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Abstract

Designing a 2048 core high performance cluster, includ-

ing an appropriate parallel storage complex and a high

speed network, under the pressure of limited budget (2.6

Mio Euro), performance, thermal and space limitations is

really a challenging task.

In this paper, we present our design decisions and their rea-

sons, our experiences during the installation stage as well

as performance numbers using well-known benchmarks in

the field of scientific computing, networking and I/O, and

real world applications.

1 Introduction

Up to the beginning of the year 2000 the supercomput-

ers in the TOP500 list1, was dominated by Massively Paral-

lel Processor (MPP) (51.6%) and Symmetric Multiproces-

sor (SMP) (33.8%) systems. Cluster systems (5.6%) played

only a minor role. Since then the cluster architecture has

become the dominant supercomputing platform (81.2% in

11/2007 issue of TOP500 list). This was mainly due to a

growing PC/server market, which made the single machine

more affordable, the broader support of Linux, the inven-

tion of high-speed networks as well as a growing software

stack which simplified the setup, administration and pro-

gramming [17, 27].

1.1 Supercomputing in Chemnitz

The growing complexity of scientific problems and the

demand of more compute power led to the procurement

1bi-annual ranking of fastest supercomputers in the world, issue

11/1999

of the first supercomputer at the Technical University of

Chemnitz (TUC), a Parsytec GC 128 PowerPlus which was,

in 1994, one of the fastest machines in Germany. After

4 years it had become obsolete and the need for a new

system which had to be able to satisfy the growing needs

of the steadily growing user community became evident.

To achieve the best price performance ratio, the university

computing center decided to design and build their own

cluster computer from desktop PCs running Linux. Two

independent Fast Ethernet networks served as high perfor-

mance communication and administration mediums. This

new system was named CLiC (Chemnitzer Linux Clus-

ter) and was operational in 2000. This cluster was, in

the Top500 metric, the fastest in Germany and the sec-

ond fastest in the category self-made in the world after the

CPlant/Siberia at the Sandia National Laboratories. Also

the price-performance ratio was one of the best in the world.

The user community as well as the complexity of scien-

tific problems grew further which led, 4 years later, to new

discussions about an update of the supercomputer. A short

overview of current projects is given in [1].

We will describe the design process, the hardware and

software experiences with this new system, called CHiC

(Chemnitzer High-Performance Cluster) in the following

sections. Several results of synthetic benchmarks and real

world applications are presented in Section 3 to assess the

performance of the newly deployed cluster. We conclude

the relevant results in Section 4 and outline the future work

in Section 5.

2 CHiC

To further strengthen the HPC capabilities at the TUC

and thus accelerate the scientific outcome, the CHiC was

optimized for high-performance parallel computing as well



as high job throughput. In this section we are discussing the

design, hardware, software and the first experiences with

the new system.

2.1 Design

In the year 2000 the CLiC was an effort to build a big

cluster (528 nodes) using desktop computers and a Fast Eth-

ernet communication network. All nodes were connected

through a single Fast Ethernet switch. To utilize the budget

of 1.25 Mio Euro this cluster was self-made and exclusively

based on open source software and tools. This system ran

for about 7 years and was a milestone for the researchers in

Chemnitz as well as for the whole HPC community in Ger-

many. The main achievement of the existing CLiC system,

the excellent price performance ratio was retained as one of

the main goals for the new CHiC system which is described

in this article.

The experiences with the aged CLiC set some further

goals we had to fulfill. The most error prone components

of the old system were the local hard disk, the memory

modules and the power supply. On the software side the

Andrew Filesystem (AFS) was sometimes difficult to han-

dle and to stabilize. To avoid or at least mitigate the above

problems, the new system had to remove or improve these

components. Therefore we decided to run diskless compute

nodes using server components and ECC protected mem-

ory modules. The whole software repository should reside

in a high performance clustered file system to enhance the

access performance to the application data and avoid some

problems of AFS during application runs.

The budget for the new system was set to about 2.6 Mio

Euro. For this budget we had to design a balanced machine

which would dissipate not more heat than 200 kilowatt. Fur-

thermore, we decided to only self-design the cluster and

did not deploy the hardware but we wanted the full re-

sponsibility of the software installation process. To support

the design process we collected user requirements through

project descriptions, questionnaires as well as interviews,

and benchmarking of user applications. The results showed

that we would need a well balanced general purpose system

with high-performance in terms of floating-point operations

per second as well as memory bandwidth, and job through-

put capabilities. In Figure 1, the concept of the targeted

cluster system is shown.

Compute Nodes After an evaluation of current commod-

ity processors at that time we found that the best price-

performance ratio could be achieved with dual processor

SMP systems. The emerging dual core processors improved

this further. The processor of choice could be one of AMD

Opteron, Intel Xeon or IBM PowerPC-970. For the mi-

gration from the old CLiC to the new system the Intel and

Campus network
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login node (with hdd)

management node (with hdd)

... ...

IO node (w/o hdd)

graphics node (with hdd)

InfiniBand cable

storage complex

max. 8 cables

GigaBit−Ethernet cable

InfiniBand Fabric

12 graphics nodes

max. 8 cables

(Redundancy)

2 cables each

6 cables each

Campus network

access gateway

512 compute nodes

compute node (w/o hdd)

Figure 1. Cluster Concept at a Glance

AMD processors seem to be best suited but we left this de-

cision to the vendors. A compute node had to be equipped

with 4 GiB of main memory which results from the user re-

quirements. As mentioned above, to improve the stability of

one node we decided against hard disks and use server com-

ponents with better mean time between failures (MTBF).

To support some special projects, we integrated 12 nodes

with graphics card accelerators in the cluster.

Network Due to the higher budget it was possible to de-

sign the system with a high-performance network in terms

of latency and bandwidth as compared to the communica-

tion network of the CLiC which was a Fast Ethernet net-

work comprising one big switch. To simplify the network

management we decided to request for proposals using only

one network for all tasks like communication, storage I/O,

management, monitoring and campus connectivity. The

only network architecture which offered capabilities for low

latency, high bandwidth, quality of service (QoS), conges-

tion control, combined with a broad range of software APIs

was InfiniBand [11, 12]. We had gained experiences with

this network technology since its market introduction in

2002 [5, 8, 10, 9, 20, 24]. InfiniBand as a switch-based net-

work technology supported a 288-port switch as the biggest

single switch solution at that time. Therefore, we had to

plan a hierarchy of InfiniBand switches which is shown in

Figure 2. This hierarchy has some advantages like the avail-

ability, if one of the big switches fails all nodes could com-

municate with half the bandwidth (5Gbit/s) in the average

case. If one of the small switches fails only 12 nodes would

not be reachable. The disadvantage of using this switch

hierarchy is that there are communication patterns which

could half the bandwidth in the worst case. We could not

mathematically prove this but one can intuitively lay these

patterns over the hierarchy.

Storage For the new system, there were no special stor-

age requirements regarding the capacity. Therefore, we had
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Firewall module
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24−Port InfiniBand switch
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Figure 2. Network Concept at a Glance

taken the latest storage consumption of the project directo-

ries on the old system and calculated the necessary capacity

for the next 5 years under the assumption that the needed

capacity doubles every 12 months. To ensure I/O scalabil-

ity and a good price-performance ratio we decided to re-

quest at least 2GBytes/s of aggregate throughput to the hard

disks. The storage complex should be as redundant as pos-

sible therefore we required RAID level 6 or better which

means that 2 hard drives could fail without data loss. Also

the connectivity to the cluster had to be redundant.

On the software side, we chose Lustre from Cluster File

Systems Inc. because of its good performance [6], native

InfiniBand support, robustness and open source availability.

We tested other open source filesystems like PVFS2 and

GFS but both didn’t show equivalent properties [15]. We

left it to the vendors to offer a complete proprietary solution

which would be conforming to our requirements.

Software Since we had decided to run diskless compute

nodes we looked for a maintained open source toolkit to fa-

cilitate this setup. The only software package we found was

the Warewulf cluster toolkit [16]. It supports the creation of

node images, and the provisioning, management and moni-

toring of these nodes. As the underlying Linux distribution

we chose Scientific Linux 4.x as RedHat Enterprise Linux

clone due to its support in the computing center.

All the remaining software for the tasks of monitoring, man-

agement, message passing, development and job startup

were required to be completely open source. The only ex-

ception from this was the procurement of an optimizing

compiler suite and math library for the offered hardware

architecture.

2.2 Hardware

The CHiC consists of 530 compute, 12 visualization, 8

I/O, 2 management and 2 login nodes. All nodes are con-

nected with a high speed InfiniBand network and connected

to a 60 TiB (80 TiB gross) storage complex running the par-

allel filesystem Lustre. The hardware was delivered by IBM

(nodes), Voltaire (InfiniBand interconnection network) and

Megware/Xiranet (Storage System) and was installed in 18

water cooled racks from Knürr.

A compute node (IBM x3455) comprises two AMD

Opteron 2218 Dual-Core 2.6GHz CPUs, 4GiB DDR2

(667MHz) ECC RAM, a single-port Voltaire InfiniBand

410Ex HCA and an Ethernet port with IPMI support. Each

visualization node (IBM IntelliStation A Pro) is equipped

with two AMD Opteron 285 Dual-Core 2.6GHz CPUs,

4GiB DDR (400MHz) ECC RAM, a two-ported Voltaire

InfiniBand HCA 400 (PCI-X) and an Ethernet port (without

IPMI). The visualization nodes are also equipped with an

nVidia Quadro FX 4500 X2 graphics card and two 250GiB

SATA HDDs. The I/O nodes are identical to the compute

nodes except that they have 16GiB DDR2 (667MHz) ECC

RAM, a two-ported Voltaire InfiniBand HCA 400Ex and a

80GiB SATA HDD. Two I/O nodes have an integrated LSI

SAS controller. A management node (IBM x3755) contains

two AMD Opteron 8218 Dual-Core 2.6GHz CPUs, 6GiB

DDR2 (667MHz) ECC RAM, 4 Ethernet ports with IPMI

support, one two-ported Voltaire InfiniBand HCA 400Ex

and a 4x300GB 10k SAS RAID5 with hot-spare. The lo-

gin nodes (also IBM x3755) are similar to the management

nodes with the exception that they have four AMD Opteron

8218 Dual-Core with 2.6GHz and 16GiB DDR2 (667MHz)

ECC RAM.

The nodes are connected with four different networks

instead of one single InfiniBand network as planned orig-

inally. The reason for this was that IBM could sell the

x1350 cluster product only with all these networks bundled.

Maybe, an InfiniBand-Only installation had been possible

with an IBM Business Partner but there was no appropriate

offer. Each node connects to the 10Gbit/s InfiniBand fabric,

a low-end Gigabit-Ethernet network, a serial console net-

work and a Keyboard-Video-Mouse (KVM) network. The

InfiniBand switch components, comprising two 288-port

switches (ISR 9288) and 46 24-port switches (ISR 9024S),

form a 5-stage Clos network. This network is mainly used

for computation and some administration tasks.

The remaining administration tasks are done through the

Ethernet network. Each rack is connected to the other racks

by only two Gigabit-Ethernet lines and all compute nodes

in one rack are connected to one Gigabit-Ethernet switch

which offers full bisectional bandwidth.

The other two networks are used for monitoring purposes

only. To connect all nodes with the campus network, we use

a special InfiniBand-Ethernet gateway device (ISR 9096)

which provides the remaining 48 InfiniBand ports.

The 60TiB storage complex consists of 10 RAID con-
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troller systems (XAS1000), 10 SATA JBODs2 with 16

500GiB hard disks each and 1 Serial Attached SCSI (SAS)

JBOD with 16 36GiB SAS hard drives. The SAS JBOD

is connected to two of the I/O nodes and serves as meta

data repository for the parallel filesystem Lustre. For ob-

ject data storage the 10 SATA JBODs are separated in 20

RAID-6 formations which are managed by 20 RAID con-

trollers (two RAID controllers per host). The connection

topology is shown in Figure 3. This Figure also shows the

redundant approach by creating pairs of RAID controllers

and JBODs.

2.3 Software

Using Scientific Linux 4.4 (RedHat Enterprise Linux

clone) ensures the best support for all hardware (especially

the IBM x3755 systems) and software components (espe-

cially Lustre parallel filesystem) we had installed. Another

reason is the usage of this distribution in the local comput-

ing center. To further facilitate the installation process we

decided to work with the Extreme Cluster Administration

Toolkit (xCAT) [3] in conjunction with the Warewulf toolkit

to run diskless and diskful nodes under one administration

domain. We use Nagios version 2.9 to monitor all the nodes

and infrastructure components.

On the system side the Open Fabrics Enterprise Edition

InfiniBand software stack in version 1.1 is used. To acceler-

ate the I/O throughput we installed the object based parallel

filesystem Lustre 1.6.0beta7 where all home/project direc-

tories and software installations reside. This filesystem in-

cludes native InfiniBand support and offers high throughput

performance.

For development of application codes the GNU com-

piler suite in version 3.4.6 and 4.2.0 as well as the Qlogic

EKOPath Compiler suite 3.0 were installed. As MPI mid-

dleware Open MPI 1.2, MVAPICH-0.9.9 and MVAPICH2-

0.9.8 can be used. Several math libraries, like Goto BLAS

1.13 and AMD Core Math Library (ACML) 3.6.0 are avail-

2JBOD - Just a Bunch of Disks, means here a chassis with special con-

troller hardware

able for users. To easily manage this software set and their

environment variables the Module [4] tool was installed.

To facilitate requests for nodes we installed the resource

management system TORQUE in version 2.1.8 and the

scheduler Maui in version 3.2.6p20. This ensures a seam-

less migration from the old system where a similar installa-

tion using OpenPBS was used because the user commands

are the same.

2.4 Experiences

During the installation and the first months of produc-

tion, several experiences were gathered on hardware and

software level. Generally, the IBM hardware seems to be

very stable and reliable so far. However, get the best mem-

ory performance a BIOS update was necessary which dou-

bles the achievable memory bandwidth. The management

controllers (IPMI) has a documented feature that they are

not available during PXE boot stage. Sometimes, after re-

booting a node it might happen that the node does not get a

DHCP lease. In this case the only way to reboot the node

again is to use the switched power distribution unit. Other-

wise, the IPMI information is really helpful in finding hard-

ware defects if they occur.

The InfiniBand network is performing really well but

some minor drawbacks of the current software installation

could be revealed. We tried using IP over InfiniBand in

an high-availability mode on our server nodes but when

migrating the IP address from one port to the other the

server node itself was not available anymore from the other

nodes. We are convinced that the problem will be solved

with OFED version 1.2. From time to time we experience

a similar problem where a random node can not reach the

management node but all the others. This might relate to the

same problem as described before. On the InfiniBand hard-

ware level, the InfiniBand-to-Ethernet gateway revealed a

single point of failure, the software image. To ensure full

redundancy and no single point of failure one would have

to insist on buying at least two devices. We accepted the

one-device-solution with hardware redundancy in the inter-

nal fabric due to delivery problems of other solutions.

A documented problem with the InfiniBand stack itself oc-

curs if the system() C-function, which in itself calls fork(),

is called. This leads into a failure during the job run and an

abort of the job. To solve this problem we have to install a

relatively recent vanilla kernel and the latest versions of the

InfiniBand stack and MPI implementations.

The Lustre filesystem shows good performance numbers

as can be seen in the next section but sporadically it oc-

curs that the Metadata server behaves strangely when the

filesystem is under load. Currently, this could be seen when

running several stress tests but not with production codes.

Here we also believe that an update to the latest stable ver-



sion might resolve this issue. The biggest drawback of cur-

rent Lustre implementation is that, if one Object Storage

Target – OST3 fails and is lost, one part of the filesystem is

missing. Due to the even distribution of files over all OSTs

the loss of one OST could mean that the remaining data is

useless and one is required to replay a backup of lost files.

That is, the used RAID level should be as redundant as pos-

sible to make this problem less likely. Besides these minor

issues, the Lustre filesystem exhibits a really good failover

capability. The only task to do is to mount the filesystem on

the hot-standby metadata or object storage server and en-

sure connectivity. Due to the several issues we were facing

with the Lustre parallel filesystem we are now proposing to

have some kind of backup-system.

The batch system TORQUE is adaptable to all problem

cases, has a simple configuration and a good support for

diskless clients. However, we could not configure all of our

policies with the standard configuration process, therefore

we have written a wrapper-script to the main user command

qsub which enforces these policies now. Other goodies are

the big user community and a Python interface to the batch

system.

3 Benchmarks

For assessing the effectiveness of the cluster system

and its software stack we have performed several micro-

benchmarks and application runs. This will show the indi-

vidual and combined performance of several subsystems.

3.1 Synthetic Benchmarks

In the following we will present performance num-

bers of STREAM, Intel MPI Benchmarks (IMB), High-

Performance Linpack (HPL) and Interleaved Or Random

(IOR) benchmark.

STREAM The STREAM benchmark [19] is a simple but

effective stress test of the memory subsystem. The bench-

mark consists of four kernels, COPY, SCALE, ADD and

TRIAD. TRIAD performs the operation

a[i] = b[i] + q · c[i]

with vectors of 2 million double precision elements (8 Byte

words). This is supposed to avoid cache effects. Further-

more one can simply calculate the achieved floating-point

performance. One iteration step of the above calculation in-

cludes two floating-point operations. This is multiplied with

3Lustre differentiate between Object Storage Server (OSS) and Object

Storage Target (OST). The latter one represents the real block device and

provides access to the chunks of user files. The OSS provides the network

request handling for one or more local OSTs

the number of iterations and then divided by the execution

time. Using the result of memory speed and floating-point

performance one can calculate the balance of the system

which is defined as

balance =
peak floating ops/s

sustained memory ops/s

This balance can be interpreted as the number of floating-

point operations that can be performed during the time for

an average memory access. To calculate the sustained mem-

ory ops/s one must simply divide the measured memory

bandwidth by the number of bytes of one double precision

element, in our case 8 bytes.

To get more comparable performance numbers we

benchmarked an Intel Woodcrest system (2.0GHz dual-

SMP dual core, 533MHz4 DDR2 main memory) and

one of our compute nodes5 using several numbers

of DIMM modules (2, 4 and 8) in the machines.

The gcc-4.2 and the PathScale-3.0 compilers with the

-O3, -march/-mcpu/-mtune flags set to the ap-

propriate architecture were used to compile the bench-

mark. OpenMP support was enabled and the additional

-fprefetch-loop-arrays flag was used for for gcc-

4.2.

Table 1 shows the results of the TRIAD benchmark, in-

cluding the measured memory bandwidth and the “balance”

as described above. The peak floating-point performance

of a single Opteron core is 2FLOP/cycle · 2.6GHz and

4FLOP/cycle · 2.0GHz for a single Woodcrest core.

The first observation is the clear advantage of the Path-

Scale compiler for both architectures. It seems that the

prefetching of data from memory is much better imple-

mented with this compiler. Another problem we have been

facing is the high variance in the results achieved with the

-fprefetch-loop-arrays optimization flag of gcc

compiler running with 4 threads. Here we took the best

value for comparison but sometimes the achieved band-

width is only half of the given values. Finally, one can

clearly see the advantage of the AMD architecture with in-

tegrated memory controller versus the shared memory con-

troller of the Intel one.

At the time of procurement there were no official Intel com-

piler available for the AMD64 architecture. More recent

benchmarks we made with version 10 of Intel’s compiler

suite have shown the same relative gap between AMD and

Intel processors. Using the latest Intel compilers improved

4We had only these DIMM modules in the machines but the 667MHz

DDR2 modules would only be marginally better
5Due to the multiplier used in the Opteron to get the CPU speed,

2.6GHz is a perfect match with the memory speed of 667MHz because

no decrease in memory bandwidth is necessary



gcc-4.2 pathscale-3.0

Opteron Woodcrest Opteron Woodcrest

BW (MB/s) Balance BW (MB/s) Balance BW (MB/s) Balance BW (MB/s) Balance

2 DIMMs 3294.2 12.6 3063.7 20.9 5655.7 7.3 3672.8 17.4

1 Thread 4 DIMMs 3227.1 12.9 3252.0 19.7 5572.9 7.4 3896.4 16.4

8 DIMMs 3731.0 11.1 3338.1 19.2 5769.8 7.2 3959.6 16.2

2 DIMMs 3708.6 22.4 3230.5 39.6 6056.0 13.7 3967.9 32.2

2 Threads 4 DIMMs 3212.3 25.9 4345.8 29.4 6114.7 13.6 5061.7 25.3

8 DIMMs 4854.7 17.1 5232.6 24.5 6520.9 12.7 5876.6 21.8

2 DIMMs 3142.9 52.9 3255.1 78.6 5025.1 33.1 3949.3 64.8

4 Threads 4 DIMMs 7426.8 22.4 4322.3 59.2 11527.4 14.4 5111.2 50.1

8 DIMMs 9345.7 17.8 5294.5 48.3 12796.4 13.0 5653.6 45.3

Table 1. Results of STREAM TRIAD Benchmark

the bandwidth to the memory compared with the PathScale

compiler results.

IMB The Intel MPI Benchmarks [13] provide a set of

concise communication kernels for evaluating the most im-

portant MPI functions. It delivers simple timings and

throughput values for message sizes between 1 Byte and

4 MiB in the standard mode.

Our goal is to compare the four different MPI implemen-

tations, Open MPI 1.2.0, MVAPICH2-0.9.8, MVAPICH-

0.9.8 and MVAPICH-0.9.9beta. For space reasons we only

compare the PingPong, PingPing, SendRecv, Allreduce,

Alltoall and Broadcast benchmark results because they are

the most important ones for us.

The Ping-Pong kernel uses the blocking MPI Send() and

MPI Recv() functions to implement its well-known uni-

directional communication pattern. The Ping-Ping ker-

nel uses the non-blocking MPI Isend() and starts this op-

erations on both sides simultaneously and then block in

an appropriate MPI Recv(). In this way it is similar to

a Ping-Pong benchmark with non-optimal conditions (on-

coming traffic). To measure the bi-directional performance,

the Send-Recv kernel establishes a periodic communica-

tion chain where each process receives from the left and

sends to the right. This benchmark should reveal the pos-

sible full-duplex bandwidth. The collective benchmarks,

in our case Allreduce, Bcast and Alltoall, are simple calls

to their appropriate collective MPI functions with a simple

root-rotation (cf. [13]).

In Figure 4 and 5 we show the measured bandwidth for

the PingPong and PingPing benchmark using two nodes (1

core per node). The results for SendRecv, Allreduce, All-

toall and Broadcast using 32 nodes (1 core per node) are

shown in Figure 6, 7, 8 and 9.

In the PingPong benchmark all MPIs show nearly the

same numbers and achieve bandwidth values of about

900MB/s whereby Open MPI exhibits a little bit better

bandwidth for large messages and a bit worse for small mes-
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Figure 4. PingPong Results

sages. Between 8KB and 16KB message size all MPIs im-

plements the transition from an eager protocol to a hand-

shake protocol.

Bigger differences among the MPI implementations can be

seen in the PingPing benchmark which simulates a non-

optimal condition. The maximum bandwidth achievable

is 700MB/s for MVAPICH-0.9.8, about 750MB/s (Open

MPI) and about 800MB/s (MVAPICH2 and MVAPICH-

Beta) when using a 4MB message size.

The SendRecv test shows twice the bandwidth of the one-

way PingPing benchmark as expected but a strange behav-

ior can be seen for MVAPICH2 which achieves less than

half the bandwidth of the other MPIs. Sometimes this ef-

fect is visible on higher node counts but we have no expla-

nation, currently. When running on 2, 4, 8 and sometimes

16 nodes it achieves the same bandwidth as MVAPICH-

0.9.9beta. This effect is still under investigation.

Another transition from InfiniBand inline send to “normal”

send operations seems to be visible in the Alltoall bench-

mark as the first buckling. Another buckling for Open MPI

is seen again between 8KB and 16KB message size which

comes from the protocol transition. Maybe due to some
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Figure 5. PingPing Results
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Figure 6. SendRecv Results
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Figure 7. Allreduce Results
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Figure 8. Alltoall Results
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Figure 9. Broadcast Results

optimizations of the Alltoall MPI function the other MPIs

didn’t show this behavior at this message size. The latency

of this MPI collective for small message sizes is worse for

Open MPI compared to the other MPIs.

The Allreduce benchmark exhibits a worse behavior for

Open MPI compared to the other MPIs as already seen in

the Alltoall benchmark. The Broadcast benchmark shows

no significant differences among the several MPIs.

The biggest problem with this benchmark is the ambigu-

ous interpretation of the results. For some parameter test-

ing this benchmark seems to be a good test tool but for

an overall evaluation of the several MPI implementations

it should always be used in combination with application

benchmarks. One example is the usage of polling, or call-

back triggered completion. Polling is the fastest method for

waiting on messages but wastes CPU cycles. So, what is

good for micro-benchmarks need not necessarily be good

for real applications [2].



HPL Solving a system of linear equations is fundamen-

tal in the field of scientific computing. The typical way to

implement an algorithm to solve such a system of linear

equations is using an LU factorization and a backward sub-

stitution.

The High-Performance Linpack benchmark [21] solves a

random dense linear system on distributed-memory com-

puters using the above methods. The aim is to measure the

maximum floating-point performance of a supercomputer.

The algorithm itself is scalable but depends slightly on the

latency of the communication network and on the memory

subsystem which is already shown in Figure 10. For this

test we used merely 4 nodes with 16 cores and compared

when using 4 or 8 memory slots out of 12, and using the

TCP stack with IP over InfiniBand or the native InfiniBand

verbs inside the MPI implementation. The parameters were

always the same in the input file for the benchmark and we

measured the floating point performance for several process

grids. Using the definition of the efficiency below we can

achieve an about 3% better efficiency when using the na-

tive InfiniBand verbs which exhibits a much lower latency.

We can add a further 1% if we use 8 instead of 4 memory

slots. We repeated the benchmark several times and the rel-

ative gap was still the same. Running on 4 nodes we could

achieve an efficiency of 84% when taking the best measured

value into account.
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Figure 10. HPL Results

Therefore, this benchmark can be used to get another

measure of the balance of the whole system, the efficiency.

system efficiency =
Rmax

Rpeak

Rmax is the measured HPL performance and Rpeak is the

theoretical peak performance which is presented in the

STREAM paragraph. The result of this benchmark is used

for the well-known bi-annual Top500 list of the fastest

supercomputers in the world on which this benchmark was

run. The problem with this benchmark is that it primarily

assess one aspect of today’s supercomputers mainly, the

floating-point performance. A ranking depending only

on this result is not expressive enough to assess a super-

computer. To overcome this problem the HPC Challenge

suite [18] was composed.

The biggest measure we have finished on the CHiC was

using 520 nodes (2080 cores), the PathScale-2.4 compiler

suite, MVAPICH-0.9.7-mlx2.2.0 (shipped with OFED-1.1)

and the Goto-BLAS library version 1.10. The achieved re-

sult was 8210 GFlop/s which is a 76% efficiency value. The

CHiC was entered in the Top500 list with rank 117 in June

2007 (rank 237 in November 2007) . Using an equivalent

system utilizing Intel Woodcrest CPUs one could achieve

about twice as much.

IOR The best way to assess the performance of the par-

allel file system and its underlying hardware components is

to benchmark with several application access patterns. The

benchmark b eff io [23] is aimed at producing a character-

istic average number of the I/O bandwidth achievable with

parallel MPI-I/O applications exhibiting various access pat-

terns. The result should be a comparable number for stor-

age systems similar to the Top500 benchmark. This bench-

mark was not executable on our Lustre file system due to

lack of full POSIX locking support in version 1.6.x of Lus-

tre. Therefore we have chosen another benchmark, IOR [6],

which fullfills the above requirement. IOR is a parallel file

system bandwidth testing code which was initially devel-

oped to test GPFS [25] from IBM on ASCI Blue Pacific and

White machines at the Lawrence Livermore National Labo-

ratory [28]. The supported access patterns were an attempt

to represent ASC application’s access patterns.

The benchmark has the capability of 3 access patterns,

“one file per process”, “shared file segmented access”, and

“shared file strided access”. The main difference of the two

shared file access patterns is whether the data of a process is

contiguous (segmented) or non-contiguous (strided) in the

file. Several interfaces like POSIX and MPI-IO are avail-

able with the possibility to fine-tune some interface specific

parameters like the usage of collective functions with the

MPI-IO interface. The result of the benchmark is always

the best read/write bandwidth achieved among all repeti-

tions. The implementers justify this with the argument that

they run the benchmark during the production cycles where

other applications access the storage system simultaneously.

Our benchmark runs were performed during the production

cycles as well.

In Figure 11 and 12 we show the read and write perfor-

mance for the three access patterns described above using

the POSIX interface on several node counts. For the “file

per process” case we measured with striping of the 2.5GB

file over one object storage target (OST) or 20 OSTs. For



the “shared file” test cases the single file is always striped

over 20 OSTs. The file size is No.ofNodes · 2.5GB
whereby each node reads/writes a 2.5GB data set in this

case. The transfer size parameter of IOR is set to 1MB

which is the stripe size of the Lustre file system installation.
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Figure 11. IOR Read Results
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Figure 12. IOR Write Results

The highest values could be achieved with the “file per

process” test case with no file striping running on 96 nodes,

3.2 GiB/s write and 2.6 GiB/s read performance. These re-

sults can be held relatively stable if at least 16 nodes are

working on a big file per process. This comes from the

separation of files among the OSTs. In this case using 16

nodes each file is put on a separate OST. This means also

a relatively good scalability of this access pattern up to 500

nodes.

If a file is striped over all 20 OSTs the concurrency of ac-

cessing the hard drives shows a major impact on perfor-

mance results for the “file per process” test case when us-

ing more than 16 nodes. If less than 16 nodes are used the

write performance is much better compared to the no strip-

ing case. The read performance for this test case is always

worse due to much higher seek time overhead.

In the “shared file” benchmark the performance numbers

for node counts of 96 and 128 could not always be mea-

sured due to some strange behavior of the Metadata server

during the runs. We believe that the reason is the usage of

the 1.6Beta7 version of Lustre. The strided case shows for

node counts of more than 8 nodes a bad write performance

which was expected due to the non-contiguous access pat-

tern. The segmented case shows nearly the same write per-

formance as the “file per process” case on small node counts

which was also expected since the segmented access pattern

is nearly equivalent to the “file per process” one using one

or several OSTs. For higher node counts the access pat-

tern corresponds more with “file per process” case using 20

OSTs which can also be seen in the performance numbers.

The biggest influences on the read/write performance when

striping over all 20 OSTs is the number of locks which are

necessary to access the part of the file, and the slow seek

time of the SATA disks. More performance with the same

number of storage servers can be gained by using more hard

drives and thus more OSTs per server when running with a

big number of clients.

3.2 Application Benchmarks

In this section we are presenting some performance num-

bers of real world applications, which are used at our site,

that we could gather during the tender process. These appli-

cation runs were done on a 16 node Intel Woodcrest cluster

and a 16 node AMD Opteron cluster. Both used InfiniBand

as interconnect and the nodes were dual processor dual core

machines. The Intel cluster comprised 3.0GHz CPUs, 8GB

RAM per node with Intel compiler suite 9.x and math ker-

nel library 8.x installed. The nodes of the AMD system

were similar to the current CHiC nodes except that they

comprised 8GB RAM per node with all memory slots filled.

This system had installed the PathScale compiler suite 2.3

and the appropriate AMD math core library 3.0. For bench-

marking, both compilers were used with no aggressive op-

timization settings.

ABINIT ABINIT is a package for quantum mechanics

calculations whose main program allows one to find the to-

tal energy, charge density and electronic structure of sys-

tems made of electrons and nuclei (molecules and peri-

odic solids) within Density Functional Theory (DFT), us-

ing pseudo-potentials and a planewave basis. The results

for a small Si−SiO2 system [7] with 43 atoms, 126 bands,

48728 plane waves and a 61x61x256 FFT grid is shown in

Table 2. In this benchmark the Opteron system shows a 5%

advantage compared to the Woodcrest system. This result

seems to be mainly influenced by the speed of the memory

subsystem.



AMD Cluster Intel Cluster

Time in s 1,384.6 1,454.2

Table 2. Results of ABINIT Benchmark on 32

Cores
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Figure 13. Results of ApoA1 Benchmark

NAMD NAMD is a parallel molecular dynamics code de-

signed for high-performance simulation of large biomolecu-

lar systems. Based on Charm++ parallel objects [14] which

provide adaptive overlap of communication and computa-

tion across modules, NAMD scales to hundreds of pro-

cessors [26]. For benchmarking we used the ApoA1 test

case [22] which calculates a complex system of 92,224

atoms and is therefore a good estimate of performance for a

long production simulation. We benchmarked this test case

on 16 nodes with a various number of processor cores as

shown in Figure 13. One can clearly see the good scal-

ing behavior of the application when adding more cores per

node. This also means that the memory subsystem plays no

primary role. Due to its overlap of communication and com-

putation there is also no major impact by the MPI imple-

mentation. Finally, the computation throughput of the pro-

cessor is the primary accelerator and thus, the Intel Wood-

crest exhibits the best results.

4 Conclusions

In this paper we presented our design decisions for a

2048 processor core cluster using the InfiniBand high-speed

interconnect and the Lustre parallel filesystem. We showed

that finding a balanced system for a limited budget is a chal-

lenging task.

We presented benchmark results using micro-

benchmarks and real world applications. With the

STREAM memory bandwidth benchmark the AMD

Opteron can outperform an Intel Woodcrest system by

a factor of 2. Taking the HPL (maximum floating-point

performance) into account than it is exactly reverse. By

comparing the running time of two application test cases

we also got no real winner. The answer which architecture

is suited or not is, it depends. For the system we purchased

the accumulated benchmark results were almost similar

between Intel and AMD architectures. We chose IBM

because they offered the better overall system approach.

The Lustre parallel filesystem over our storage system

exhibits 3.2 GiB/s write and 2.6 GiB/s read bandwidth mea-

sured with IOR and 96 nodes. Under load conditions it hap-

pens from time to time that the metadata server shows some

stability issues but we believe, with installing the latest Lus-

tre version and running with the latest OFED stack these

issues will disappear.

Figure 14. View on the CHiC (1 row)

5 Future Work

To further enhance the performance of the cluster we will

work on several software components of the system. First

of all we are trying to shrink the node image to only 50MB

from currently 300MB to increase the available application

memory. For better configurability we are planning a new

qsub command implementation using the Python interface.

To accelerate the I/O speed to the Lustre parallel filesys-

tem we have the intention to create some kind of hierarchi-

cal storage management. Therefore we are investigating the

usage of a Lustre filesystem in a RAM disk. Another small

project will be the usage of our graphic accelerator cards

in the 12 visualization nodes for scientific computing. Our

work on MPI implementations and InfiniBand which is one

of the topics of our research group will bring further opti-

mization to the system.
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