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Abstract. Hybrid parallel programming with MPI for internode com-
munication in conjunction with a shared-memory programming model
to manage intranode parallelism has become a dominant approach to
scalable parallel programming. While this model provides a great deal of
flexibility and performance potential, it saddles programmers with the
complexity of utilizing two parallel programming systems in the same
application. We introduce an MPI-integrated shared-memory program-
ming model that is incorporated into MPI through a small extension
to the one-sided communication interface. We discuss the integration of
this interface with the upcoming MPI 3.0 one-sided semantics and de-
scribe solutions for providing portable and efficient data sharing, atomic
operations, and memory consistency. We describe an implementation of
the new interface in the MPICH2 and Open MPI implementations and
demonstrate an average performance improvement of 40% to the com-
munication component of a five-point stencil solver.

1 Introduction

MPI [1] has been the dominant parallel programming model since the mid-1990s.
One important reason for this dominance has been its ability to deliver portable
performance on large, distributed-memory massively parallel processing (MPP)
platforms, large symmetric multiprocessing (SMP) machines with shared mem-
ory, and hybrid systems with tightly coupled SMP nodes. For the majority of
these systems, applications written with MPI were able to achieve acceptable
performance and scalability. However, recent trends in commodity processors,
memory, and networks have created the need for alternative approaches. The
number of cores per chip in commodity processors is rapidly increasing, and
memory capacity and network performance are not able to keep up the same
pace. Because memory capacity per core is decreasing, mapping a single operat-
ing system process to an MPI rank and assigning a rank per core severely limit
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the problem size per rank. In addition, MPI’s single-copy model for both message
passing and one-sided communication exacerbate the memory bandwidth prob-
lem by using intranode memory-to-memory copies to share data between ranks.
Moreover, network interfaces are struggling to support the ability for all cores
on a node to use the network effectively. As a result, applications are moving
toward a hybrid model mixing MPI with shared-memory models that attempt
to overcome these limitations [2, 3].

A relatively straightforward and incremental approach to extending MPI to
support shared memory has recently been approved by the MPI Forum. Several
functions were added, which enable MPI ranks within a shared memory domain
to allocate shared memory for direct load/store access. The ability to directly ac-
cess a region of memory shared between ranks is more efficient than copying and
reduces stress on the memory subsystem. Sharing a region of memory between
ranks also overcomes the per core memory capacity issue and provides more
flexibility in how the problem domain is decomposed. This approach reduces
the amount of memory consumed for some data structures such as read-only
databases that replicate state across all ranks. From a programming standpoint,
providing shared memory supports structured programming, where data is pri-
vate until it is explicitly shared. The alternative, where data is shared and must
be explicitly made private, introduces more complexity into an existing MPI ap-
plication and the associated MPI implementation. Shared memory is also nearly
ubiquitous, given the prevalence of multicore processors.

This paper describes these recent extensions to the MPI Standard to sup-
port shared memory, discusses implementation options, and demonstrates the
performance advantages of shared memory for a stencil benchmark.

Motivation and Related Work

Support for shared memory in MPI has been considered before, but a number
of factors have made such support increasingly compelling. In particular, al-
though POSIX shared memory can be used independently from MPI, the POSIX
shared-memory model has several limitations that can be overcome by expos-
ing it through MPI. First, POSIX shared-memory allocation is not a collective
operation. One process creates a region of memory and allows other processes
to attach to it. Making shared-memory creation collective offers an opportunity
to optimize the layout of the memory based on the layout of the ranks. Since
the MPI implementation has knowledge of the layout of the shared-memory
region, it may be able to make message-passing operations using this region
more efficient. For example, MPI may be able to stripe messages over multiple
network interfaces, choosing the interface that is closest to the memory being
sent. Integration between the MPI runtime system and shared memory sim-
plifies shared-memory allocation and cleanup. Relying on an application using
POSIX shared memory directly to clean up after abnormal termination has been
problematic. Having the MPI implementation be responsible for allocating and
freeing shared memory is a better solution. Knowledge of shared memory inside
the MPI implementation also provides better support and integration with MPI
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tools, such as correctness and performance debuggers. Furthermore, nearly all
MPI implementations already have the infrastructure for allocating and manag-
ing shared memory since it is used for intranode data movement, so the burden
on existing implementations is light.

Previous work on efficiently supporting MPI on shared-memory systems has
concentrated mostly on mapping an MPI rank to a system-level or user-level
thread [4–7]. This approach allows MPI ranks to share memory inside an oper-
ating system process, but it requires program transformation or knowledge on the
part of the programmer to handle global and static variables appropriately. Sys-
tems specifically aimed at mixing MPI and shared memory have been developed,
effectively augmenting MPI with shared-memory capabilities as the new exten-
sions do. LIBSM [8] and the Unified Parallel System [9] are two such systems
developed to support the ability for applications to use both MPI and shared
memory efficiently. However, neither of these systems actually made internal
changes to the MPI implementation; rather, they provided an application-level
interface that abstracted the capabilities of message passing and shared memory.

The need for shared memory in MPI was brought up at the Forum by R.
Brightwell, who proposed a malloc/free interface which did not define synchro-
nization semantics. T. Hoefler later proposed to merge this functionality into
the newly revamped one-sided communication interface. Hoefler and J. Dinan
brought forward a concrete proposal, which the Forum eventually voted for in-
clusion in MPI-3. The interface described in this paper is what will be included
in MPI-3.

2 Extending MPI with Integrated Shared Memory

MPI’s remote memory access (RMA) interface defines one-sided communication
operations, data consistency, and synchronization models for accessing memory
regions that are exposed through MPI windows. The MPI-2 standard defined
conservative, but highly portable semantics that would still guarantee correct
execution on systems without a coherent memory subsystem. In this model,
the programmer reasons about the data consistency and visibility in terms of
separate private (load/store access) and public (RMA access) copies of data
exposed in the window.

The MPI-3 RMA interface extends MPI-2’s separate memory model with
a new unified model, which provides relaxed semantics that can reduce syn-
chronization overheads and allow greater concurrency in interacting with data
exposed in the window. The unified model was added in MPI-3 RMA to enable
more efficient one-sided data access in systems with coherent memory subsys-
tems. In this model, the public and private copies of the window are logically
identical, and updates to either “copy” automatically propagate. Explicit syn-
chronization operations can be used to ensure completion of individual or groups
of operations.

The unified memory model defines an efficient and portable mechanism for
one-sided data access, including the needed synchronization and consistency op-
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Fig. 1. Interprocess shared-memory extension using MPI RMA; an execution with two
nodes is shown, and a shared memory window is allocated within each node.

erations. We observe that this infrastructure already provides several important
pieces of functionality needed to define a portable, interprocess shared-memory
interface. We now discuss the additional functionality, illustrated in Figure 1,
that is needed to extend the RMA model in order to support load/store ac-
cesses originating from multiple origin processes to data exposed in a window.
In addition, we discuss new functionality that is needed to allow the user to
query system topology in order to identify groups of processes that communi-
cate through shared memory.

2.1 Using the RMA Interface for Shared Memory

In the MPI-2 one-sided communication interface, the user first allocates mem-
ory and then exposes it in a window. This model of window creation is not
compatible with the interprocess shared-memory support provided by most op-
erating systems, which require the use of special routines to allocate and map
shared memory into a process’s address space. Therefore, we have created a new
routine, MPI Win allocate shared, that collectively allocates and maps shared
memory across all processes in the given communicator.

CPU load and store instructions are similar to one-sided get and put op-
erations. In contrast with get/put, however, load/store operations do not pass
through the MPI library; and, as a result, MPI is unaware of which locations
were accessed and whether data was updated. Therefore, the separate mem-
ory model conservatively defines store operations as updating to full window in
order to prevent data corruption on systems whose memory subsystem is not
coherent. However, an overwhelming majority of parallel computing systems do
provide coherent memory, and on these systems this semantic is unnecessarily
restrictive. Therefore, MPI-3 defines a unified memory model where store opera-
tions do not conflict with accesses to other locations in the window. This model
closely matches the shared-memory programming model used on most systems,
and windows allocated by using MPI Win allocate shared are defined to use the
unified memory model.
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2.2 Mapping of Inter-Process Shared Memory

Each rank in the shared-memory window provides an allocation size, and a
shared memory segment of at least the sum of all sizes is created. Specifying a
per rank size rather than a single, global size allows implementations to optimize
data locality in nonuniform memory architectures. By default, the allocated
shared-memory region is required to be contiguous. That is, the memory region
associated with rank N in a given window must be directly before the memory
region associated with rank N + 1. The info key alloc shared noncontig allows
the user to relax this allocation constraint. When this key is given, MPI can
map the segments belonging to each process into noncontiguous locations. This
can enable better performance by allowing MPI to map each segment on a page
boundary, potentially eliminating negative cache and NUMA effects.

Many operating systems make it difficult to ensure that shared memory is
allocated at the same virtual address across multiple processes. The MPI one-
sided interface, which encourages the dynamic creation of shared-memory regions
throughout an application’s life, exacerbates this problem. MPI Win allocate
shared does not guarantee the same virtual address across ranks, and it returns
only the address of the shared-memory region for the local rank. MPI Win shared
query provides a query mechanism for determining the base address in the current
process and size of another process’s region in the shared-memory segment. The
address of the absolute beginning of the window can be queried by providing
MPI PROC NULL as the rank argument to this function.

2.3 Querying Machine Topology

The MPI Win allocate shared function expects the user to pass a communica-
tor on which a shared-memory region can be created. Passing a communicator
where this is not possible is erroneous. In order to facilitate the creation of
such a “shared memory capable” communicator, MPI-3 provides a new rou-
tine, MPI Comm split type. This function is an extension of the MPI Comm split
functionality, with the primary difference being that the user passes a type for
splitting the communicator instead of a color. Specifically, the MPI-3 standard
defines the type MPI COMM TYPE SHARED, which splits a communicator into
subcommunicators on which it is possible to create a shared-memory region.

The MPI Comm split type functionality also provides an info argument that
allows the user to request for architecture-specific information that can be used
to restrict the communicator to span only a NUMA socket or a shared cache
level, for example. While the MPI-3 standard does not define specific info keys,
most implementations are expected to provide NUMA and cache management
capabilities through these info keys.

3 Implementation of Shared-Memory RMA

The shared-memory RMA interface has been implemented in both MPICH and
Open MPI by using similar techniques. In this section we describe the steps
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required for the MPI library to allocate a shared window; we also provide im-
plementation details.

The root (typically the process with rank 0 in the associated communica-
tor) allocates a shared-memory region that is large enough to contain all of the
window segments of all processes sharing the window. Once the shared-memory
region has been created, information identifying the shared-memory region is
broadcast to the member processes, which then attach to it. At any process,
the base pointer of a window segment can be computed by knowing the size and
base pointer of the previous window segment: the base pointer of the first window
segment, segment 0, is the address of where the shared-memory segment was at-
tached; and the base pointer of segment i is base ptri = base ptri−1+seg sizei−1.

Scalability needs to be addressed for two implementation issues: (1) comput-
ing the sum of the shared window segments in order to determine the size of
the shared-memory segment and (2) computing the base pointer of a window
segment. For windows with a relatively small number of processes, an array of
the segment size of each process can be stored locally at each process by using
an all-gather operation. From this array, the root process can compute the size
of the shared-memory segment, and each process can compute the base pointer
of any other segment. For windows with a large number of processes, however,
the offsets may be stored in a shared-memory segment, with scalable collectives
(reduce, broadcast, exscan) used to compute sizes and offsets.

When the alloc shared noncontig info key is set to “true,” the implementation
is not constrained to allocate the window segments contiguously; instead, it can
allocate each window segment so that its base pointer is aligned to optimize
memory access. Individual shared-memory regions may be exposed by each rank,
an approach that can be used to provide optimal alignment and addressing but
requires more state. An alternative implementation would be to allocate the
window as though it was allocated contiguously, except that the size of each
window segment is rounded up to a page boundary. In this way each window
segment is aligned on a page boundary, and shared state can be used to minimize
resource utilization. Both MPICH and Open MPI use the latter approach.

Figure 2 shows the three shared-memory allocation strategies discussed above.
In Figure 2(a) we see the contiguous memory allocation method. The figure

0 1 2 3

(a) Contiguous

0 1 2 3

(b) Noncontig Separate

1 2 30

(c) Noncontig Padded

Fig. 2. Shared-memory window allocation strategies. Dotted lines in (a) and (c) rep-
resent page boundaries. In (b) each window segment is allocated in a separate shared-
memory region and is page aligned.
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shows four processes each of which has the entire memory region attached. The
shared-memory region contains four window segments of different sizes. Fig-
ures 2(b) and 2(c) show noncontiguous allocations. In Figure 2(b) each window
segment is allocated in a separate shared-memory region. Each process attaches
all the memory regions. In Figure 2(c) a single shared-memory region is attached
by each process. Each window segment is padded out to a window boundary.
The first and third segments do not end on a page boundary; thus, we see that
those segments are padded so that the next window segment starts on a page
boundary.

Synchronization operations must provide processor memory barriers to en-
sure consistency semantics but otherwise are straightforward to implement. Be-
cause of the direct memory access available for all target operations, communi-
cation calls may be implemented as memory copies performed during the com-
munication call itself. While an implementation could choose to implement the
accumulate operations by using processor atomics, locks and memory copies can
also provide the required semantics. Both MPICH and Open MPI use a spinlock
per target memory region to implement accumulate operations, because of the
simplicity of implementation and greater portability.

4 Use Cases and Evaluation

Shared-memory windows in MPI programs have multiple effects on future par-
allel programming techniques. Current scientific applications often use OpenMP
to enable sharing of large data structures (e.g., hash tables or lookup tables/-
databases) among cores inside a compute node. This approach requires using
two different models of parallelization: MPI and a carefully crafted OpenMP
layer that enables scalability to the large core counts (32–64) in today’s ar-
chitectures. This often requires an “MPI-style” domain decomposition of the
OpenMP parts, effectively leading to a complex two-stage parallelization of the
program. Shared-memory windows allow a structured approach to this issue in
that OpenMP can be used where it is most efficient (e.g., at the loop level) and
shared memory can be shared across different MPI processes with a single level
of domain decomposition.

A second use-case is to use shared-memory windows for fast intranode com-
munications. Here, the user employs a two-level parallelization in order to achieve
the highest possible performance using true zero-copy mechanisms (as opposed
to MPI’s mandated single-copy from send buffer to receive buffer). This has the
advantage over a purely threaded approach that memory is explicitly shared and
heap corruptions due to program bugs are less likely (cf. [10]). An example of
this benefit explored with an early prototype of the shared-memory extensions
can be found in [11]. This work demonstrates the incremental approach of incor-
porating shared memory into an MPI application in order to reduce the iteration
count of the linear solver portion of an application. The rest of the application,
which performs and scales well, can remain unchanged and largely unaware of
the use of shared memory.
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Shared-memory regions can also help better support the use of accelerators
within an MPI application. For example, if an application is running with one
MPI rank per core and all ranks wish to transfer data to a GPU, it can be
challenging to coordinate the transfer of data between the host memory of each
rank and GPU memory. Using shared memory, one rank can be responsible
for transferring data between the host and the device, reducing the amount of
coordination among ranks.

Five-Point Stencil Kernel Evaluation

We will now evaluate the performance improvements that can be achieved with
shared-memory windows using an application kernel benchmark. We prefer not
to show the usual ping-pong benchmarks because they would simply show the
MPI overhead versus the performance of the memory subsystem while hiding
important effects caused by the memory allocation strategy. Instead, we use
a simple, two-dimensional Poisson solver, which computes a heat propagation
problem using a five-point stencil. The N ×N input grid is decomposed in both
dimensions by using MPI Dims create and MPI Cart create. The code adds
one-element-deep halo zones for the communication. The benchmark utilizes
nonblocking communication of 8 ·N Bytes in each direction to update the halo
zones and MPI Waitall to complete the communication. It then updates all local
grid points before it proceeds to the next iteration.

The shared-memory implementation utilizes MPI Comm split type to create
a shared-memory communicator and allocates the entire work array in shared
memory. Optionally, it provides the alloc shared noncontig info argument to
allow the allocation of localized memory. The communication part of the original
code is simply changed to MPI Win fence in order to ensure memory consistency
and direct memory copies from remote to local halo zones. To simplify the ex-
ample code, we assume that all communications are in shared memory only. The
following listing shows the relevant parts of the code (variable declarations and
array swapping are omitted for brevity).

MPI_Comm_split_type(comm, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shmcomm);

MPI_Win_allocate_shared(size*sizeof(double), info, shmcomm, &mem, &win);

MPI_Win_shared_query(win, north, &sz, &northptr);

// ... south, east, west directions

for(iter=0; iter<niters; ++iter) {

MPI_Win_fence(0, win); // start new access and exposure epoch

if(north != MPI_PROC_NULL) // the "communication"

for(int i=0; i<bx; ++i) a2[ind(i+1,0)] = northptr[ind(i+1,by)];

// ... south, east, west directions

update_grid(&a1, &a2); // apply operator and swap arrays

}

We ran the benchmark on a six-core 2.2 GHz AMD Opteron CPU with two
MPI processes and recorded communication and computation times separately.
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Open MPI and MPICH perform similarly because of the similar implementa-
tions; we focus on experimentation with the MPICH implementation.

Figure 3(a) shows the communication times of the send/recv version (red line
with dots) and the shared-memory window versions (green line with triangles),
as well as the communication time improvement of the shared-memory window
version (blue crosses). In general, we show that the communication overhead for
shared-memory window version is 30-60% lower than for the traditional message-
passing approach. This is due to the direct memory access and avoided matching
queue and function call costs.
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Fig. 3. Communication and computation performance for the five-point stencil kernel.

Figure 3(b) shows the computation time of the shared-memory window ver-
sion, that is, the time to update the inner grid cells relative to the computation
time of the send/recv version. We observe a significant slowdown (up to 8%) of
the computation without the alloc shared noncontig argument. This is partially
due to false sharing and the fact that the memory is local to rank 0. Indeed, the
slowdown of the computation eliminated any benefit of the faster communication
and made the parallel code slower. Specifying alloc shared noncontig eliminates
the overhead down to the noise (< 1.7%) and leads to an improvement of the
overall runtime.

5 Conclusions and Outlook

In this work, we described an MPI standard extension to integrate shared mem-
ory functionality into MPI-3.0 through the remote memory access interface. We
motivated this new interface through several use-cases where shared memory
windows can result in improved performance, scaling, and capabilities. We dis-
cussed the design space for this new functionality and provided implementations
in two major MPI implementations which will both be available shortly in the
official releases.

To evaluate the application-level impact of shared memory windows, we per-
formed a performance study using a heat-propagation 5-point stencil benchmark.
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The benchmark illustrated two important aspects: (1) an average 40% reduc-
tion in data movement time compared with a traditional send/recv formulation
and (2) the potentially detrimental slowdown of computation if false sharing
and NUMA effects are ignored. By allowing the MPI implementation to auto-
matically adjust the shared memory mapping, we showed that these negative
performance effects can be eliminated.

For future work, we plan to further investigate NUMA-aware allocation
strategies, direct mapping of shared memory (e.g., XPMEM), and the effective
use of the info argument to MPI Comm split type to expand this routines topol-
ogy querying capabilities. We also plan to apply the shared memory extensions
to incomplete factorization codes, as well as to a human heartbeat simulation
code.
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