
Communication and Timing Issues with MPI Virtualization
Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

Department of Computer Science
ETH Zurich
Switzerland

{alexandr.nigay,mosimann,timos,htor}@inf.ethz.ch

ABSTRACT
Computation–communication overlap and good load balance are
features central to high performance of parallel programs. Unfortu-
nately, achieving them with MPI requires considerably increasing
the complexity of user code. Our work contributes to the alternative
solution to this problem: using a virtualized MPI implementation.
Virtualized MPI implementations diverge from traditional MPI im-
plementations in that they map MPI processes to user-level threads
instead of operating-system processes and launch more of them
than there are CPU cores in the system. They are capable of pro-
viding automatic computation–communication overlap and load
balance with little to no changes to pre-existing MPI user code. Our
work has uncovered new insights into MPI virtualization: Two new
kinds of timers are needed: an MPI-process timer and a CPU-core
timer, the same discussion also applies to performance counters
and the MPI profiling interface. We also observe an interplay be-
tween the degree of CPU oversubscription and the rendezvous
communication protocol: we find that the intuitive expectation of
only two MPI processes per CPU core being enough to achieve full
computation–communication overlap is wrong for the rendezvous
protocol—instead, three MPI processes per CPU core are required
in that case. Our findings are expected to be applicable to all virtu-
alized MPI implementations as well as to general tasking runtime
systems.

ACM Reference Format:
Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler. 2020.
Communication and Timing Issues with MPI Virtualization. In 27th Euro-
pean MPI Users’ Group Meeting (EuroMPI/USA ’20), September 21–24, 2020,
Austin, TX, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3416315.3416317

1 INTRODUCTION
Performance of parallel programs depends on many factors, among
which are the computation–communication overlap and the load
balance. Overlapping communication with computation can hide
network latency and thus lead to better performance. Parallel com-
putations split the overall volume of computation into many parts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8880-1/20/09. . . $15.00
https://doi.org/10.1145/3416315.3416317

and assign them to individual processors. This load must be care-
fully balanced across the processors, so that the program does not
have to wait for some processors while other processors are idle.

Unfortunately, computation–communication overlap and good
load balance are non-trivial to achieve in MPI [18]. A traditional
MPI implementation maps each MPI process, each of which gets as-
signed a share of the computation, to an operating-system process
and usually launches one MPI process per core; oversubscription
is possible with the popular MPI implementations, but is rarely
used in practice. Achieving computation–communication overlap
with such an MPI implementation requires using MPI’s nonblocking
communication calls which make code more complex and harder
to read compared to code written with the conceptually-simpler
blocking calls. Furthermore, even if nonblocking calls are used, the
overlap may still require the user code to periodically yield control
to the MPI library to allow it to progress the network operations,
which complicates the code even further [11]. As for the load bal-
ancing, it can be implemented with MPI by explicitly exchanging
work, but this, again, complicates the user code.

In practice many MPI programs actually use fewer MPI pro-
cesses than available cores, parallelizing computation in two ways:
a coarse-grained parallelization is done using MPI and a fine-
grained parallelization uses e.g., OpenMP to make use of the re-
maining cores. This again complicates user code. On the contrary
in this work we assume only MPI is used, and MPI is initialized
using MPI_THREAD_SINGLE, i.e. each MPI process consists of one
thread.

MPI virtualization provides a way of achieving overlap and load
balance while keeping the user code conceptually simple. In con-
trast to a traditional MPI implementation, a virtualized MPI imple-
mentation maps each MPI process to a user-level thread (ULT) and
launches more of them than there are CPU cores in the system. Fur-
thermore, as the number of MPI processes increases, the amount of
work per process tends to decrease, making the user code transfer
the control to MPI more frequently, alleviating the problem with
progressing the network operations.

Multiple researchers have presented virtualized MPI implemen-
tations: Adaptive MPI (AMPI) [12], MPC-MPI [22], FG-MPI [16],
TMPI [27], Toucan [17] (it adheres to a different programming
model but is otherwise close in spirit to MPI virtualization), and
TOMPI [5].

The goal of this study is to contribute to the understanding
of MPI virtualization. We have discovered a need for new time-
measurement calls: to measure time from the point of view of an
MPI process and from the point of view of a CPU core. These timers
complement the capabilities of MPI’s wall-clock timer, MPI_Wtime.
On the communication side, we have found the interplay between

11

https://doi.org/10.1145/3416315.3416317
https://doi.org/10.1145/3416315.3416317
https://doi.org/10.1145/3416315.3416317

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

the degree of oversubscription and the MPI rendezvous communi-
cation protocol [30]. Contrary to intuition, having only two MPI
processes per CPU core would not be sufficient to achieve full
computation–communication overlap if a three-way rendezvous
protocol is used. We present our findings after a deeper discussion
of MPI virtualization.

2 MPI VIRTUALIZATION
The idea of using oversubscription to hide latency of a time-
consuming operation is an old and widely-used technique outside
of MPI. The MPI virtualization idea applies this technique in the
context of implementing MPI—suspend an MPI process blocked in
a communication call and switch to a process ready to continue
executing user code outside of MPI. In the context of this work,
MPI virtualization refers specifically to the practice of mapping
MPI processes to user-level threads, as opposed to mapping them
to OS-level processes.

Oversubscribing the CPU is technically possible with traditional
MPI implementations, in which MPI processes are mapped to OS-
level processes. However, mapping MPI processes to user-level
threads provides multiple advantages. Context switches between
ULTs are faster than context switches between OS-level processes,
because it is possible to do without involving the operating sys-
tem. This full control over a MPI processes’s state also provides
for simpler migration of MPI processes between cores and nodes,
and it also provides for simpler checkpointing, both demonstrated
by Adaptive MPI [12, 13]. MPI virtualization enables the reduc-
tion in the memory consumption associated with shared-memory
communications—single copy from the source buffer directly to
the destination buffer is possible without special kernel modules,
since all MPI processes on a node can share the address space of
the parent OS-level process—which is demonstrated by MPC-MPI
[21]. MPC-MPI also shows that MPI virtualization can enable better
interoperation between MPI and OpenMP [2].

A virtualized MPI implementation takes on a part of responsi-
bilities of the operating system: context switching and scheduling.
It effectively virtualizes the CPU in the same way as an operating
system virtualizes it through multitasking.

However, implementingMPI processes as user-level threads does
have its drawbacks: managing contexts from user space requires
the ULTs to be spawned off the same OS-level process, meaning
that each MPI process no longer has its own private address space,
which is the standard assumption of MPI programs. Specifically,
it is normal for an MPI program to assume that each MPI process
has its own private set of global variables. Such a program would
behave incorrectly when used with a virtualized MPI implementa-
tion if any of the global variables assume different values across
different processes over the course of the program’s execution,
thus necessitating the privatization of global variables in user code
[19, 31].

2.1 Scheduling of virtualized MPI processes
Each process in a virtualized MPI implementation can be in one of
the following four states:

(1) INIT: when the process has not yet left the MPI initialization
call, MPI_Init; all processes start in this state;

INIT

FINALIZED

RUNNING SUSPENDED

leaves MPI_Init

leaves MPI_Finalize

enters a blocking MPI call

the MPI runtime decides to run this MPI
process and it does not block on a
communication request

Figure 1: The process state transition diagram of a virtual-
ized MPI implementation. Each MPI process resides in one
of these four states at any moment.

(2) RUNNING: when the process is currently being executed by
a CPU core. If the underlying operating system decides to
suspend the OS-level process hosting the MPI process, that
MPI process is still considered to be in the RUNNING state,
because it was not the decision of theMPI runtime to suspend
the process, and these states only reflect the point of view of
the MPI runtime; on each CPU core, at most one MPI process
can be in the RUNNING state at any moment;

(3) SUSPENDED: while the MPI process is not being executed by
the CPU core as per the MPI runtime’s decision;

(4) FINALIZED: when the MPI process has returned from
MPI_Finalize; this is the terminal state.

MPI processes transition between states according to the diagram
presented in Figure 1.

On scheduling points, the MPI runtime has the power to change
the state of the currently-running MPI process to SUSPENDED and
transition another MPI process to the RUNNING state. Existing vir-
tualized MPI implementations use cooperative multitasking and
place the scheduling points into blocking MPI calls, while some also
provide means for the MPI processes to explicitly place a scheduling
point by yielding to the scheduler.

2.2 Implementing a virtualized MPI
MPI processes can bemapped to user-level threads through different
approaches. AdaptiveMPI [12] uses the abstractions of the Charm++
runtime [14, 15]. MPC-MPI uses a custom implementation of user-
level threads [21].

Our virtualized MPI implementation, named TinyMPI1, which
we use as the research vehicle of this work, uses a custom imple-
mentation of user-level threads: it launches an OS-level process
on each compute node (one shared-memory domain), spawns an
OS-level thread per each CPU core on the node, and, for each of
those, spawns multiple user-level threads, each corresponding to
an MPI process.

TinyMPI’s context switching mechanism is analogous to that
of Grappa [20]: it switches the stacks and callee-saved registers,
according to the calling convention of the platform, of the to-be-
suspended MPI process and of the to-be-resumed MPI process. This
essentially makes a context switch equivalent to a function call.

Before presenting the findings of our work, we briefly cover the
work related to MPI virtualization.

1http://spcl.inf.ethz.ch/Research/Parallel_Programming/TinyMPI/

12

http://spcl.inf.ethz.ch/Research/Parallel_Programming/TinyMPI/

Communication and Timing Issues with MPI Virtualization EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

2.3 Work related to MPI virtualization
Other paradigms of MPI implementation and general tasking sys-
tems have targeted the same benefits as the MPI virtualization
paradigm does.

2.3.1 Overlap and load balancing. Many tasking runtime systems
target computation-communication overlap and load-balancing but
outside of the scope of MPI.

Charm++ [14] is a parallel programming system which over-
subscribes CPUs with a large number of chares. Chares interact
by sending messages to each other and get invoked to perform
computation in response to an incoming message. Charm++ can
migrate chares across cores and nodes, enabling automatic load bal-
ancing. Charm++ hides the communication latency by scheduling
a runnable chare in place of a chare waiting for communication.
Adaptive MPI [12], a virtualized MPI implementation, is based on
Charm++.

Grappa [20] is a system which aims to simplify the programming
of irregular applications by providing automatic network-latency
hiding through oversubscription and load balancing via task mi-
gration, among other features. Grappa’s programming model is
also centered around splitting the application logic into a set of
concurrently-executed, communicating tasks. To enable the per-
formance benefits it provides, Grappa implements the tasks as
user-level threads.

Dang et al. [3] describe an MPI implementation which, by drop-
ping the support for the wildcard semantics of MPI, can sustain
thousands of threads on the same node communicating via MPI.
This system uses ULTs, as virtualized MPI implementations do,
but it does not map MPI processes to those threads; instead, MPI
processes are multithreaded. The work aims to lift the performance
issues associated with calling MPI from multiple threads concur-
rently, a technique which, among other benefits, enables hiding the
communication latency.

2.3.2 Single-copy shared-memory communication. Hybrid MPI [7]
aims to provide single-copy communication between MPI processes
residing on the same compute node. Hybrid MPI maps MPI pro-
cesses to OS-level processes, as in traditional MPI implementations,
but these processes share the heap portion of their address space
through OS-provided mechanisms, which enables Hybrid MPI to
implement single-copy shared-memory communications.

KNEM [9] is a Linux kernel module which enables single-copy
shared-memory communication. It is designed to work with tradi-
tionalMPI implementations andwas integrated into themainstream
MPI implementations, MPICH2 and Open MPI. It provides single-
copy communication by leveraging the fact that the OS kernel can
see the address spaces of all the OS-processes and can thus perform
a copy from the sender’s buffer directly to the receiver’s buffer.
Recent Linux versions have integrated similar functionality into
the mainline kernel [28].

Buntinas et al. [1] summarize different options of implement-
ing shared-memory communication in MPI, including single-copy
mechanisms: kernel-module support, OS mechanisms intended for
debuggers, and the use of RDMA capabilities of network interfaces
to loop the data back from one process to another on the same
network node.

We now proceed to discussing the new insights into MPI virtu-
alization which we have uncovered in this work.

3 ISSUES WITH TIME MEASUREMENT
MPI provides a portable and convenient way to measure time: the
MPI_Wtime call, which “returns a floating-point number of sec-
onds representing elapsed wall-clock time since some time in the
past” (emphasis ours), as the text of the specification puts it [18].
When MPI virtualization is introduced, the facilities provided by
MPI_Wtime are no longer sufficient and have to be extended, as we
will explain in this section.

Consider the following code:

Communication and Timing Issues with MPI Virtualization EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

2.3 Work related to MPI virtualization
Other paradigms of MPI implementation and general tasking sys-
tems have targeted the same benefits as the MPI virtualization
paradigm does.

2.3.1 Overlap and load balancing. Many tasking runtime systems
target computation-communication overlap and load-balancing but
outside of the scope of MPI.

Charm++ [14] is a parallel programming system which over-
subscribes CPUs with a large number of chares. Chares interact
by sending messages to each other and get invoked to perform
computation in response to an incoming message. Charm++ can
migrate chares across cores and nodes, enabling automatic load bal-
ancing. Charm++ hides the communication latency by scheduling
a runnable chare in place of a chare waiting for communication.
Adaptive MPI [12], a virtualized MPI implementation, is based on
Charm++.

Grappa [20] is a system which aims to simplify the programming
of irregular applications by providing automatic network-latency
hiding through oversubscription and load balancing via task mi-
gration, among other features. Grappa’s programming model is
also centered around splitting the application logic into a set of
concurrently-executed, communicating tasks. To enable the per-
formance benefits it provides, Grappa implements the tasks as
user-level threads.

Dang et al. [3] describe an MPI implementation which, by drop-
ping the support for the wildcard semantics of MPI, can sustain
thousands of threads on the same node communicating via MPI.
This system uses ULTs, as virtualized MPI implementations do,
but it does not map MPI processes to those threads; instead, MPI
processes are multithreaded. The work aims to lift the performance
issues associated with calling MPI from multiple threads concur-
rently, a technique which, among other benefits, enables hiding the
communication latency.

2.3.2 Single-copy shared-memory communication. Hybrid MPI [7]
aims to provide single-copy communication between MPI processes
residing on the same compute node. Hybrid MPI maps MPI pro-
cesses to OS-level processes, as in traditional MPI implementations,
but these processes share the heap portion of their address space
through OS-provided mechanisms, which enables Hybrid MPI to
implement single-copy shared-memory communications.

KNEM [9] is a Linux kernel module which enables single-copy
shared-memory communication. It is designed to work with tradi-
tionalMPI implementations andwas integrated into themainstream
MPI implementations, MPICH2 and Open MPI. It provides single-
copy communication by leveraging the fact that the OS kernel can
see the address spaces of all the OS-processes and can thus perform
a copy from the sender’s buffer directly to the receiver’s buffer.
Recent Linux versions have integrated similar functionality into
the mainline kernel [28].

Buntinas et al. [1] summarize different options of implement-
ing shared-memory communication in MPI, including single-copy
mechanisms: kernel-module support, OS mechanisms intended for
debuggers, and the use of RDMA capabilities of network interfaces
to loop the data back from one process to another on the same
network node.

We now proceed to discussing the new insights into MPI virtu-
alization which we have uncovered in this work.

3 ISSUES WITH TIME MEASUREMENT
MPI provides a portable and convenient way to measure time: the
MPI_Wtime call, which “returns a floating-point number of sec-
onds representing elapsed wall-clock time since some time in the
past” (emphasis ours), as the text of the specification puts it [18].
When MPI virtualization is introduced, the facilities provided by
MPI_Wtime are no longer sufficient and have to be extended, as we
will explain in this section.

Consider the following code:
int main() {

initialize ();
/* A */
for(int i = 0; i < ITERS; i++) {

compute ();
MPI_Sendrecv (...);

}
/* B */
finalize ();

}

Assume that we want to find the answers to the following two
questions about the code above:

• How much time has each MPI process spent in the section of
code between points A and B? We call such a measurement
a “process-POV”2 measurement.

• How much time has each CPU core spent in the section of
code between points A and B? We call such a measurement
a “core-POV” measurement.

With a traditional MPI implementation these two questions are the
same because each MPI process is mapped to an OS-level process
and will most likely be pinned to a particular CPU core. The an-
swer to both of these questions will then be found by adding two
MPI_Wtime calls, one at A and one at B, then subtracting the value
returned by the first from the value returned by the second call.
However, with a virtualized MPI implementation, those two ques-
tions are distinct, and the presented solution will yield incorrect
measurements for both of them. We will now discuss each case
individually.

3.1 Why process-POV measurements are
needed

We define process-POV measurements to be drawn from a clock
which ticks only while the requesting MPI process is in the RUNNING
state and not while it is in any of the other states, as per the defini-
tion of states given in Section 2.1.

Process-POV measurements are necessary when the user code
needs to measure performance from the point of view of an MPI
process. Process-POV measurements are also necessary for load-
balance studies, where MPI processes are expected to spend dif-
ferent amounts of time in the same section of code—in this case
it is necessary to measure the time accumulated by each process
individually.

If several MPI processes share a CPU core, then wrapping a code
section with a pair of MPI_Wtime calls and taking the readings on
2“POV” standing for “point of view”

Assume that we want to find the answers to the following two
questions about the code above:

• How much time has each MPI process spent in the section of
code between points A and B? We call such a measurement
a “process-POV”2 measurement.

• How much time has each CPU core spent in the section of
code between points A and B? We call such a measurement
a “core-POV” measurement.

With a traditional MPI implementation these two questions are the
same because each MPI process is mapped to an OS-level process
and will most likely be pinned to a particular CPU core. The an-
swer to both of these questions will then be found by adding two
MPI_Wtime calls, one at A and one at B, then subtracting the value
returned by the first from the value returned by the second call.
However, with a virtualized MPI implementation, those two ques-
tions are distinct, and the presented solution will yield incorrect
measurements for both of them. We will now discuss each case
individually.

3.1 Why process-POV measurements are
needed

We define process-POV measurements to be drawn from a clock
which ticks only while the requesting MPI process is in the RUNNING
state and not while it is in any of the other states, as per the defini-
tion of states given in Section 2.1.

Process-POV measurements are necessary when the user code
needs to measure performance from the point of view of an MPI
process. Process-POV measurements are also necessary for load-
balance studies, where MPI processes are expected to spend dif-
ferent amounts of time in the same section of code—in this case
it is necessary to measure the time accumulated by each process
individually.

If several MPI processes share a CPU core, then wrapping a code
section with a pair of MPI_Wtime calls and taking the readings on
2“POV” standing for “point of view”

13

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

Table 1: Output of the existing virtualized MPI implementa-
tions for the code in Listing 1—MPI_Wtime calls return mis-
leading values.

MPI Task topology
(#p/#c)

Value of
elapsed

Total
execution

timeproc 0 proc 1

Open MPI
(no virtualization)

2 / 2 30 30 30

AMPI 2 / 1 60 30 60
MPC-MPI 2 / 1 60 30 60
TinyMPI
MPI_Wtime

2 / 1 60 30 60

TinyMPI
MPIX_Rtime

2 / 1 30 30 60

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

Table 1: Output of the existing virtualized MPI implementa-
tions for the code in Listing 1—MPI_Wtime calls return mis-
leading values.

MPI Task topology
(#p/#c)

Value of
elapsed

Total
execution

timeproc 0 proc 1

Open MPI
(no virtualization) 2 / 2 30 30 30

AMPI 2 / 1 60 30 60
MPC-MPI 2 / 1 60 30 60
TinyMPI MPI_Wtime 2 / 1 60 30 60

TinyMPI MPIX_Rtime 2 / 1 30 30 60

Listing 1: Outline of the code exposing the misleading
MPI_Wtime readings returned by virtualized MPI implemen-
tations.
int main() {

MPI_Init ();
double start = MPI_Wtime ();
sleep(/* 30 seconds */);
MPI_Barrier ();
double elapsed = MPI_Wtime () - start;
printf("%f\n", elapsed);
MPI_Finalize ();

}

one of those MPI processes will include the periods during which
the process was in the SUSPENDED state and will thus yield incorrect
readings. This is visually demonstrated in the topmost portion of
Figure 2. The goal is to count the time that a MPI process spent
between points A and B but only while it was in the RUNNING state,
which is similar in spirit to the “CPU time” measured for processes
by the operating system.

To demonstrate that existing virtualized MPI implementations
cannot provide process-POV timings without relying on external-
to-MPI timing tools, we execute the code in Listing 1 with AMPI
(Charm++ 6.8.2), MPC-MPI 2.5.0, Open MPI 3.0.0, and TinyMPI.
The code is executed with two MPI processes co-located on the
same CPU core, except for Open MPI, which is not a virtualized
MPI and uses two CPU cores. Table 1 presents the output of each
MPI implementation. Following the standard-mandated semantics,
the MPI_Wtime calls return the value of 30 (rounded to full sec-
onds, as accuracy is not of concern here but semantics) with the
non-virtualized Open MPI. In contrast, one of the processes with
all tested virtualized MPI implementations measures 60 seconds
instead of 30, except for TinyMPI with MPI_Wtime replaced with
MPIX_Rtime, the process-POV timer call that we propose. Such
measurements suggest that the two processes have collectively
worked for 90 seconds, where in reality it was 60. The discrep-
ancy is caused by the fact that the timing calls include the periods
of time during which the calling processes was suspended. Thus,
MPI_Wtime cannot provide process-POV measurements under MPI
virtualization.

time
With MPI_Wtime

Rank 0:

MPI_Wtime MPI_Wtime

Rank 1:

MPI_Wtime MPI_Wtime

same
core

Rank-POV measurements

Rank 0:
Rank 1:

same
core

Rank 0:
Rank 1:

Core-POV measurement

Core:

Figure 2: The difference between time measurements from
an MPI process point of view (“process-POV”), from a core’s
point of view (“core-POV”), and themeasurements returned
by MPI_Wtime. The gray shading in the top portion of the
figure represents process-POV measurements, which are
shown separately in the middle portion.

These misleading time measurements cause benchmark applica-
tions that rely on MPI_Wtime to inadvertently self-report erroneous
performance figures when used with a virtualized MPI implemen-
tation, which we observe with the HPCCG benchmark from the
Mantevo suite [10]. We run HPCCG with TinyMPI and MPC-MPI
2.5.0 using four MPI processes in total, all of them sharing one CPU
core. Unfortunately, we could not successfully run this experiment
with AMPI (Charm++ 6.8.2): the code runs with four processes
on four CPU cores but hangs with four processes on one core. Ta-
ble 2 presents the performance numbers self-reported by HPCCG in
these runs. The full running time was measured by external timers
to be 11.5 seconds for TinyMPI and 12 seconds for MPC-MPI. For
both TinyMPI and MPC-MPI, the wall-clock MPI_Wtime reports
values almost equal to that full running time, which is of four pro-
cesses sharing the same core, but this measurement is supposed to
be made for a single process. This leads to incorrectly high time
measurements, which in turn lead to incorrectly low calculated
MFLOP/s values—HPCCG calculates this metric by dividing the
number of floating-point operations performed by a single rank by
the time taken by that single rank. The process-POV MPIX_Rtime,
the call which we discuss in detail subsequently, correctly accumu-
lates the time spent by the calling MPI process only, resulting in
realistic time measurements and performance figures.

Rodrigues et al. [25] encounter a similar effect in their analysis:
the authors have observed wide fluctuations in the timestep exe-
cution time measured by a single MPI process sharing the same
CPU core with 15 other processes, which was attributed to unpre-
dictable interleaving of those 16 processes by the virtualized MPI
runtime. Based on the description of the observation, we conjecture
that process-POV timers would have removed the fluctuations and
yielded stable measurements.

Let us now describe how process-POV time measurements may
be implemented in a virtualized MPI implementation.

one of those MPI processes will include the periods during which
the process was in the SUSPENDED state and will thus yield incorrect
readings. This is visually demonstrated in the topmost portion of
Figure 2. The goal is to count the time that a MPI process spent
between points A and B but only while it was in the RUNNING state,
which is similar in spirit to the “CPU time” measured for processes
by the operating system.

To demonstrate that existing virtualized MPI implementations
cannot provide process-POV timings without relying on external-
to-MPI timing tools, we execute the code in Listing 1 with AMPI
(Charm++ 6.8.2), MPC-MPI 2.5.0, Open MPI 3.0.0, and TinyMPI.
The code is executed with two MPI processes co-located on the
same CPU core, except for Open MPI, which is not a virtualized
MPI and uses two CPU cores. Table 1 presents the output of each
MPI implementation. Following the standard-mandated semantics,
the MPI_Wtime calls return the value of 30 (rounded to full sec-
onds, as accuracy is not of concern here but semantics) with the
non-virtualized Open MPI. In contrast, one of the processes with
all tested virtualized MPI implementations measures 60 seconds
instead of 30, except for TinyMPI with MPI_Wtime replaced with
MPIX_Rtime, the process-POV timer call that we propose. Such
measurements suggest that the two processes have collectively
worked for 90 seconds, where in reality it was 60. The discrep-
ancy is caused by the fact that the timing calls include the periods
of time during which the calling processes was suspended. Thus,
MPI_Wtime cannot provide process-POV measurements under MPI
virtualization.

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

Table 1: Output of the existing virtualized MPI implementa-
tions for the code in Listing 1—MPI_Wtime calls return mis-
leading values.

MPI Task topology
(#p/#c)

Value of
elapsed

Total
execution

timeproc 0 proc 1

Open MPI
(no virtualization) 2 / 2 30 30 30

AMPI 2 / 1 60 30 60
MPC-MPI 2 / 1 60 30 60
TinyMPI MPI_Wtime 2 / 1 60 30 60

TinyMPI MPIX_Rtime 2 / 1 30 30 60

Listing 1: Outline of the code exposing the misleading
MPI_Wtime readings returned by virtualized MPI implemen-
tations.
int main() {

MPI_Init ();
double start = MPI_Wtime ();
sleep(/* 30 seconds */);
MPI_Barrier ();
double elapsed = MPI_Wtime () - start;
printf("%f\n", elapsed);
MPI_Finalize ();

}

one of those MPI processes will include the periods during which
the process was in the SUSPENDED state and will thus yield incorrect
readings. This is visually demonstrated in the topmost portion of
Figure 2. The goal is to count the time that a MPI process spent
between points A and B but only while it was in the RUNNING state,
which is similar in spirit to the “CPU time” measured for processes
by the operating system.

To demonstrate that existing virtualized MPI implementations
cannot provide process-POV timings without relying on external-
to-MPI timing tools, we execute the code in Listing 1 with AMPI
(Charm++ 6.8.2), MPC-MPI 2.5.0, Open MPI 3.0.0, and TinyMPI.
The code is executed with two MPI processes co-located on the
same CPU core, except for Open MPI, which is not a virtualized
MPI and uses two CPU cores. Table 1 presents the output of each
MPI implementation. Following the standard-mandated semantics,
the MPI_Wtime calls return the value of 30 (rounded to full sec-
onds, as accuracy is not of concern here but semantics) with the
non-virtualized Open MPI. In contrast, one of the processes with
all tested virtualized MPI implementations measures 60 seconds
instead of 30, except for TinyMPI with MPI_Wtime replaced with
MPIX_Rtime, the process-POV timer call that we propose. Such
measurements suggest that the two processes have collectively
worked for 90 seconds, where in reality it was 60. The discrep-
ancy is caused by the fact that the timing calls include the periods
of time during which the calling processes was suspended. Thus,
MPI_Wtime cannot provide process-POV measurements under MPI
virtualization.

time
With MPI_Wtime

Rank 0:

MPI_Wtime MPI_Wtime

Rank 1:

MPI_Wtime MPI_Wtime

same
core

Rank-POV measurements

Rank 0:
Rank 1:

same
core

Rank 0:
Rank 1:

Core-POV measurement

Core:

Figure 2: The difference between time measurements from
an MPI process point of view (“process-POV”), from a core’s
point of view (“core-POV”), and themeasurements returned
by MPI_Wtime. The gray shading in the top portion of the
figure represents process-POV measurements, which are
shown separately in the middle portion.

These misleading time measurements cause benchmark applica-
tions that rely on MPI_Wtime to inadvertently self-report erroneous
performance figures when used with a virtualized MPI implemen-
tation, which we observe with the HPCCG benchmark from the
Mantevo suite [10]. We run HPCCG with TinyMPI and MPC-MPI
2.5.0 using four MPI processes in total, all of them sharing one CPU
core. Unfortunately, we could not successfully run this experiment
with AMPI (Charm++ 6.8.2): the code runs with four processes
on four CPU cores but hangs with four processes on one core. Ta-
ble 2 presents the performance numbers self-reported by HPCCG in
these runs. The full running time was measured by external timers
to be 11.5 seconds for TinyMPI and 12 seconds for MPC-MPI. For
both TinyMPI and MPC-MPI, the wall-clock MPI_Wtime reports
values almost equal to that full running time, which is of four pro-
cesses sharing the same core, but this measurement is supposed to
be made for a single process. This leads to incorrectly high time
measurements, which in turn lead to incorrectly low calculated
MFLOP/s values—HPCCG calculates this metric by dividing the
number of floating-point operations performed by a single rank by
the time taken by that single rank. The process-POV MPIX_Rtime,
the call which we discuss in detail subsequently, correctly accumu-
lates the time spent by the calling MPI process only, resulting in
realistic time measurements and performance figures.

Rodrigues et al. [25] encounter a similar effect in their analysis:
the authors have observed wide fluctuations in the timestep exe-
cution time measured by a single MPI process sharing the same
CPU core with 15 other processes, which was attributed to unpre-
dictable interleaving of those 16 processes by the virtualized MPI
runtime. Based on the description of the observation, we conjecture
that process-POV timers would have removed the fluctuations and
yielded stable measurements.

Let us now describe how process-POV time measurements may
be implemented in a virtualized MPI implementation.

Figure 2: The difference between time measurements from
an MPI process point of view (“process-POV”), from a core’s
point of view (“core-POV”), and themeasurements returned
by MPI_Wtime. The gray shading in the top portion of the
figure represents process-POV measurements, which are
shown separately in the middle portion.

These misleading time measurements cause benchmark applica-
tions that rely on MPI_Wtime to inadvertently self-report erroneous
performance figures when used with a virtualized MPI implemen-
tation, which we observe with the HPCCG benchmark from the
Mantevo suite [10]. We run HPCCG with TinyMPI and MPC-MPI
2.5.0 using four MPI processes in total, all of them sharing one CPU
core. Unfortunately, we could not successfully run this experiment
with AMPI (Charm++ 6.8.2): the code runs with four processes
on four CPU cores but hangs with four processes on one core. Ta-
ble 2 presents the performance numbers self-reported by HPCCG in
these runs. The full running time was measured by external timers
to be 11.5 seconds for TinyMPI and 12 seconds for MPC-MPI. For
both TinyMPI and MPC-MPI, the wall-clock MPI_Wtime reports
values almost equal to that full running time, which is of four pro-
cesses sharing the same core, but this measurement is supposed to
be made for a single process. This leads to incorrectly high time
measurements, which in turn lead to incorrectly low calculated
MFLOP/s values—HPCCG calculates this metric by dividing the
number of floating-point operations performed by a single rank by
the time taken by that single rank. The process-POV MPIX_Rtime,
the call which we discuss in detail subsequently, correctly accumu-
lates the time spent by the calling MPI process only, resulting in
realistic time measurements and performance figures.

Rodrigues et al. [25] encounter a similar effect in their analysis:
the authors have observed wide fluctuations in the timestep exe-
cution time measured by a single MPI process sharing the same
CPU core with 15 other processes, which was attributed to unpre-
dictable interleaving of those 16 processes by the virtualized MPI
runtime. Based on the description of the observation, we conjecture
that process-POV timers would have removed the fluctuations and
yielded stable measurements.

Let us now describe how process-POV time measurements may
be implemented in a virtualized MPI implementation.

14

Communication and Timing Issues with MPI Virtualization EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

Table 2: HPCCG inadvertently reports misleading perfor-
mance numbers when using a virtualized MPI implementa-
tion.

MPC-MPI
MPI_Wtime

TinyMPI
MPI_Wtime

TinyMPI
MPIX_Rtime

Tot. time [s] 11.1 10.9 2.85
DDOT time [s] 3.8 4.9 0.16
Tot. MFLOP/s 1755 1792 6846
DDOT MFLOP/s 319 245 7513

HPCCG reports measurements for rank 0. In these runs, 4 MPI processes
share the same CPU core and collectively take 11.5 seconds for TinyMPI
and 12 seconds for MPC-MPI.

Communication and Timing Issues with MPI Virtualization EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

Table 2: HPCCG inadvertently reports misleading perfor-
mance numbers when using a virtualized MPI implementa-
tion.

MPC-MPI
MPI_Wtime

TinyMPI
MPI_Wtime

TinyMPI
MPIX_Rtime

Tot. time [s] 11.1 10.9 2.85
DDOT time [s] 3.8 4.9 0.16
Tot. MFLOP/s 1755 1792 6846
DDOT MFLOP/s 319 245 7513

HPCCG reports measurements for rank 0. In these runs, 4 MPI processes
share the same CPU core and collectively take 11.5 seconds for TinyMPI
and 12 seconds for MPC-MPI.

Listing 2: Our implementation of the process-POV
MPIX_Rtime. In all statements, R and T refer to the current
process’s fields. Function now() returns current wall-time.
// There is one instance of a process_local
// variable for each process.
proc_local timestamp R; //process -POV clock
proc_local timestamp T; // helper

on_proc_init (): // Called for each proc in MPI_Init.
R = 0;
T = now();

on_proc_suspend (): // Advance the process -POV clock.
R += now() - T;

on_proc_resume ():
// The process -POV time did not change.
// Only the helper must update.
T = now();

MPIX_Rtime ():
// Advance the clock and return the value.
R += now() - T;
T = now();
return R;

3.2 Obtaining process-POV Time
Measurements

In order to obtain process-POV measurements for a particular MPI
process, wemust use a clockwhich is ticking onlywhile that process
is kept in the RUNNING state by the MPI runtime. A wall-clock
timer cannot directly serve this purpose, because it ticks constantly,
without regard to the MPI runtime’s user-space scheduling of MPI
processes.

The process-POV timer is only required when the timed section
of code contains a virtualized MPI’s scheduling point. If the code
section does not contain any such points and hence the MPI process
does not get suspended by the MPI runtime while inside of it, then
MPI_Wtime can be used, since no periods during which the calling
process was SUSPENDED will be captured.

Since process-POV time measurements complement rather than
replace the wall-clock time measurements, we suggest introducing
a new timer call into the MPI standard: MPIX_Rtime, named so
after “Rank-POV”; following the convention, the X in the prefix
MPIX signifies “extension”. The new call is defined as returning a
floating-point number of seconds elapsed since a fixed time in the

0 100 200 300
Overhead [ns]

0.00

0.25

0.50

0.75

1.00

CD
F

median: 38 ns

P99 = 94 ns
P99.9 = 162 ns

Suspend

0 100 200 300
Overhead [ns]

0.00

0.25

0.50

0.75

1.00

CD
F

median: 35 ns

P99 = 142 ns
P99.9 = 265 ns

Resume

Figure 3: Cummulative distribution function of the per-task-
switch overhead of the proposed process-POV timer logic.
𝑃99 and 𝑃99.9 denote 99th and 99.9th percentiles.

past but only including the time during which the calling process
was RUNNING.

Listing 2 outlines our implementation of MPIX_Rtime. It does
not rely on specific hardware support. Each MPI process internally
holds two values: R—the process’s own point-of-view clock, and T—
a helper variable. These two variables can be stored in the control
data structure maintained for each process by the MPI runtime.
The value of R appears to be incrementing only while its owning
process is RUNNING, hence it can feed MPIX_Rtime.

This implementation is robust to MPI process migration: if a
process migrates to a core whose timer is not synchronized with
that of the previous core, its process-POV timekeeping will still be
correct because the wall-clock timestamps from different cores are
never related to each other in any way—only the values from the
same core are used in the subtractions.

The on-suspend and on-resume parts of the process-POV logic
have to be executed on each MPI process context switch, which is
potentially a frequent event; therefore it is important to evaluate
their overhead. Figure 3 presents the statistical summary of absolute
time measurements of approximately 70,000 invocations of on-
suspend and on-resume logic implemented in C++ on a 2.2 GHz
Intel Xeon E5-2660V2. The 99th percentile is below 100 ns for the
on-suspend logic and is below 150 ns for the on-resume logic.

3.3 Why core-POV measurements are needed
Core-POV measurements are necessary for load-balance studies in
which the imbalance occurs due to CPU cores dynamically chang-
ing their frequency, making the same code section take different
amounts of time on different cores. The “Core-POV” portion of
Figure 2 visually presents the difference between core-POV and
process-POV measurements.

The wall-clock MPI_Wtime timer cannot fulfill the task of count-
ing core-POV time. It is definitely possible to arrange for the first
process entering the code section to start the timer and the last
process leaving it to stop the timer. However, such measurements
would be inaccurate, because sections of code outside of the target
section will also be included—all other MPI processes sharing the
same CPU core will be unblocking at the last scheduling point,
which will always be before the target code section, and that section
of code before the target section will get included in the measured
period. The same applies to the section of code after the target
section up to the next scheduling point. The core-POV measure-
ment will thus be overestimated. The degree of inaccuracy directly
depends on how long the leading and the trailing sections of code

3.2 Obtaining process-POV Time
Measurements

In order to obtain process-POV measurements for a particular MPI
process, wemust use a clockwhich is ticking onlywhile that process
is kept in the RUNNING state by the MPI runtime. A wall-clock
timer cannot directly serve this purpose, because it ticks constantly,
without regard to the MPI runtime’s user-space scheduling of MPI
processes.

The process-POV timer is only required when the timed section
of code contains a virtualized MPI’s scheduling point. If the code
section does not contain any such points and hence the MPI process
does not get suspended by the MPI runtime while inside of it, then
MPI_Wtime can be used, since no periods during which the calling
process was SUSPENDED will be captured.

Since process-POV time measurements complement rather than
replace the wall-clock time measurements, we suggest introducing
a new timer call into the MPI standard: MPIX_Rtime, named so
after “Rank-POV”; following the convention, the X in the prefix
MPIX signifies “extension”. The new call is defined as returning a
floating-point number of seconds elapsed since a fixed time in the

0 100 200 300
Overhead [ns]

0.00

0.25

0.50

0.75

1.00

CD
F

median: 38 ns

P99 = 94 ns
P99.9 = 162 ns

Suspend

0 100 200 300
Overhead [ns]

0.00

0.25

0.50

0.75

1.00

CD
F

median: 35 ns

P99 = 142 ns
P99.9 = 265 ns

Resume

Figure 3: Cummulative distribution function of the per-task-
switch overhead of the proposed process-POV timer logic.
P99 and P99.9 denote 99th and 99.9th percentiles.

past but only including the time during which the calling process
was RUNNING.

Listing 2 outlines our implementation of MPIX_Rtime. It does
not rely on specific hardware support. Each MPI process internally
holds two values: R—the process’s own point-of-view clock, and T—
a helper variable. These two variables can be stored in the control
data structure maintained for each process by the MPI runtime.
The value of R appears to be incrementing only while its owning
process is RUNNING, hence it can feed MPIX_Rtime.

This implementation is robust to MPI process migration: if a
process migrates to a core whose timer is not synchronized with
that of the previous core, its process-POV timekeeping will still be
correct because the wall-clock timestamps from different cores are
never related to each other in any way—only the values from the
same core are used in the subtractions.

The on-suspend and on-resume parts of the process-POV logic
have to be executed on each MPI process context switch, which is
potentially a frequent event; therefore it is important to evaluate
their overhead. Figure 3 presents the statistical summary of absolute
time measurements of approximately 70,000 invocations of on-
suspend and on-resume logic implemented in C++ on a 2.2 GHz
Intel Xeon E5-2660V2. The 99th percentile is below 100 ns for the
on-suspend logic and is below 150 ns for the on-resume logic.

3.3 Why core-POV measurements are needed
Core-POV measurements are necessary for load-balance studies in
which the imbalance occurs due to CPU cores dynamically chang-
ing their frequency, making the same code section take different
amounts of time on different cores. The “Core-POV” portion of
Figure 2 visually presents the difference between core-POV and
process-POV measurements.

The wall-clock MPI_Wtime timer cannot fulfill the task of count-
ing core-POV time. It is definitely possible to arrange for the first
process entering the code section to start the timer and the last
process leaving it to stop the timer. However, such measurements
would be inaccurate, because sections of code outside of the target
section will also be included—all other MPI processes sharing the
same CPU core will be unblocking at the last scheduling point,
which will always be before the target code section, and that section
of code before the target section will get included in the measured
period. The same applies to the section of code after the target
section up to the next scheduling point. The core-POV measure-
ment will thus be overestimated. The degree of inaccuracy directly
depends on how long the leading and the trailing sections of code

15

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

take: if those take a small amount of time relative to the target sec-
tion, then the inaccuracy may be acceptable; otherwise, a different
approach is needed.

Rodrigues et al. [25] observe this situation but in the context of
performance counters: in their cache-utilization analysis of a code
running with AMPI, the authors aim to count cache misses on each
core when executing a specific code section. The authors use the
approach of having the first-entering rank start the counters and
the last-leaving rank stop the counters. Core-POV instrumentation
logic would have provided the desired measurements without the
described inaccuracy.

Rank-POV timers can fulfill the task of measuring core-POV time
only partially—the measurements will be correct only if the MPI
processes do not migrate between cores, in which case summing
up process-POV measurements for the target code section across
all MPI processes on that core will yield the correct core-POV
measurement. This can be implemented using the current MPI
standard, e.g., by using MPI_Get_processor_name to identify a
CPU core, then calling MPI_Comm_split to create a communicator
per each core, making an MPI_Reduce call on each core to sum the
process-POV values, and finally having one MPI process per each
core report the core-POV value. However, this sequence appears to
be too complex for the simple goal of timing a section of code in a
core-POV manner, so support from MPI is desirable.

Conversely, if MPI processes are allowed to migrate between
cores during the program run, then summing process-POV values
will yield a wrong result—a process will incorrectly attribute all the
amount of time it has accumulated in the measured code section to
the core on which it happened to be executing at the moment of
the summation, while all the other cores which have executed any
portion of the measured section on this process’s behalf will get
attributed nothing. In this case, the support from the MPI runtime
is not just desirable but necessary.

3.4 Obtaining Core-POV Time Measurements
The crux of the problem with obtaining core-POV time measure-
ments is not that we need a special kind of core-POV clock—any
standard wall-time clock is already a core-POV clock—but rather
that the timer has to be started and stopped at specific events: the
timer has to be started when any MPI process on this core enters
the measured code section or resumes execution at a scheduling
point inside that section, and it has to be stopped when any MPI
process leaves the section or gets suspended in a scheduling point
within it.

To provide such functionality from MPI, we suggest extending
the MPI interface with three new calls:

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

take: if those take a small amount of time relative to the target sec-
tion, then the inaccuracy may be acceptable; otherwise, a different
approach is needed.

Rodrigues et al. [25] observe this situation but in the context of
performance counters: in their cache-utilization analysis of a code
running with AMPI, the authors aim to count cache misses on each
core when executing a specific code section. The authors use the
approach of having the first-entering rank start the counters and
the last-leaving rank stop the counters. Core-POV instrumentation
logic would have provided the desired measurements without the
described inaccuracy.

Rank-POV timers can fulfill the task of measuring core-POV time
only partially—the measurements will be correct only if the MPI
processes do not migrate between cores, in which case summing
up process-POV measurements for the target code section across
all MPI processes on that core will yield the correct core-POV
measurement. This can be implemented using the current MPI
standard, e.g., by using MPI_Get_processor_name to identify a
CPU core, then calling MPI_Comm_split to create a communicator
per each core, making an MPI_Reduce call on each core to sum the
process-POV values, and finally having one MPI process per each
core report the core-POV value. However, this sequence appears to
be too complex for the simple goal of timing a section of code in a
core-POV manner, so support from MPI is desirable.

Conversely, if MPI processes are allowed to migrate between
cores during the program run, then summing process-POV values
will yield a wrong result—a process will incorrectly attribute all the
amount of time it has accumulated in the measured code section to
the core on which it happened to be executing at the moment of
the summation, while all the other cores which have executed any
portion of the measured section on this process’s behalf will get
attributed nothing. In this case, the support from the MPI runtime
is not just desirable but necessary.

3.4 Obtaining Core-POV Time Measurements
The crux of the problem with obtaining core-POV time measure-
ments is not that we need a special kind of core-POV clock—any
standard wall-time clock is already a core-POV clock—but rather
that the timer has to be started and stopped at specific events: the
timer has to be started when any MPI process on this core enters
the measured code section or resumes execution at a scheduling
point inside that section, and it has to be stopped when any MPI
process leaves the section or gets suspended in a scheduling point
within it.

To provide such functionality from MPI, we suggest extending
the MPI interface with three new calls:
void MPIX_Start_processor_timer ()

void MPIX_Stop_processor_timer ()

double MPIX_Ptime ()

The first two calls are to be used to demarcate the section of code for
which core-POV time measurements are desired to be taken. The
MPIX_Ptime call, named after “Processor time”, is used to retrieve
the measurement; it provides access to the same core-POV timer to
all MPI processes sharing a core.

Listing 3 outlines our proposed way of implementing these core-
POV timer calls. The information onwhether or not a particularMPI
process is currently executing within the core-POV-timed section

Listing 3: Our implementation of core-POV timers. In all
statements, M and C refer to the current process’s and cur-
rent core’s fields respectively. Function now() returns cur-
rent, non-negative wall-time as measured by a call such as
rdtsc or gettimeofday.
// There is one instance of a core_local
// variable for each CPU core.
core_local double C; // The core -POV timer.
proc_local double M; // A per -proc helper variable.

on_core_init (): // once per core in MPI_Init
C = 0;

on_proc_init (): // once per proc in MPI_Init
M = -1;

MPIX_Start_processor_timer ():
M = now();

on_proc_suspend ():
//if in the metered section , add to timer
if (M > 0): C += now() - M;

on_proc_resume ():
//if in the metered section , refresh helper
if (M > 0): M = now();

MPIX_Stop_processor_timer ():
// Accumulate contributions
if (M > 0): C += now() - M;
//leave the metered section
M = -1;

MPIX_Ptime ():
return C

of code is inherent to that process, because it depends on where in
the program that process is executing. Thus, whether or not the
time accumulation should take place depends on the process state.
The MPI process-local variable M is used for that purpose, with the
special value -1 indicating that no core-POV timer is active and a
non-negative value indicating that the timer is active. This variable
can be placed into the control data structure maintained for each
process by the MPI runtime. On the other hand, the information on
how much time a certain core has accumulated in the timed section
of the code is inherent to that core. Hence, each core maintains
its private running sum in the core-local variable C, which can be
stored in the control data structure kept for each CPU core by the
MPI runtime.

As with the process-POV timer logic, the on-suspend and on-
resume parts of the core-POV timer logic have to be executed on
each MPI process switch, which is potentially a frequent event.
Figure 4 presents the statistical summary of absolute time mea-
surements of approximately 70,000 invocations of on-suspend and
on-resume logic implemented in C++ on a 2.2 GHz Intel Xeon E5-
2660V2. The 99th percentile is at 170 ns for the on-suspend logic
and is below 150 ns for the on-resume logic.

3.5 Discussion of process-POV and core-POV
timers

The time measurement issues described in this section may poten-
tially be resolved by using instrumentation external to MPI, e.g., by

The first two calls are to be used to demarcate the section of code for
which core-POV time measurements are desired to be taken. The
MPIX_Ptime call, named after “Processor time”, is used to retrieve
the measurement; it provides access to the same core-POV timer to
all MPI processes sharing a core.

Listing 3 outlines our proposed way of implementing these core-
POV timer calls. The information onwhether or not a particularMPI
process is currently executing within the core-POV-timed section

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

take: if those take a small amount of time relative to the target sec-
tion, then the inaccuracy may be acceptable; otherwise, a different
approach is needed.

Rodrigues et al. [25] observe this situation but in the context of
performance counters: in their cache-utilization analysis of a code
running with AMPI, the authors aim to count cache misses on each
core when executing a specific code section. The authors use the
approach of having the first-entering rank start the counters and
the last-leaving rank stop the counters. Core-POV instrumentation
logic would have provided the desired measurements without the
described inaccuracy.

Rank-POV timers can fulfill the task of measuring core-POV time
only partially—the measurements will be correct only if the MPI
processes do not migrate between cores, in which case summing
up process-POV measurements for the target code section across
all MPI processes on that core will yield the correct core-POV
measurement. This can be implemented using the current MPI
standard, e.g., by using MPI_Get_processor_name to identify a
CPU core, then calling MPI_Comm_split to create a communicator
per each core, making an MPI_Reduce call on each core to sum the
process-POV values, and finally having one MPI process per each
core report the core-POV value. However, this sequence appears to
be too complex for the simple goal of timing a section of code in a
core-POV manner, so support from MPI is desirable.

Conversely, if MPI processes are allowed to migrate between
cores during the program run, then summing process-POV values
will yield a wrong result—a process will incorrectly attribute all the
amount of time it has accumulated in the measured code section to
the core on which it happened to be executing at the moment of
the summation, while all the other cores which have executed any
portion of the measured section on this process’s behalf will get
attributed nothing. In this case, the support from the MPI runtime
is not just desirable but necessary.

3.4 Obtaining Core-POV Time Measurements
The crux of the problem with obtaining core-POV time measure-
ments is not that we need a special kind of core-POV clock—any
standard wall-time clock is already a core-POV clock—but rather
that the timer has to be started and stopped at specific events: the
timer has to be started when any MPI process on this core enters
the measured code section or resumes execution at a scheduling
point inside that section, and it has to be stopped when any MPI
process leaves the section or gets suspended in a scheduling point
within it.

To provide such functionality from MPI, we suggest extending
the MPI interface with three new calls:
void MPIX_Start_processor_timer ()

void MPIX_Stop_processor_timer ()

double MPIX_Ptime ()

The first two calls are to be used to demarcate the section of code for
which core-POV time measurements are desired to be taken. The
MPIX_Ptime call, named after “Processor time”, is used to retrieve
the measurement; it provides access to the same core-POV timer to
all MPI processes sharing a core.

Listing 3 outlines our proposed way of implementing these core-
POV timer calls. The information onwhether or not a particularMPI
process is currently executing within the core-POV-timed section

Listing 3: Our implementation of core-POV timers. In all
statements, M and C refer to the current process’s and cur-
rent core’s fields respectively. Function now() returns cur-
rent, non-negative wall-time as measured by a call such as
rdtsc or gettimeofday.
// There is one instance of a core_local
// variable for each CPU core.
core_local double C; // The core -POV timer.
proc_local double M; // A per -proc helper variable.

on_core_init (): // once per core in MPI_Init
C = 0;

on_proc_init (): // once per proc in MPI_Init
M = -1;

MPIX_Start_processor_timer ():
M = now();

on_proc_suspend ():
//if in the metered section , add to timer
if (M > 0): C += now() - M;

on_proc_resume ():
//if in the metered section , refresh helper
if (M > 0): M = now();

MPIX_Stop_processor_timer ():
// Accumulate contributions
if (M > 0): C += now() - M;
//leave the metered section
M = -1;

MPIX_Ptime ():
return C

of code is inherent to that process, because it depends on where in
the program that process is executing. Thus, whether or not the
time accumulation should take place depends on the process state.
The MPI process-local variable M is used for that purpose, with the
special value -1 indicating that no core-POV timer is active and a
non-negative value indicating that the timer is active. This variable
can be placed into the control data structure maintained for each
process by the MPI runtime. On the other hand, the information on
how much time a certain core has accumulated in the timed section
of the code is inherent to that core. Hence, each core maintains
its private running sum in the core-local variable C, which can be
stored in the control data structure kept for each CPU core by the
MPI runtime.

As with the process-POV timer logic, the on-suspend and on-
resume parts of the core-POV timer logic have to be executed on
each MPI process switch, which is potentially a frequent event.
Figure 4 presents the statistical summary of absolute time mea-
surements of approximately 70,000 invocations of on-suspend and
on-resume logic implemented in C++ on a 2.2 GHz Intel Xeon E5-
2660V2. The 99th percentile is at 170 ns for the on-suspend logic
and is below 150 ns for the on-resume logic.

3.5 Discussion of process-POV and core-POV
timers

The time measurement issues described in this section may poten-
tially be resolved by using instrumentation external to MPI, e.g., by

of code is inherent to that process, because it depends on where in
the program that process is executing. Thus, whether or not the
time accumulation should take place depends on the process state.
The MPI process-local variable M is used for that purpose, with the
special value -1 indicating that no core-POV timer is active and a
non-negative value indicating that the timer is active. This variable
can be placed into the control data structure maintained for each
process by the MPI runtime. On the other hand, the information on
how much time a certain core has accumulated in the timed section
of the code is inherent to that core. Hence, each core maintains
its private running sum in the core-local variable C, which can be
stored in the control data structure kept for each CPU core by the
MPI runtime.

As with the process-POV timer logic, the on-suspend and on-
resume parts of the core-POV timer logic have to be executed on
each MPI process switch, which is potentially a frequent event.
Figure 4 presents the statistical summary of absolute time mea-
surements of approximately 70,000 invocations of on-suspend and
on-resume logic implemented in C++ on a 2.2 GHz Intel Xeon E5-
2660V2. The 99th percentile is at 170 ns for the on-suspend logic
and is below 150 ns for the on-resume logic.

3.5 Discussion of process-POV and core-POV
timers

The time measurement issues described in this section may poten-
tially be resolved by using instrumentation external to MPI, e.g., by

16

Communication and Timing Issues with MPI Virtualization EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

0 100 200 300
Overhead [ns]

0.00

0.25

0.50

0.75

1.00

CD
F

median: 38 ns

P99 = 170 ns
P99.9 = 307 ns

Suspend

0 100 200 300
Overhead [ns]

0.00

0.25

0.50

0.75

1.00

CD
F

median: 38 ns

P99 = 147 ns
P99.9 = 271 ns

Resume

Figure 4: Cummulative distribution function of the per-task-
switch overhead of the proposed core-POV timer logic. P99
and P99.9 denote 99th and 99.9th percentiles.

using timing facilities provided by a particular virtualized MPI im-
plementation: Adaptive MPI, for example, provides a performance-
analysis tool called Projections [8]. However, a portable MPI pro-
gram would confine itself to using only the facilities included in the
MPI standard. Hence, we argue the MPI standard should include
virtualization-aware time-measurement features.

MPI simulation frameworks—such as SMPI [4], xSim [6], MPI-
SIM [23], and the MPI simulator described in [24]—partially share
the timing issues with virtualizedMPI implementations. Such frame-
works aim to use one system to simulate execution of an MPI
application on another, possibly larger, system. In such circum-
stances, MPI_Wtime has to be altered to return “virtual time”, which
could be similar to the process-POV time returned by MPIX_Rtime
proposed in our work. However, the two functions would have
different meanings: a simulator’s MPI_Wtime would be returning
wall-clock timer’s readings on a hypothetical target system, which
is different from the real system executing the simulation; whereas
MPIX_Rtime would be returning process-POV reading as seen by
the same system that executes the calculation.

3.5.1 Performance counters and the MPI profiling interface. We
presented the process-POV and core-POV measurement problem
in the context of time measurement; however, measurements with
performance counters are facing the exact same problem: process-
POV and core-POV logic is needed in order to obtain meaningful
readings. The MPI profiling interface [18] faces the same problem
as well: if a profiler implementation aims at gathering statistics
for MPI calls containing scheduling points, then it must employ
process-POV and/or core-POV measurement mechanisms.

Thus, the introduction of virtualization into MPI brings the need
to have new kinds of timer calls: for measuring time from the point
of view of an MPI process and from the point of view of a CPU core.
The underlying reason for introducing both kinds of timers is the
fact that several MPI processes share the same CPU core. We will
now discuss another insight that this work has uncovered.

4 RELATION BETWEEN VIRTUALIZATION
RATIO AND MPI’S COMMUNICATION
PROTOCOL

MPI virtualization involves launching more than one MPI process
per CPU core; the exact number of MPI processes per CPU core is
referred to as the virtualization ratio by the authors of Adaptive MPI
[12], we adopt this terminology. The choice of the virtualization

Communication and Timing Issues with MPI Virtualization EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

0 100 200 300
Overhead [ns]

0.00

0.25

0.50

0.75

1.00

CD
F

median: 38 ns

P99 = 170 ns
P99.9 = 307 ns

Suspend

0 100 200 300
Overhead [ns]

0.00

0.25

0.50

0.75

1.00

CD
F

median: 38 ns

P99 = 147 ns
P99.9 = 271 ns

Resume

Figure 4: Cummulative distribution function of the per-task-
switch overhead of the proposed core-POV timer logic. 𝑃99
and 𝑃99.9 denote 99th and 99.9th percentiles.

using timing facilities provided by a particular virtualized MPI im-
plementation: Adaptive MPI, for example, provides a performance-
analysis tool called Projections [8]. However, a portable MPI pro-
gram would confine itself to using only the facilities included in the
MPI standard. Hence, we argue the MPI standard should include
virtualization-aware time-measurement features.

MPI simulation frameworks—such as SMPI [4], xSim [6], MPI-
SIM [23], and the MPI simulator described in [24]—partially share
the timing issues with virtualizedMPI implementations. Such frame-
works aim to use one system to simulate execution of an MPI
application on another, possibly larger, system. In such circum-
stances, MPI_Wtime has to be altered to return “virtual time”, which
could be similar to the process-POV time returned by MPIX_Rtime
proposed in our work. However, the two functions would have
different meanings: a simulator’s MPI_Wtime would be returning
wall-clock timer’s readings on a hypothetical target system, which
is different from the real system executing the simulation; whereas
MPIX_Rtime would be returning process-POV reading as seen by
the same system that executes the calculation.

3.5.1 Performance counters and the MPI profiling interface. We
presented the process-POV and core-POV measurement problem
in the context of time measurement; however, measurements with
performance counters are facing the exact same problem: process-
POV and core-POV logic is needed in order to obtain meaningful
readings. The MPI profiling interface [18] faces the same problem
as well: if a profiler implementation aims at gathering statistics
for MPI calls containing scheduling points, then it must employ
process-POV and/or core-POV measurement mechanisms.

Thus, the introduction of virtualization into MPI brings the need
to have new kinds of timer calls: for measuring time from the point
of view of an MPI process and from the point of view of a CPU core.
The underlying reason for introducing both kinds of timers is the
fact that several MPI processes share the same CPU core. We will
now discuss another insight that this work has uncovered.

4 RELATION BETWEEN VIRTUALIZATION
RATIO AND MPI’S COMMUNICATION
PROTOCOL

MPI virtualization involves launching more than one MPI process
per CPU core; the exact number of MPI processes per CPU core is
referred to as the virtualization ratio by the authors of Adaptive MPI
[12], we adopt this terminology. The choice of the virtualization

Listing 4: Outline of themicrobenchmark employed for eval-
uating achieved overlap. The code mimics a 2-dimensional
stencil application. Each MPI process communicates with 4
neighbors.
int main(int argc , char** argv) {

MPI_Init ();
for (int i = 0; i < ITERS; i++) {

compute (); /*Comp. phase */

/* Communication phase */
MPI_Irecv (); MPI_Irecv ();
MPI_Irecv (); MPI_Irecv ();
MPI_Isend (); MPI_Isend ();
MPI_Isend (); MPI_Isend ();
MPI_Waitall ();

}
MPI_Finalize ();

}

ratio has an unexpected link to the MPI rendezvous communica-
tion protocol. To see this, we need to inspect the computation–
communication overlap achieved by a virtualized MPI implemen-
tation for an application that does not implement overlapping on
its own. We will first introduce our methodology of measuring the
achieved overlap.

4.1 Measuring the overlap
We use a microbenchmark which mimics a 2-dimensional stencil
calculation with a computation phase and a blocking halo-exchange
phase; its outline is presented in Listing 4. We build two controls
into the benchmark. First, it is possible to enable and disable any of
the two phases independently. Second, it is possible to freely adjust
the amounts of both computation and communication.

The microbenchmark does not attempt to overlap computation
and communication on its own: it uses the nonblocking MPI calls,
but no computation is put between the initiation calls and the
MPI_Waitall. Thus, any achieved overlap is entirely attributed to
the underlying MPI implementation.

To measure the achieved overlap, we first run the microbench-
mark with only the computation phase enabled and measure the
time taken, which we refer to as 𝑇𝑐𝑜𝑚𝑝 ; we then repeat the runs
with only the communication phase enabled and obtain the mea-
surement𝑇𝑐𝑜𝑚𝑚 ; finally, we re-run the code with both components
enabled and obtain the overall measurement 𝑇𝑓 𝑢𝑙𝑙 . We then relate
the three measurements:

• If 𝑇𝑓 𝑢𝑙𝑙 = max
(
𝑇𝑐𝑜𝑚𝑝 ,𝑇𝑐𝑜𝑚𝑚

)
, i.e., the shorter of the two

components got completely hidden behind the longer, then
the best possible overlap has been achieved;

• if𝑇𝑓 𝑢𝑙𝑙 = 𝑇𝑐𝑜𝑚𝑝+𝑇𝑐𝑜𝑚𝑚 , then no overlap has been achieved—
the two components merely got stacked on top of each other;

• if max
(
𝑇𝑐𝑜𝑚𝑝 ,𝑇𝑐𝑜𝑚𝑚

)
< 𝑇𝑓 𝑢𝑙𝑙 <

(
𝑇𝑐𝑜𝑚𝑝 +𝑇𝑐𝑜𝑚𝑚

)
, then

only partial overlap has been achieved.
Thus, a triplet of measurements—{𝑇𝑐𝑜𝑚𝑝 ,𝑇𝑐𝑜𝑚𝑚,𝑇𝑓 𝑢𝑙𝑙 }—is used to
evaluate the achieved overlap.

4.2 Rendezvous protocol needs at least three
processes per core

We will use 𝑉 to denote virtualization ratio where appropriate for
brevity. Figure 5 presents the measurements from two series of runs

ratio has an unexpected link to the MPI rendezvous communica-
tion protocol. To see this, we need to inspect the computation–
communication overlap achieved by a virtualized MPI implemen-
tation for an application that does not implement overlapping on
its own. We will first introduce our methodology of measuring the
achieved overlap.

4.1 Measuring the overlap
We use a microbenchmark which mimics a 2-dimensional stencil
calculation with a computation phase and a blocking halo-exchange
phase; its outline is presented in Listing 4. We build two controls
into the benchmark. First, it is possible to enable and disable any of
the two phases independently. Second, it is possible to freely adjust
the amounts of both computation and communication.

The microbenchmark does not attempt to overlap computation
and communication on its own: it uses the nonblocking MPI calls,
but no computation is put between the initiation calls and the
MPI_Waitall. Thus, any achieved overlap is entirely attributed to
the underlying MPI implementation.

To measure the achieved overlap, we first run the microbench-
mark with only the computation phase enabled and measure the
time taken, which we refer to as Tcomp ; we then repeat the runs
with only the communication phase enabled and obtain the mea-
surementTcomm ; finally, we re-run the code with both components
enabled and obtain the overall measurement Tf ull . We then relate
the three measurements:

• If Tf ull = max
(
Tcomp ,Tcomm

)
, i.e., the shorter of the two

components got completely hidden behind the longer, then
the best possible overlap has been achieved;

• if Tf ull = Tcomp + Tcomm , then no overlap has been
achieved—the two components merely got stacked on top of
each other;

• if max
(
Tcomp ,Tcomm

)
< Tf ull <

(
Tcomp +Tcomm

)
, then

only partial overlap has been achieved.

Thus, a triplet of measurements—{Tcomp ,Tcomm ,Tf ull }—is used
to evaluate the achieved overlap.

17

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

0 100 200 300 400 500 600
network message size [KiB]

0.0

0.5

1.0

1.5

2.0

ex
ec

ut
io

n
tim

e
[s

ec
]

TfullTcomp + Tcomm

Tcomp

Tcomm

Virtualization ratio V=2

0 100 200 300 400
network message size [KiB]

0

1

2

ex
ec

ut
io

n
tim

e
[s

ec
]

Tfull

Tcomp + Tcomm

Tcomp

Tcomm

Virtualization ratio V=3

Figure 5: Overlap achieved by a microbenchmark withV = 2
(top) and V = 3 (bottom). The V = 2 configuration achieves
only partial overlap, while the V = 3 configuration achieves
full overlap.

Sender Receiver

Ready to Receive (RTR)

Complete (C)

MPI_Send

MPI_Recv

the call returns

the call returns

Figure 6: Outline of the MPI rendezvous protocol [30]. The
sender and the receiver performahandshake before starting
the data transmission.

4.2 Rendezvous protocol needs at least three
processes per core

We will use V to denote virtualization ratio where appropriate for
brevity. Figure 5 presents the measurements from two series of runs
of the overlap microbenchmark: with V = 2 in the top plot and
V = 3 in the bottom plot. In these runs, the amount of computation
is kept constant throughout the runs, so Tcomp remains constant,
but the amount of communication is varied, yielding a rising trend
forTcomm . No shared-memory communication is performed during
these runs—only the network communication is performed, which
uses the rendezvous protocol [30] as outlined in Figure 6. The data
for these plots was obtained using our virtualized MPI implemen-
tation, TinyMPI, running on two nodes of a cluster with 2.2 GHz
Intel Xeon E5-2660V2 processors and a 56 Gbps InfiniBand FDR
interconnect. The figure demonstrates that the achieved overlap
improves considerably when going from V = 2 to V = 3, as seen
from the fact that in the bottom plot the Tf ull line (the green line)
lies directly on top of the Tcomp line, which is the maximum of

0 200 400 600
Waitall duration [microseconds]

0.0

0.5

1.0

CD
F

Virtualization ratio V=2

0 100 200 300 400
Waitall duration [microseconds]

0.0

0.5

1.0

CD
F

Virtualization ratio V=3

Figure 7: Cummulative distribution function of the amount
of time spent by the overlap benchmark in each MPI_Waitall
call. With V = 2 the distribution is strongly bimodal, while
with V = 3 it is unimodal.

the two components. This data suggests that the rendezvous proto-
col requires at least three MPI processes per CPU core in order to
achieve good computation–communication overlap. This finding
contradicts the intuition which suggests that two MPI processes
per core should be enough—when one blocks, the CPU switches to
the other one.

Our analysis is based on the assumption that the rendezvous
protocol is not offloaded from the CPU, i.e., the CPU has to take
explicit action at each step of the protocol’s handshake: to handle
ReadyToSend and ReadyToReceivemessages and initiate user data
transfers.

With only one MPI process per core (i.e., V = 1), a rendezvous
send operation leaves two idle gaps in CPU activity: while waiting
for the ReadyToReceive and while waiting for the data transfer
completion acknowledgment. During these waiting periods, the
CPU core cannot progress the user’s MPI program, since the only
MPI process assigned to this core is SUSPENDED, waiting for its
communication requests to be served; and the core is also unable to
progress the communication operation, since it needs a reply from
its peer.

With two MPI processes assigned to the same core (V = 2), one
of these idle gaps is filled—the CPU core can switch to the other pro-
cess. However, only one of the two idle gaps can be covered in this
case—in the second idle gap, both processes are in the SUSPENDED
state unable to become RUNNING. This means someWaitall calls will
appear to finish faster than other (to the calling process). Overlap
is achieved partially in this case.

Both idle gaps can only be covered if the core has three MPI
processes to choose from (V = 3). In every of the idle gaps, there
exists at least one MPI process which can transition to the RUNNING
state, hence the CPU core is busy at all times. In this case, full
computation–communication overlap is achieved.

Figure 7 presents the empirical validation of this explanation.

4.3 Discussion
We find evidence of a similar effect described by White [29], where
the performance of PlasComCM is shown to increase sharply when
changing from V = 2 to V = 3. We believe that our presented
explanation applies to this case.

Our analysis is based on the assumption that the rendezvous
protocol is executed by the CPU. If the protocol is entirely offloaded
to the network hardware, then the full overlap may be achieved
already with V = 2, because only one idle gap will be generated—
the gap encompassing the entire handshake and the data transfer.
However, offloading the rendezvous protocol to network hardware

18

Communication and Timing Issues with MPI Virtualization EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA

was demonstrated to be non-trivial and requiring extensions even
to such a feature-rich interface as Portals 4 [26]. MPI virtualization
circumvents this problem by keeping the CPU responsible for pro-
gressing the protocol while still managing to achieve computation–
communication overlap.

In our analysis we focus on the sender side of the rendezvous
protocol, which generates two idle gaps in CPU activity. The receiver
side of the rendezvous protocol generates either two idle gaps or
one, depending on whether the receive was posted before or after
the matching ReadyToSend has arrived. A single idle gap can be
filled if V = 2; however, since each MPI process usually performs
both sends and receives, the V ≥ 3 recommendation still applies.

We focus on point-to-point communication in our analysis, but
we expect these findings to apply to collective operations as well,
if they employ rendezvous communication internally. While some
MPI processes are blocked inside the collective, the processes which
have not yet entered the collective or have already left it may
proceed with computation. In this case, the overlap will happen
between the communication triggered by the collective and the
computation work done immediately before and after the collective
call.

If ReadyToReceive arrives so shortly after the associated
ReadyToSend has been sent that the MPI runtime is still inside
the same invocation that triggered the ReadyToSend, and if the
MPI implementation is capable of processing the ReadyToReceive
immediately, then the sender side of rendezvous will generate only
one idle gap, and thus V = 2 is expected to be sufficient to achieve
overlap. However, we do not observe this effect in practice.

Thus, the rendezvous protocol requires each core to have at
least three processes assigned to it (V ≥ 3) to avoid idling CPU
cores unnecessarily. Note that oversubscription is only one possible
solution to the problem posed here. Other options include having
progress threads, handling the rendezvous on a lower level, i.e.,
on the NIC itself or modifying the protocol used to transmit large
messages so that less steps are required.

5 CONCLUDING REMARKS
The overarching goal of this work is to better understand the idea
of MPI virtualization, in which MPI processes are mapped to user-
level threads and many MPI processes share the same CPU core.
We find that MPI virtualization necessitates the time-measurement
interface of MPI, currently consisting of only the wall-clock timer
MPI_Wtime, to be extended with virtualization-aware timing calls:
to measure time from the point-of-view of an MPI process and from
the point-of-view of a CPU core. Portable MPI programs written
with MPI virtualization in mind would need these timing calls to
produce meaningful performance results without relying on exter-
nal instrumentation. We also observe the interplay between the
communication protocol and the degree of CPU oversubscription,
the virtualization ratio: the handshake-based MPI rendezvous pro-
tocol requires at least three MPI processes to share the same CPU
core in order to achieve full computation–communication overlap.
We expect these insights to be applicable to any other tasking run-
time system which interleaves execution of multiple tasks or aims
to overlap computation with a networking protocol involving a
multi-step handshake.

ACKNOWLEDGMENTS
This work has been funded by the Mont-Blanc project, grant agree-
ment No. 671697 and the EPIGRAM-HS project, grant agreement
No. 801039.

REFERENCES
[1] D. Buntinas, G. Mercier, and W. Gropp. 2006. Data Transfers between Processes

in an SMP System: Performance Study and Application to MPI. In 2006 Int. Conf.
on Parallel Processing. 487–496. https://doi.org/10.1109/ICPP.2006.31

[2] Patrick Carribault, Marc Pérache, and Hervé Jourdren. 2010. Enabling Low-
Overhead Hybrid MPI/OpenMP Parallelism with MPC. In Beyond Loop Level
Parallelism in OpenMP: Accelerators, Tasking and More, Mitsuhisa Sato, Toshihiro
Hanawa, Matthias S. Müller, Barbara M. Chapman, and Bronis R. de Supinski
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–14.

[3] Hoang-Vu Dang, Marc Snir, and William Gropp. 2016. Towards Millions of
Communicating Threads. In Proceedings of the 23rd European MPI Users’ Group
Meeting (Edinburgh, United Kingdom) (EuroMPI 2016). ACM, 1–14. https://doi.
org/10.1145/2966884.2966914

[4] A. Degomme, A. Legrand, G. S. Markomanolis, M. Quinson, M. Stillwell, and F.
Suter. 2017. Simulating MPI Applications: The SMPI Approach. IEEE Transactions
on Parallel and Distributed Systems 28, 8 (Aug 2017), 2387–2400. https://doi.org/
10.1109/TPDS.2017.2669305

[5] Erik D. Demaine. 1997. A Threads-Only MPI Implementation for the Develop-
ment of Parallel Programs. In Proceedings of the 11th Int. Symposium on High
Performance Computing Systems (HPCS’97). Winnipeg, Manitoba, Canada, 153–
163.

[6] Christian Engelmann. 2014. Scaling to a million cores and beyond: Using light-
weight simulation to understand the challenges ahead on the road to exascale.
Future Generation Computer Systems 30 (2014), 59 – 65. https://doi.org/10.1016/j.
future.2013.04.014

[7] Andrew Friedley, Greg Bronevetsky, Torsten Hoefler, and Andrew Lumsdaine.
2013. Hybrid MPI: Efficient Message Passing for Multi-core Systems. In Proceed-
ings of the Int. Conf. on High Performance Computing, Networking, Storage and
Analysis (Denver, Colorado). ACM, New York, NY, USA, Article 18, 11 pages.
https://doi.org/10.1145/2503210.2503294

[8] Filippo Gioachin, Chee Lee, Jonathan Lifflander, Yanhua Sun, and Laxmikant Kale.
2014. Tools for Debugging and Performance Analysis. In Parallel science and
engineering applications : the Charm++ approach, Laxmikant V Kale and Abhinav
Bhatele (Eds.). CRC Press, Boca Raton, Chapter 3.

[9] Brice Goglin and Stéphanie Moreaud. 2013. KNEM: a Generic and Scalable Kernel-
Assisted Intra-nodeMPI Communication Framework. J. of Parallel and Distributed
Computing 73, 2 (Feb. 2013), 176–188. https://doi.org/10.1016/j.jpdc.2012.09.016

[10] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and Robert W Numrich. 2009. Improving Performance via Mini-applications.
Technical Report SAND2009-5574. Sandia National Laboratories.

[11] T. Hoefler and A. Lumsdaine. 2008. Message progression in parallel computing -
to thread or not to thread?. In 2008 IEEE Int. Conf. on Cluster Computing. 213–222.
https://doi.org/10.1109/CLUSTR.2008.4663774

[12] Chao Huang, Orion Lawlor, and L. V. Kalé. 2003. Adaptive MPI. In Proceedings of
the 16th Int. Workshop on Languages and Compilers for Parallel Computing (LCPC
2003), LNCS 2958. College Station, Texas, 306–322.

[13] Laxmikant V. Kalé. 2002. The Virtualization Model of Parallel Programming :
Runtime Optimizations and the State of Art. In LACSI 2002. Albuquerque.

[14] Laxmikant V. Kale and Sanjeev Krishnan. 1993. CHARM++: A Portable Con-
current Object Oriented System Based On C++. In Proceedings of the 8th an-
nual conference on Object-oriented programming systems, languages, and appli-
cations - OOPSLA ’93, Vol. 53. ACM Press, New York, New York, USA, 91–108.
https://doi.org/10.1145/165854.165874 arXiv:arXiv:1011.1669v3

[15] Laxmikant V. Kale and Gengbin Zheng. 2009. Charm++ and AMPI: Adap-
tive Runtime Strategies via Migratable Objects. Advanced Computational In-
frastructures for Parallel and Distributed Adaptive Applications (2009), 265–282.
https://doi.org/10.1002/9780470558027.ch13

[16] Humaira Kamal and Alan Wagner. 2010. FG-MPI: Fine-grain MPI for Multicore
and Clusters. In 11th IEEE Intl. Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC) held in conjunction with IPDPS-24 (Atlanta). 1–8.
https://doi.org/10.1109/IPDPSW.2010.5470773

[17] S. M. Martin, M. J. Berger, and S. B. Baden. 2017. Toucan — A Translator for
Communication Tolerant MPI Applications. In 2017 IEEE IPDPS. 998–1007. https:
//doi.org/10.1109/IPDPS.2017.44

[18] Message Passing Interface Forum. 2015. Message-Passing Interface. http://mpi-
forum.org

[19] Stas Negara, Gengbin Zheng, Kuo-Chuan Pan, Natasha Negara, Ralph E. Johnson,
Laxmikant V. Kalé, and Paul M. Ricker. 2011. Automatic MPI to AMPI Program
Transformation Using Photran. In Euro-Par 2010 Parallel Processing Workshops,

19

https://doi.org/10.1109/ICPP.2006.31
https://doi.org/10.1145/2966884.2966914
https://doi.org/10.1145/2966884.2966914
https://doi.org/10.1109/TPDS.2017.2669305
https://doi.org/10.1109/TPDS.2017.2669305
https://doi.org/10.1016/j.future.2013.04.014
https://doi.org/10.1016/j.future.2013.04.014
https://doi.org/10.1145/2503210.2503294
https://doi.org/10.1016/j.jpdc.2012.09.016
https://doi.org/10.1109/CLUSTR.2008.4663774
https://doi.org/10.1145/165854.165874
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1002/9780470558027.ch13
https://doi.org/10.1109/IPDPSW.2010.5470773
https://doi.org/10.1109/IPDPS.2017.44
https://doi.org/10.1109/IPDPS.2017.44
http://mpi-forum.org
http://mpi-forum.org

EuroMPI/USA ’20, September 21–24, 2020, Austin, TX, USA Alexandr Nigay, Lukas Mosimann, Timo Schneider, Torsten Hoefler

Mario R. Guarracino, Frédéric Vivien, Jesper Larsson Träff, Mario Cannatoro,
Marco Danelutto, Anders Hast, Francesca Perla, Andreas Knüpfer, Beniamino
Di Martino, and Michael Alexander (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 531–539.

[20] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. 2014. Grappa : A Latency-Tolerant Runtime for Large-
Scale Irregular Applications. Int. Workshop on Rack-Scale Computing (2014).

[21] Marc Pérache, Patrick Carribault, and Hervé Jourdren. 2009. MPC-MPI: An
MPI Implementation Reducing the Overall Memory Consumption. Springer Berlin
Heidelberg, Berlin, Heidelberg, 94–103. https://doi.org/10.1007/978-3-642-03770-
2_16

[22] Marc Pérache, Hervé Jourdren, and Raymond Namyst. 2008. MPC: A Unified
Parallel Runtime for Clusters of NUMA Machines. In Euro-Par 2008 – Parallel
Processing, Emilio Luque, Tomàs Margalef, and Domingo Benítez (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 78–88.

[23] S. Prakash and R. L. Bagrodia. [n.d.]. MPI-SIM: using parallel simulation to
evaluate MPI programs. In 1998 Winter Simulation Conference. Proceedings (Cat.
No.98CH36274), Vol. 1. 467–474 vol.1. https://doi.org/10.1109/WSC.1998.745023

[24] R. Riesen. 2006. A Hybrid MPI Simulator. In 2006 IEEE Int. Conf. on Cluster
Computing. 1–9. https://doi.org/10.1109/CLUSTR.2006.311852

[25] E. R. Rodrigues, P. O. A. Navaux, J. Panetta, C. L. Mendes, and L. V. Kalé. 2010.
Optimizing an MPI weather forecasting model via processor virtualization. In
2010 Int. Conf. on High Performance Computing. 1–10. https://doi.org/10.1109/

HIPC.2010.5713171
[26] T. Schneider, T. Hoefler, R. Grant, B. Barrett, and R. Brightwell. 2013. Protocols

for Fully Offloaded Collective Operations on Accelerated Network Adapters. In
Parallel Processing (ICPP), 2013 42nd Int. Conf. on (Lyon, France). 593–602.

[27] Hong Tang, Kai Shen, and Tao Yang. 2000. Program Transformation and Runtime
Support for ThreadedMPI Execution on Shared-memoryMachines. ACMTOPLAS
22, 4 (July 2000), 673–700. https://doi.org/10.1145/363911.363920

[28] Jerome Vienne. 2014. Benefits of cross memory attach for mpi libraries on hpc
clusters. In Proceedings of the 2014 Annual Conference on Extreme Science and
Engineering Discovery Environment. 1–6.

[29] Sam White. [n.d.]. Adaptive MPI: Overview and Recent Work. ([n. d.]).
Charm++ Workshop 2016; talk slides; retrieved on 12 October 2018 from
http://charm.cs.illinois.edu/newPapers/16-09/AMPI.pdf.

[30] Tim S. Woodall, Galen M. Shipman, George Bosilca, Richard L. Graham, and
Arthur B. Maccabe. 2006. High Performance RDMA Protocols in HPC. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface, Bernd Mohr,
Jesper Larsson Träff, Joachim Worringen, and Jack Dongarra (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 76–85.

[31] G. Zheng, S. Negara, C. L. Mendes, L. V. Kale, and E. R. Rodrigues. 2011. Automatic
Handling of Global Variables for Multi-threaded MPI Programs. In 2011 IEEE 17th
Int. Conf. on Parallel and Distributed Systems. 220–227. https://doi.org/10.1109/
ICPADS.2011.33

20

https://doi.org/10.1007/978-3-642-03770-2_16
https://doi.org/10.1007/978-3-642-03770-2_16
https://doi.org/10.1109/WSC.1998.745023
https://doi.org/10.1109/CLUSTR.2006.311852
https://doi.org/10.1109/HIPC.2010.5713171
https://doi.org/10.1109/HIPC.2010.5713171
https://doi.org/10.1145/363911.363920
https://doi.org/10.1109/ICPADS.2011.33
https://doi.org/10.1109/ICPADS.2011.33

	Abstract
	1 Introduction
	2 MPI Virtualization
	2.1 Scheduling of virtualized MPI processes
	2.2 Implementing a virtualized MPI
	2.3 Work related to MPI virtualization

	3 Issues With Time Measurement
	3.1 Why process-POV measurements are needed
	3.2 Obtaining process-POV Time Measurements
	3.3 Why core-POV measurements are needed
	3.4 Obtaining Core-POV Time Measurements
	3.5 Discussion of process-POV and core-POV timers

	4 Relation between virtualization ratio and MPI's communication protocol
	4.1 Measuring the overlap
	4.2 Rendezvous protocol needs at least three processes per core
	4.3 Discussion

	5 Concluding remarks
	Acknowledgments
	References

