from the generators namespace;
and (2) mfpp:meta_test() is replaced with a series of
equivalent expansions of a randomly sequence of derived
operations, followed by a post-condition check, according to
the procedure described in §III. All variables in scope at the
mfpp:meta_test() call site are available as arguments to
the derived operation sequence.

MF++ is implemented using the Clang LibTooling frame-
work [21], which provides code analysis facilities for C++.

C. Implementing Test Case Reduction

We have implemented the customised version of hierarchical
delta debugging discussed in §III-C, again using the Clang
LibTooling framework. The reducer regards a test case as
interesting if the test case exhibits a postcondition failure—i.e.,
there is a result mismatch between metamorphic variants—or
causes the library implementation to crash in some other way
(e.g., due to an internal error being triggered).

The reducer exploits domain-specific knowledge of the
format of generated test cases in order to simplify them. It
first systematically eliminates metamorphic variants that are
unnecessary for the bug to trigger. This usually eliminates
all but two variants. The reducer then systematically shortens
the sequence of derived operations executed by the remain-
ing variants. Eliminating the ith derived operation involves
removing the respective expansions of this operation from the
remaining variants. If the result of the ith derived operation is
used later in the test case, such uses are replaced with uses of
other type-compatible variables. The reducer then (a) folds up
non-trivial expansions of derived operations by attempting to
replace them with base cases, and (b) simplifies the input to
the test case. In both cases, the reducer exploits the format of
the library specification to guide the simplification process.

Each of these phases iterates until a fixed-point is reached—
i.e., to the point where no further simplifications of the kind
associated with the phase lead to an interesting test case.
All phases start by aggressively trying many simplifications
simultaneously, in order to quickly cut out large swathes of



a test case where possible, and gradually reduce the level of
aggression until simplifications are attempted one at a time.

In §V-D we provide experimental data showing the effec-
tiveness of test case reduction in terms of the extent to which
test cases can be reduced, and the time the process takes.

D. Coverage-guided Test Case Generation in Practice

To realise the coverage-guided test case generation approach
of §III-D, we compile a library under test in debug mode
(to disable optimizations), enabling gcov-based coverage
instrumentation [22]. We execute the library’s regression test
suite, capturing the associated coverage data. Separately, we
conduct a fuzzing run against the library using MF++ for
several hours and capture the associated coverage data.

We used scripts provided by the GraphicsFuzz project [23] to
perform differential analysis of the coverage data. This allows
us to identify statements covered by MF++ but not by the
regression test suite. We temporarily edit the library source
code to insert a failing assertion before each novel coverage
point of interest. This means that hitting the coverage point
will appear to cause the library to crash.

We rebuild the modified library (without coverage instrumen-
tation), and conduct another fuzzing run using MF++. This
time, each novel coverage point will cause an assertion to fail.
MF++ will find test cases that trigger the assertion failures,
and reduce them to minimal examples that still trigger the
assertion failures—i.e., that still yield the additional coverage.

As discussed in §III-D the reduced test cases remain
equipped with a metamorphic oracle, so that they are suitable
for contributing back to the library’s regression test suite,
after appropriate manual clean-up to make them more human
readable. This process is fully automatic, except for the decision
as to which coverage points to instrument, and the manual
cleanup.

We describe our positive experience using this process to
contribute test cases to various library test suites in §V-C.

V. EVALUATION

We evaluate MF++ over 6 software libraries: the SMT
solvers Z3 [8], CVC4 [9], Yices2 [10] and Boolector [11], and
the libraries for Presburger arithmetic isl [12] and Omega [13].
We justify our choice of these libraries and provide details of
the MF++ specifications for them in §V-A.

Our evaluation then focuses on three aspects: the ability of
MF++ to find previously-unknown bugs (§V-B), the ability of
MF++ to synthesise tests that achieve new coverage and the
extent to which library developers are receptive to such test
cases (§V-C), and the throughput of MF++ and efficiency of
its test case reducer (§V-D).

In principle it would be interesting to compare MF++
with other randomized test case generation tools, such as
Randoop [4] or EvoSuite [3]. Aside from the practical difficulty
presented by these tools being geared towards a different
programming language (Java), the lack of a general oracle for
generated tests would make such a comparison difficult. The
metamorphic nature of MF++ means that generated tests are

equipped with oracles by construction, based on user-provided
specifications. This is not true for more fully-automated test
case generation techniques. As a result, any comparison would
have to be limited to e.g., comparing the degree of code
coverage achieved by generated tests, or the extent to which
generated tests can trigger bugs according to a trivial oracle
(e.g., the library crashing) is available. Even then, a comparison
would be complicated by the fact that it is often acceptable for
a library to crash when invoked in an invalid manner. Because
MF++ is guided by user-provided specifications, the test cases
it generates invoke the library in legitimate ways. This is not
true for test cases generated by more automatic methods.

A. Libraries Under Test

There are two main motivations for the choice of libraries.
First, due to the nature of MF++, namely that domain
knowledge of a library under test is greatly desired when writing
specifications, three libraries were chosen due to familiarity:
Z3, CVC4 and isl. Then, we evaluated MF++ over three similar
libraries, Yices2, Boolector and Omega, to understand how well
our design choices apply to translating a specification in the
same domain, but a distinct API. For Omega, we found two
bugs that triggered very frequently. We reported these to the
library maintainers and were advised that Omega is no longer
supported, thus we did not test it further.

For the SMT solvers, we designed two conceptual spec-
ifications: one over the theory of quantifier-free non-linear
integer arithmetic, the other over the quantifier-free theory of
bit-vectors. We coded these up as concrete MF++ specifications
for the SUTs. We refer to these as the integer and bit-vector
specifications henceforth. Most of our derived operations map
to existing operations over the respective sort (e.g., addition or
multiplication for integers, addition or xor for bit-vectors). We
added additional derived operations, e.g., ABS for bit-vectors.

For each SMT specification we perform the following checks
over a pair of metamorphic variants (x1, xv). First, we assert
that x1 6= xv is not SAT: since the formulas are equivalent by
construction, a violation of this property would constitute a
solver bug. (We do not assert that x1 6= xv is UNSAT, because
the solver may legitimately return UNKNOWN if the theory is
not decidable.) We then attempt to test the model generation
capabilities of the solver. We check whether x1 == 0 is
satisfiable. If it is, we ask the solver for a model, and we assert
that the resulting model is also a model for xv == 0: because
x1 and xv are equivalent, x1 == 0 and xv == 0 are also
equivalent and thus a model for one (if it exists) must hold
for the other. If x1 == 0 is unsatisfiable, then we check that
xv == 0 is not satisfiable.

We tested Z3 and CVC4 with both the integer and bit-vector
specifications. Boolector does not support integer theories so
we tested it only with the bit-vector specification, and (due to
time limitations) we restricted Yices2 to this specification due
to the similarity between it and Boolector’s APIs.

For isl, we used a specification that generates sets in an
n-dimensional space by randomly selecting points in the space,
creating a singleton set for each point, then uniting all of these



sets together, and finally computing the convex hull of the
resulting set. We found that the generation phase was the most
interesting part of an isl test case, as we could more finely
tune what sort of inputs isl should consume, and subsequent
operations over these specific inputs would more likely expose
issues. For the derived operations, most of them take inspiration
from Boolean algebra, such as DeMorgan’s laws. The check
uses the internal is_equal function to check for set equality.

B. Bugs found using MF++

A key measure of the usefulness of a randomized test
generator is its ability to find bugs in practice. Because MF++
is driven by a user-provided specification, its usefulness is
a function of both the quality of a given specification, and
the mechanism the tool uses to generate tests. During the
development of MF++, we have found and reported 21 bugs
across four libraries: 5 in Z3, 11 in isl, 2 in Yices2, and 3 in
Omega. Except the 3 Omega bugs, all bugs have been fixed
in response to our reports. Out of all 21, we classify 10 as
functional bugs, requiring metamorphic checks to be triggered.
The identification of these bugs provides evidence that MF++,
paired with the library specifications that we have implemented,
has practical value. We now discuss a selection of these bugs.

Z3. We describe two example bugs. The first bug (discovered
at API level) is illustrated by this SMTLIB formula:

(assert (= x -2))
(assert (= y (- -2 (div (* -2 x) -2))))
(assert (not (= y 0)))

It is easy to see that the formula is UNSAT, as the value of
y is constrained to be 0, but Z3 incorrectly yielded the result
SAT. Once reported [24], the issue was promptly fixed. The
maintainer pointed us to a separate issue [25] opened just 9
days prior to our report, for which the deployed fix contained
the bug identified via our testing mechanism. The short time
it took for us to identify a regression bug shows how the
technique can be used to augment regression testing.

A second bug [26] had to do with the commutativity of the
6= operator. Two equivalent by construction formulas would
make Z3 report x 6= y as SAT, but y 6= x as UNSAT.

A third bug [27] involved the formula
assert (<= 0 (^ 2 -1))) yielding UNKNOWN,
when it is trivially satisfiable via constant propagation.

isl. Our testing led to the fixing of a complex issue in isl’s
coalesce routine [28]. Three separate MF++ bug reports led
the isl developers to the problem. We discuss the simplified test
case committed in the first patch of this bug-series. Namely,
consider an integer set declared by the two following disjuncts:

0 ≤ x, y, z ≤ 100 ∧ 0 < z ≤ 2 + 2x+ 2y

z = 0 ∧ x, y ≤ 100 ∧ y ≤ 9 + 11x ∧ x ≤ 9 + 11y

The constraint z ≤ 2 + 2x + 2y is valid for integer points
in the second disjunct, but not for rational ones. Further, if
we set z = 1, then the constraint becomes redundant with
respect to x, y ≥ 0. Since the constraint is not redundant for
the first disjunct entirely, it means it is redundant (with respect

to x, y ≥ 0) on the hyperplane z = 0. Thus, we assume the
constraint is valid for integer points.

The three bugs we found all apply to a specific component
of the coalesce routine. In this component isl searches for
pairs of adjacent polyhedra which can be combined by rotating
a constraint of the first polyhedron until the enlarged first
polyhedron includes all integer points of the second. While
coalescing may result in additional rational points in the
expanded polyhedron, for correctness it is essential that the
number of integer points remains unchanged. The first bug [29],
incorrectly included new integer points. While the first patch
corrected our test case, it did so by making the overall
routine more powerful, while relying on the assumption that
redundant constraints have been marked correctly. Our second
test case then exposed a problem where some newly redundant
constraints were ignored for polyhedrons that did not yet exist
before the coalescing routine was called but were only created
as part of the iterative coalescing process itself. While the
second patch addressed this instance of incorrectly updated
state, our third test case showed that the coalescing routine still
relied on inconsistent state. The final solution implemented by
the isl developers removed the earlier generalisation.
Yices2. The Yices2 API allows the xor operation to be applied
via yices_bvxor for an arbitrary number of operands, or
yices_bvxor2 and yices_bvxor3 for two and three
operands, respectively. As we included the three operand
version in our specification, we discovered a bug whereby
the Yices2 API mistakenly called yices_bvor instead of
yices_bvxor in the implementation of yices_bvxor3.
The bug was promptly fixed following our report [30].

C. Using MF++ for Coverage-guided Test Case Generation

Through some pilot experiments, we found that MF++ was
able to cover a substantial number of statements in the Z3,
Yices2 and isl code bases not covered by their regression
test suites, so we decided to focus our coverage-guided test
case generation efforts on these libraries. We liaised with the
library developers to check whether they would be receptive
to tests that work at the API level, which aim to increase code
coverage rather than to expose known faults. Developers from
all three projects were receptive to the idea. A Yices2 developer
commented “We are absolutely interested in integrating your
tests in Yices.”, “API tests would be especially useful”, and “If
you could focus on API and not convert [to] SMT2 that would
be more interesting to us”; a Z3 developer commented: “Tests
added to the examples/c++ directory could be very useful and
welcome” (this is the directory for Z3’s API tests). So far we
have proposed 21 new test cases to these libraries: 10 to Z3,
10 to Yices2 and 1 to isl. We only proposed a single isl test
because the isl test suite is written in C and MF++ interfaces
with the isl C++ API to yield C++ tests; we translated one test
to C as a proof of concept. Our contributions to Z3 and Yices2
were directly accepted; the projects even made infrastructural
changes to accommodate our contributions as a new category
of API tests. The lead developer of isl indirectly integrated our
contribution by writing a fresh test case inspired by our test.



TABLE I: Throughput of randomized testing using MF++

Library Test/hour % generation % compilation % execution
Boolector 605.64 36.54 20.77 42.66
CVC4 88.99 16.22 4.75 78.98
isl 256.46 67.49 30.84 1.66
Yices2 711.14 43.87 20.72 35.37
Z3 161.96 36.62 8.15 55.19

The aim of coverage-guided test case generation is to produce
small, high quality tests which target a specific, previously
untested coverage point. Because they come equipped with a
test oracle, the idea is that these tests have future value for
regression testing. Our contributions to Z3 have already shown
value in identifying two heap use-after-free errors [31], [32].

The tests we have added so far improve coverage of various
components. In Z3 this includes the non-linear SAT solver,
handling of polynomials, and various internal solver edge-cases;
in Yices2 our contributions improve coverage of the C/C++ API,
features of model creation and application, and term-handling.
Our contributions so far are merely a proof of concept: the
additional coverage they provide is small compared to that
already achieved by the overall test suite (an improvement
of less than 1%). However, the process we have put in place
can be further iterated to yield oracle-equipped tests whenever
MF++ is able to cover more code than the regression test suite.

Before submitting tests, we perform further manual reduction
than what the reducer automatically provides. In addition to
removal of boiler-plate code and simplification of variable
names (which could be automated), this process was primarily
driven by library-specific semantics that the reducer is unaware
of. For example, in isl, the objects we generate are created
via sequences of API calls. However, we can simplify the
generation of a set, for example, by instead creating the set
from a string representation, rather than the sequence of API
calls, essentially folding multiple API calls to a single function.

D. Performance of Test Case Generation and Reduction

We present some data demonstrating the throughput of testing
using MF++, and the performance of test case reduction. While
there are no suitable existing tools with which to present a
performance comparison, we believe this data will be valuable
to researchers investigating similar techniques in the future.

To indicate the throughput of testing, Table I shows the
average number of test executions per hour for 20-hour runs
of each of Z3, isl, Yices2, and CVC4, and a 6-hour run of
Boolector, and the percentage of time spent on test case
generation, compilation of test programs, and test execution.
These tests were run on a Ubuntu 20.04 Docker container,
hosted on a machine with an Intel Core i7-6700 3.40 GHz
CPU and 16GB of RAM.

The percentages across each SUT do not add up to exactly
100% due to the system overhead. We observe a rather wide
throughput, from 89 tests per hour, up to 711. The internal
difference between experimental runs are internal parameters
(e.g., number of variants, recursion depth), and a few SUT-
specific functions that we defined based on specific capabilities.

TABLE II: Performance of test case reduction of 46 reductions

Min Max Median Mean
Reduction factor (%) 10 97 69 61
Reduction time (s) 13 1110 116 257
Reduction attempts 8 789 85 151

This doesn’t quite explain the large discrepancy between CVC4
and Yices2, as they both execute over the SMT_QF_NIA theory.
The results do show a fairly large time spent in execution for
CVC4, therefore the difference might be due to implementation.

Overall, generation does provide a rather substantial overhead
for testing, and we are aware of certain possible optimizations
to be done in MF++. Otherwise, the time spent in compilation
and execution is largely SUT-dependent.

Regarding the effectiveness of test case reduction, Table II
shows performance data for 46 reduction sessions—reductions
associated with 18 of the 21 coverage-guided tests of §V-C,
each repeated three times (for the other three tests it proved
difficult to subsequently build the precise version of the library
that was used when the coverage point was first investigated).
These experiments were executed on a similar setup as above,
except with a Intel Core i7-4770 3.40 GHz CPU.

We observe that the various reduction factors we investigate
are rather volatile — between 8 and 789 reduction attempts
per session, and between a 10% to 97% reduction in size. This
indicates that the underlying tests and SUTs heavily affect the
reduction process, as one would expect. However, an average
of a 61% reduction rate overall, with an average time of 151s,
indicates our implementation of the reducer is effective at
removing large swathes of unnecessary code. We also separately
compute the total size shrinkage in bytes across all 18 tests,
and observe a total reduction of 88%.

VI. RELATED WORK

Metamorphic testing and the oracle problem. Metamorphic
testing [6] aims to circumvent the oracle problem. The oracle
problem is at the core of software testing and has received
lot of attention, which we broadly categorize into works that
propose (pseudo-) oracles for various domains (e.g., [33], [34],
[35], [36], [37], [38], [39], [40]) and methods for generating,
learning and improving oracles (e.g., [41], [42], [43], [44],
[45], [46], [47]). See [5] for a recent survey on the oracle
problem.

Metamorphic testing has been applied to many domains,
including compilers and code generators [48], [49], [50], [51],
machine learning [52], autonomous driving [53], stochastic
optimization [54], simulation and modeling [55], [56], web
services and systems [57], [58], and sentiment analysis [59]
(see [60] for a survey on metamorphic testing). Our work is
distinct because it is an instance of metamorphic fuzzing: we
have a set of metamorphic relations (equivalent implementa-
tions of derived operations) that we compose in a randomized
fashion to yield rich test cases. In contrast, most existing
metamorphic testing approaches involve using a fixed set of
metamorphic relations to generate a set of follow-up tests from
a fixed test suite. The most closely-related work is methods for



metamorphic compiler testing that involve random application
of semantics-preserving transformations [48], [50], [61], [62].

Our approach of declaring derived operations in terms of one
another is related to composition of metamorphic relations [63],
but more general: rather than merely providing the output of one
metamorphic relation to another, our approach allows a derived
operation to be invoked from anywhere in the implementation
of another derived operation.

MF++, but not its design and implementation, is discussed
in a case study on metamorphic approaches to fuzzing [64].

Property-based testing. Property-based testing [65], [66],
[67], [68], [69] involves writing a fixed unit test for which
certain inputs are left unspecified. Random generation is then
used to search for inputs that make the unit test fail. Our
approach is similar in that it uses random input generation,
but fundamentally different in that we do not perform input
generation with respect to a fixed unit test, but rather we
generate the unit test by randomly constructing a sequence
of derived operations and then expanding this sequence in
multiple equivalent ways. It would be possible to encode this
as property-based testing by generating random-yet-equivalent
sequences of operations as part of the process of random input
generation. This would merely amount to re-implementing our
approach inside a property-based testing framework.

Redundancy-based oracles. Our use of equivalent implemen-
tations is related to work on synthesising test oracles by
exploiting software redundancy [70], [71]. This line of work
observes that many systems exhibit natural redundancy—e.g.,
the put and putAll methods on a multimap data structure are
implemented in a fundamentally different manner, but should
behave equivalently when putAll is used with a singleton
set. Exploiting such redundancy allows methods to be cross-
checked against one another. A key difference is that rather
than seeking existing redundancy within an implementation,
our approach involves the library developer explicitly writing
multiple redundant implementations of each derived operation,
giving them the freedom to exercise the library in ways that they
predict might be interesting from a bug-finding perspective.

Another testing approach that exploits redundancy is the
ASTOOT method for testing object-oriented programs [72].
Like our approach this involves testing equivalent sequences of
operations with respect to a user-supplied equivalence check,
but it is not based on randomized testing.

Coverage-guided test case reduction. The design of the
MF++ reducer is based on hierarchical delta debugging [18],
a specialized form of delta debugging [17]. Like the C-Reduce
tool [73], our reducer applies transformations that are aware
of C++ syntax, but unlike C-Reduce our reducer is heavily
tailored to the syntax of MF++-generated tests (whereas C-
Reduce is a generic reducer for C/C++ programs). Reducing
with respect to coverage points, rather than bugs, is an example
of cause reduction [19], [20]. Coverage-guided reduction has
been combined with fuzzing to generate conformance tests for
the Vulkan graphics API [23], but unlike our approach this
work required test oracles to be added manually.

Test suite generation. Many techniques have been proposed
for automated generation of high coverage test suites, e.g.,
based on genetic algorithms [3], [74], feedback-directed random
generation [4], [75] and symbolic execution [76], [77], [78]. A
limitation common to these techniques is that generated tests
do not have straightforward oracles. For example, Randoop [4]
generates test suites that characterise what the system under
test does today so that changes to this behaviour can be
automatically identified, while test generation using genetic
algorithms has proposed using mutated versions of the system
under test to serve as an oracle [74]. In contrast, our approach
provides a metamorphic oracle by construction. The trade-off is
the one-off manual effort associated with using our approach.
Testing SMT solvers. Four of our case studies are SMT
solving libraries. Recent works have focused specifically on
testing SMT solvers. The semantic fusion technique [79] has
discovered many in Z3 and CVC4, and the STORM technique
has found soundness bugs in a variety of SMT solvers [80].
These techniques are metamorphic in nature: they involve
manipulating existing formulas to yield new formulas whose
satisfiability can be based on that of the original formula.

VII. CONCLUSIONS AND FUTURE WORK

Our approach to metamorphic fuzzing enables automated
generation of library tests with in-built oracles, based on a
specification that the library developer provides as a one-off
manual effort. We have shown that our implementation of this
approach in the MF++ is effective at bug-finding, revealing
21 previously-unknown bugs across four of our case study
libraries. We also present a novel method for coverage-guided
test case generation, leveraging the test case reducer of MF++
to yield small tests that can be added to library regression test
suites, and we have been successful in integrating 21 test cases
into open source library regression test suites so far.

In future we plan to apply MF++ to additional libraries in
more diverse domains; e.g., the cairo [81] graphics library has
a different approach to maintaining and modifying its state
than what we have seen in our existing case studies. There
is also scope for deepening the specifications of our existing
libraries, e.g., to consider a richer set of SMT theories.

In this work we have opted to build a practical tool that really
works for C++ libraries, at the expense of requiring the user
to put manual effort into writing equivalent implementations
of derived operations. We are sceptical as to how practical it
would be to relieve this manual effort, due to the difficulty
of program analysis for full-blown languages such as C++.
However, we believe there is potential for static and dynamic
analysis to aid in suggesting possible equivalences to the user,
as well as providing additional diagnostic support to help the
user debug the manual ingredients that they provide.
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