
NPBench: A Benchmarking Suite for High-Performance NumPy
Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten Hoefler

Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT
Python, already one of the most popular languages for scientific
computing, has made significant inroads in High Performance Com-
puting (HPC). At the center of Python’s ecosystem is NumPy, an
efficient implementation of the multi-dimensional array (tensor)
structure, together with basic arithmetic and linear algebra. Com-
pared to traditional HPC languages, the relatively low performance
of Python and NumPy has spawned significant research in compil-
ers and frameworks that decouple Python’s compact representation
from the underlying implementation. However, it is challenging to
compare language compatibility and performance among different
frameworks and architectures without a standard set of benchmarks
and metrics. To that end, we introduce NPBench, a set of NumPy
code samples representing a large variety of HPC applications.
We use NPBench to test popular NumPy-accelerating compilers
and frameworks on a variety of metrics. NPBench will guide both
end-users and framework developers focusing on performance and
will drive further use of Python in the high-performance scientific
domains.

CCS CONCEPTS
• General and reference → Measurement; Metrics; Evalua-
tion; Performance.

KEYWORDS
High Performance Computing, Benchmark, Python, NumPy
ACM Reference Format:
Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten
Hoefler. 2021. NPBench: A Benchmarking Suite for High-Performance
NumPy. In 2021 International Conference on Supercomputing (ICS ’21), June
14–17, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3447818.3460360

1 INTRODUCTION
Python is quickly developing towards being a dominant language
in scientific applications ranging from diverse scientific domains
such as molecular dynamics [33, 41] and climate codes [50] to
machine learning [2, 37]. This accelerating adoption, which has
pushed Python to be the second most-used language in open source
projects in 2020 [19], is driven by its rich ecosystem of domain-
specific libraries and frameworks but also its seamless integration
into Jupyter notebooks [29]. The latter enables reproducible scien-
tific workflows as simple lab notes but also most complex large-
scale experiments. This high productivity and broad applicability
of the core Python language also result in strong industry support,

ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 2021 International
Conference on Supercomputing (ICS ’21), June 14–17, 2021, Virtual Event, USA, https:
//doi.org/10.1145/3447818.3460360.

Performance (§5.2)

Productivity (§4.3)

Weather (2)

Physics (9)

Chemistry (4)

Learning (6)

Signals (3)

Graphs (2)

Solver (10)

Other (3)

LinAlg (12)
NumPy baseline

DaCe

Numba

CuPy

Domains (§3.1) Metrics Frameworks (§4.1)

Pythran

Figure 1: Overview of NPBench: represented scientific do-
mains (number of example codes in brackets), metrics, and
frameworks.

especially in big data, data science, and deep learning. More and
more machine learning and artificial intelligence techniques are
finding their way into scientific simulations by amending existing
codes. Therefore, Python’s use leads to strong synergies among
industry, academia, and national labs, centered around its software
ecosystem.

Apart from being the interface to data management, Python is
also increasingly seen as a framework for scientific computing itself.
Python’s specific strength is the rich ecosystem of domain-specific
libraries and frameworks, such as pandas, SciPy, Scikit-learn, Py-
Torch, TensorFlow, andMatplotlib, to name a few. The NumPy array
library [23] forms a foundation for most, if not all, of those frame-
works and many more. NumPy has been carefully optimized to cir-
cumvent many of Python’s traditional weaknesses in performance.
It uses careful low-overhead data storage schemes and utilizes opti-
mized libraries for many operations. In fact, optimizing NumPy has
been in its users’ core interests, and several specializations exist for
this reason [2, 37]. Its central position in performance-conscious sci-
entific computing makes the NumPy library of paramount interest
for high-performance, scientific computing, and machine learning
workloads.

Techniques for achieving high performance are often specific
to each domain. For example, machine learning frameworks use
NumPy-like arrays and call operators from hand-optimized libraries
(e.g., oneDNN [27] or cuDNN [13]) to achieve high performance.
Nevertheless, operators that are not supported by the hand-picked
libraries are often executed inefficiently. The state of scientific com-
puting in Python is similar—if applications are using a set of pre-
defined routines (e.g., BLAS or LAPACK) through the interfaces of
NumPy or SciPy, then their execution is optimized. However, many
high-performance codes require a large variety of functionality far
beyond tuned scientific computing and machine learning operators.
Furthermore, such codes often use series of small operator invoca-
tions that may not be efficient to accelerate individually. Thus, not

https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360
https://doi.org/10.1145/3447818.3460360

ICS ’21, June 14–17, 2021, Virtual Event, USA Ziogas et al.

all NumPy operations can be accelerated manually, and higher-level
optimizations play a crucial role in NumPy’s ecosystem.

Several approaches exist to improve the performance of NumPy
that go beyond merely calling optimized libraries. Most of those
approaches analyze the NumPy source code in some way and gen-
erate more efficient code. Some, such as Numba [30], DaCe [11],
Pythran [22], or CuPy [35] require relatively minor changes to the
source code while others such as Cython [10] require programmers
to write C-like code. We find that even though all those efforts
focus exclusively on performance, it is hard, if not impossible, to
compare their performance fairly.

However, even with all these efforts, NumPy performance is not
always sufficient. To drive the high-performance Python ecosystem,
we define NPBench, a set of representative high-performance com-
puting benchmarks for NumPy implementations. NPBench includes
52 benchmarks from 8 scientific domains of performance-critical
workloads in NumPy, ranging from linear algebra to full physics sim-
ulations and deep learning. Each benchmark is a carefully extracted
performance-critical kernel from a larger application to focus on
the critical pieces with a portable benchmark suite. NPBench allows
us to establish a set of core features and principles of importance
in NumPy codes that deserve special attention when tuning perfor-
mance. Figure 1 shows an overview of NPBench and the structure
of this paper.

NumPy and the Python language are at the pole position to be-
come the main driver of the next generation of scientific computing
applications. Python already took a large fraction of the scientific
community by storm, and its strong industry support will boost
developments further. High-performance computing is now ready
to seize this opportunity and adopt a productive language into its
core. With NPBench, we establish a clear set of targets to guide and
accelerate high-performance frameworks’ development. As such,
NPBench’s goals are similar to those of other impactful benchmarks
such as the NAS Parallel Benchmarks [7], the Mantevo benchmark
suite [25], or the ImageNet dataset from deep learning [44]. With
its open and extensible structure, we expect NPBench to develop
into a central catalyst for adopting Python by the high-performance
computing community.

2 NUMPY
NumPy is a Python module that centers around the concept of
ndarray, an efficient multidimensional array object. It includes a
plethora of optimized routines that operate on those array objects.
These range from basic arithmetic operations, through linear al-
gebra, to statistics and simulations. With these features, NumPy
facilitates writing pythonic code that is short and concise, readable,
and potentially contains fewer bugs. Furthermore, by using array-
wide operators, NumPy allows writing code in vectorized form,
driving its adoption by the scientific community.

2.1 The NumPy ndarray
The data structure of the ndarray includes a pointer to the data
itself and necessary metadata, such as the data type of the array
elements, the shape of the array, and the access strides. The shape
is an ordered tuple of the lengths of the array in each dimension.

For example, an𝑀 × 𝑁 matrix has shape (𝑀, 𝑁). NumPy ndarrays
have fixed size, and their elements must be of the same data type.

We can access the data of an ndarray object with a variety of
different syntax. Indexing with slices of the form start:stop:step

returns a view of the underlying data, avoiding unnecessary copies.
On the other hand, indexing with scalar coordinates, masks, and
boolean or integer arrays (also called advanced indexing) produces
a copy of the data. A boolean indexing array has the same size
as the data array, where a true or false value indicates whether
the corresponding data element should be copied or updated. An
integer indexing array consists of integer tuples that correspond to
the data elements’ coordinates to be accessed.

NumPy ndarrays support vectorization, the process of remov-
ing unnecessary indexing and loops, using standard mathematical
notation. Typically, one must use loops to operate on a Python list
structure. For example, the addition of two vectors x and y could
be written as follows:

z = [None] * len(x)
for i, (a, b) in enumerate(zip(x, y)):

z[i] = a + b

The above operation can be rewritten in vectorized form using
NumPy ndarrays in a single line: z = x + y.

Another code-simplification concept supported by NumPy is
broadcasting. NumPy can treat arrays of different shapes together,
implicitly applying element-wise operations on their elements. To
bring up another example, adding a scalar value to a Python list
can be written in the following manner:

y = [None] * len(x)
for i, a in enumerate(x):

y[i] = a + c # c is a scalar value

With NumPy, the operation is simplified again to a single line:
z = x + c. Broadcasting doesn’t apply only in operations between
arrays and scalars, but also among arrays of different shapes, as
long as the smaller array can be “broadcasted” to the larger one’s
shape in an unambiguous way.

The NumPy ndarray class also contains methods that operate
on the underlying data. Such routines include transposition and
reductions or aggregations, e.g., sum, min, and argmax, to name a
few. These routines are further enhanced with keyword arguments
that modify their behavior and range of application. For example,
reductions have an axis argument, which defines the dimensions
where the reduction operator will be applied.

2.2 NumPy routines
Arrays can be allocated with undefined values or filled with zeros,
ones, and any other constant. They can be “reshaped”, i.e., have their
shape adjusted while retaining their original total size and data.
NumPy also provides methods for splitting an array or concatenat-
ing multiple arrays to a single one. Moreover, it implements all the
standard Python unary and binary operations and the mathematical
functions defined in the standard Python math module.

NumPy has sub-modules that implement linear algebra, Discrete
Fourier Transformation, random number generation, and polyno-
mial fitting, among others. For example, the linear algebra sub-
module implements matrix and vector products (e.g., inner, outer,

NPBench: A Benchmarking Suite for High-Performance NumPy ICS ’21, June 14–17, 2021, Virtual Event, USA

and tensor dot product), decompositions (e.g., Cholesky and QR
decompositions), and norms.

2.3 Memory Model and Interoperability
What enables flexibility and performance in NumPy is its memory
model. Native Python objects, such as lists, are composed of linked
lists and trees that must be traversed with multiple pointer indirec-
tions, prioritizing interpreter convenience over memory locality.
The fixed-size NumPy arrays, on the other hand, are represented as
contiguous buffers, which can be allocated by NumPy itself or other
allocators (owing to their __array_interface__ standard). This
enables high-performance behavior — transpositions, for example,
are not directly evaluated by default but simply swap the memory
order. The memory model and vectorization not only allows NumPy
to invoke external (e.g., BLAS) libraries directly but also promotes
runtime optimizations, such as lazy evaluation, which some NumPy
implementations use. Nearly all popular high-performance Python
libraries, especially in the deep learning domain, followed suit and
adopted similar memory models.

Interoperability goes beyond BLAS libraries. Due to the contigu-
ous buffers and array interface standards, many libraries, including
pre-compiled libraries and custom-written C/C++ extensions, could
directly use NumPy buffers as inputs/outputs. The aforementioned
model, combined with the simple, MATLAB-esque syntax, led to the
wide adoption of NumPy by scientific computing library developers
and users as one.

3 PRINCIPLES OF NPBENCH
A primary design goal of NPBench is to be representative of the
current and potential future use of Python in HPC. To that end, we
select micro-apps from a wide variety of scientific domains charac-
terized by standard computation and communication patterns [6].
We also write and adapt benchmarks utilizing the expressive syntax
of Python and the NumPy module. The above process leads to a
collection of samples emulating the pythonic (or numpythonic) code
style that domain scientists use in Python HPC applications.

3.1 Scientific Domains
We provide an exhaustive list of the NPBench code samples, sorted
by their scientific domain. We also provide a short description for
each sample.

3.1.1 Chemistry. We include two code samples from PyFAI [28],
a Python library implementing azimuthal integration. The two
samples are azimnaiv and azimhist, with the latter being a “code-
reduction” of the former, down to two calls to the NumPy built-in
method histogram. We also adapt the Polybench [38] implementa-
tions of the Nussinov algorithm (nussinov), which predicts nucleic
acid structures, and the multiresolution analysis kernel doitgen.

3.1.2 Digital Signal Processing. In this domain, we include a code
sample implementing the Stockham FFT algorithm (sthamfft) [12],
a variation of the Cooley–Tukey algorithm allowing for greater
utilization of SIMD architectures. Furthermore, we implement the
deriche edge detector from Polybench [38], and we include a short
sample rescaling and clipping the values of an array to a specified
interval (clipping) [47].

3.1.3 Graph and Sparse Algorithms. We adapt the Polybench [38]
implementation of the Floyd-Warshall shortest path algorithm
(floydwar). We also implement sparse matrix-vector multiplica-
tion (spmv), which is used in GraphBLAS variants of breadth-first
search.

3.1.4 Machine Learning. We include implementations of the ba-
sic deep learning operators 2D-convolution and softmax (conv2d
and softmax). Furthermore, we provide implementations of a 3-
layer Multilayer Perceptron (MLP), the LeNet-5 [31] Convolutional
Neural Network (CNN), and the bottleneck residual block in ResNet-
50 [24] CNN. Both CNNs operate in inference mode. The corre-
sponding samples are mlp, lenet, and resnet. Furthermore, the ker-
nels correlat and covarian are adapted from Polybench [38]. They
represent the correlation and covariance statistical techniques used
to compare different populations of data.

3.1.5 Physics. We adapt two code samples, cavtflow and chanflow,
from CFD Python [9], a Jupyter-notebook tutorial for the Navier-
Stokes equations using Python and NumPy. The micro-apps solve
the cavity and channel flow equations in two dimensions. We adapt
an N-Body simulation program (nbody) of star orbits according to
Newton’s Law of Gravity [34]. We adapt two samples, coninteg and
sselfeng from the OMEN quantum transport simulator [48, 53]. The
two samples represent computation patterns that appear in the sim-
ulation of nano-devices’ thermal characteristics. We also adapt the
stencils jacobi1d, jacobi2d, heat3d, and fdtd_2d from Polybench [38].

3.1.6 Linear Algebra. We implement a variety of linear algebra
kernels. Most of them are adapted from Polybench [38] and can be
classified into two groups:

(1) BLAS routines: gemm, gemver, gesummv, symm, syr2k, syrk,
and trmm.

(2) Composite dense linear algebra kernels: Two and three ma-
trix multiplications (2mm, 3mm),𝐴𝑇𝐴𝑥 (atax), matrix-vector
product and transpose (mvt), and trace computation (npgo-
fast) [3].

3.1.7 Solvers andMatrix Decomposition. We include several solvers
in the benchmark suite: Gauss-Seidel PDE solver (seidel2d), Toeplitz
and triangular system solvers (durbin, trisolv), Alternating Direc-
tion Implicit solver (adi), and a kernel from Biconjugate Gradient
Stabilized method (bicg), all adapted from Polybench [38]. Addi-
tionally, we adapt the Gram-Schmidt orthonormalization process
(gramschm), LU (with and without pivoting), and Cholesky decom-
position (vectorized and non-vectorized).

3.1.8 Weather Prediction and Climate Models. We include two
micro-apps, vadv and hdiff, both adapted from the test suite of
GT4Py [50]. The former represents vertical advection and the latter
horizontal diffusion, both from the COSMO dynamical core [8, 14].

3.1.9 Other Domains and Basic Kernels. We further provide sev-
eral code samples that do not belong to a major HPC scientific
domain but exhibit interesting computation patterns or Python and
NumPy syntax. We include two different implementations of the
escape-time algorithm for generating Mandelbrot sets (mandel1
and mandel2) [43]. We also adapt the CRC-16-CCITT algorithm
(crc16) for cyclic redundancy check (CRC) [36].

ICS ’21, June 14–17, 2021, Virtual Event, USA Ziogas et al.

3.1.10 Relation to Berkeley Parallel Dwarfs. Research in HPC and
Parallel Computing, in general, has led to the identification of sev-
eral computational and communication patterns [6] that are preva-
lent in scientific applications. With NPBench, we focus on those
motifs that are amenable to array programming and, therefore,
map naturally to NumPy syntax and operations. By adapting sam-
ples that cover an extensive range of those motifs, we provide a
platform for exploring the expressibility of Python and NumPy,
together with their performance potential. We cover dense linear
algebra (BLAS and other linear algebra kernels and solvers), spectral
(sthamfft) and N-Body (nbody) methods, structured grids (stencils,
weather and CFD micro-apps), Monte-Carlo and other embarass-
ingly parallel computations (npgofast), combinational logic (crc16),
and dynamic programming (floydwar, nussinov). NPBench does not
cover sparse linear algebra, apart from spmv, an implementation of
sparse matrix-vector multiplication. The reason is that NumPy by
itself does not provide support for sparse structures. SciPy [51], a
module complementary to NumPy for scientific computing, does
so but is out of the scope of this work. However, it can provide the
basis for a future extension of NPBench.

3.2 NumPy Coverage
NPBench includes sample codes gathered from various sources of
NumPy programming. Most are used as-is with minor modifica-
tions to facilitate benchmarking. For example, we convert global
variables to method arguments and enforce consistent data types.
To demonstrate the breadth of the feature-set covered in NPBench,
we provide code samples below and discuss the Python language
and relevant NumPy features.

3.2.1 Simple example codes. The clipping sample is taken from
the Cython tutorial for NumPy users [47]. The method comprises
simple array-scalar operations and a call to the NumPy built-in
method clip, which clips (limits) the input array to a specified
interval:

def clipping(array_1 , array_2 , a, b, c):
return (np.clip(array_1 , 2, 10) * a +

array_2 * b + c)

The resnet sample consists of several methods, including the follow-
ing implementation of the batch normalization operator. It consists
of calls to the NumPy reductions for computing the mean and stan-
dard deviation of data. These calls utilize the axis and keepdims
keyword arguments, which define the reduction dimensions and
the shape of the output.

def batchnorm2d(x, eps=1e-5):
mean = np.mean(x, axis=0, keepdims=True)
std = np.std(x, axis=0, keepdims=True)
return (x - mean) / np.sqrt(std + eps)

3.2.2 Adaptation of Polybench. Polybench is a collection of polyhe-
dral algorithms, such as linear algebra kernels and solvers, written
in C. To adapt its kernels, we first perform a straightforward transla-
tion of the loops and per-element array accesses to their equivalent
Python syntax. As an example, the Cholesky decomposition is writ-
ten as:

def cholesky(A):
for i in range(A.shape [0]):

for j in range(i):
for k in range(j):

A[i, j] -= A[i, k] * A[j, k]
A[i, j] /= A[j, j]

for k in range(i):
A[i, i] -= A[i, k] * A[i, k]

A[i, i] = np.sqrt(A[i, i])

However, the low-level code style used above misses an essential
benefit of NumPy; the abstraction of array or matrix operations and
basic linear algebra kernels to a single line of code. To simulate a
NumPy user’s code style, we attempt to minimize the code complex-
ity by vectorizing loops, i.e., rewriting them as array expressions.
For example, the two k-indexed loops in cholesky can be rewritten
as dot products:

def cholesky(A):
A[0, 0] = np.sqrt(A[0, 0])
for i in range(1, A.shape [0]):

for j in range(i):
A[i, j] -= np.dot(A[i, :j], A[j, :j])
A[i, j] /= A[j, j]

A[i, i] -= np.dot(A[i, :i], A[i, :i])
A[i, i] = np.sqrt(A[i, i])

In some cases, we can go one step further and provide an alternate,
higher-level implementation, using NumPy built-in methods when-
ever appropriate. NumPy includes a routine for Cholesky decom-
position, which we can use to simplify the code further. Therefore,
an alternative implementation of the kernel that still returns the
same result as the original code written in C is the following:

def cholesky(A):
A[:] = (np.linalg.cholesky(A) +

np.triu(A, k=1))

We note that NPBench includes codes similar in style to the two
latter Cholesky examples (cholesky, cholesky2).

3.2.3 Basic Indexing. NumPy ndarrays can be accessed with a va-
riety of syntaxes. Basic indexing (as defined in NumPy’s documen-
tation [1]) includes slices of the form start:stop:step, where any
of the three indices may be missing or even be a negative integer.
The following snippet from cavtflow showcases such indexing.

p[1:-1, 1:-1] = (
((pn[1:-1, 2:] + pn[1:-1, :-2]) * dy**2 +
(pn[2:, 1:-1] + pn[:-2, 1:-1]) * dx**2) /

(2 * (dx**2 + dy**2)) -
dx**2 * dy**2 / (2 * (dx**2 + dy**2)) *
b[1:-1,1:-1])

Another basic-indexing feature is the use of newaxis to add a dimen-
sion of length one to an array view. Python programmers can use
it to manipulate broadcasting in array expressions and the shape
of the output. We provide a code snippet from the 2D-convolution
benchmark:

output[:, i, j, :] = np.sum(
input[:, i:i + K, j:j + K, :, np.newaxis] *
weights[np.newaxis , :, :, :],

NPBench: A Benchmarking Suite for High-Performance NumPy ICS ’21, June 14–17, 2021, Virtual Event, USA

axis=(1, 2, 3),)

3.2.4 Advanced Indexing. NumPy ndarrays may also be accessed in
an unstructured way using indexing arrays. For example, a boolean
array of the same shape may indicate which elements of the data
array must be extracted. A use-case of this feature can be observed
in the mandelbrot samples (mandel1, mandel2):

for n in range(maxiter):
I = np.less(abs(Z), horizon)
N[I] = n
Z[I] = Z[I]**2 + C[I]

3.2.5 NumPy Routines and Sub-Modules. Many samples utilize
NumPy routines, including NumPy universal functions and meth-
ods from the NumPy sub-modules. For example, the coninteg sample
uses the linear algebra sub-module for inverting a square matrix
and solving a linear system of equations:

for z in int_pts:
Tz = np.zeros((NR, NR), dtype=np.complex128)
for n in range(slab_per_bc + 1):

zz = np.power(z, slab_per_bc / 2 - n)
Tz += zz * Ham[n]

if NR == NM:
X = np.linalg.inv(Tz)

else:
X = np.linalg.solve(Tz, Y)

4 MEASURING PRODUCTIVITY WITH
NPBENCH

After designing NPBench, we use it to test state-of-the-art NumPy-
accelerating compilers and frameworks.We opt to emphasize out-of-
the-box performance in this work. Therefore, we select frameworks
that can optimize pythonic code without requiring a performance-
oriented rewrite from the user. For this reason, we exclude, for
example, Cython [10] which, although able to handle vectorized
NumPy code, will not offer any speedup unless the code is rewritten
in a C-like manner in the extended Cython language. Furthermore,
we limit our exploration in this work to the reference Python inter-
preter, CPython [40].

The frameworks that we test are, ordered by date of introduction,
Pythran [22], Numba [30], CuPy [35], and DaCe [11]. We proceed
with an introduction for each one of them.

4.1 The Contenders
4.1.1 Pythran. Pythran [22] is a static compiler for a subset of
Python that includes NumPy ndarrays and routines. It converts
supported Python code to a Python Abstract Syntax Tree (AST)
based intermediate representation (IR), applies optimizations, and
outputs C++ code. The generated code is then compiled with, e.g.,
g++ to produce an optimized Python module for CPU execution in
the form of a shared library.

Pythran accepts as input a Python module with one or more
methods. The routines to be exported may optionally include an
annotation describing the data types of the arguments. This anno-
tation takes the form of a comment:
pythran export method_name(type1, type2, ...)

The annotated types can be Python built-in types, for example, int
and float, or NumPy types, such as int64 and float32. It is possible
to define arrays and their dimensions.

After parsing the input Python module, Pythran converts it to
an IR similar to regular Python AST. In this IR, it performs a variety
of code transformations that in turn allow the application of opti-
mizations in the generated C++ code. These optimizations include
using C++ expression templates to avoid redundant intermediate
arrays, loop vectorization to take advantage of vector instructions,
and loop parallelization with OpenMP.

4.1.2 Numba. Numba [30] is an LLVM-based Just-in-Time (JIT)
compiler for CPython [40], the Python language’s reference im-
plementation. It speeds up Python methods that utilize NumPy
ndarrays and have been explicitly annotated by the user. It does
so by generating efficient loops that access these arrays on a per-
element basis with comparable performance to compiled languages.
In addition, Numba supports single- and multi-core CPUs and offers
the capability to write GPU kernels manually.

Numba performs optimizations during runtime on the meth-
ods explicitly annotated by the user with the @numba.jit decorator.
Numba first receives as input the CPython bytecode of those meth-
ods and lowers them to the Numba intermediate representation (IR).
It then builds a dependency graph and attempts to infer the types
of all the values in the IR. If it succeeds for all of them, it proceeds
in nopython mode (i.e., cannot call arbitrary Python), where it ap-
plies several high-level optimizations before lowering the methods
further to LLVM IR. In cases where type inference fails, Numba
falls back to object mode. Like NumPy, Numba considers all values
to be Python objects in this mode, and it relies on the Python C-API
and interpreter for code execution.

In nopython mode, Numba improves execution in three main
ways, which complement each other. First, it removes unnecessary
indirection overheads when accessing NumPy ndarrays with an
index expression. Therefore, loops that perform operations among
ndarrays on a per-element basis execute as fast as the equivalent
array expressions. Second, it finds array expressions that consist
of multiple ndarrays and Python built-in operators and rewrites
them in loop-form. When regular NumPy executes such array ex-
pressions, it generates temporary arrays to hold the intermediate
data. By converting these expressions to loops, Numba ensures that
the intermediate data can be stored in registers, reducing the data
movement. Lastly, Numba can perform loop fusion when applicable.

In object mode, the optimization potential is reduced. However,
Numba can still split out loops (where type inference may succeed)
and apply “deferred loop specialization” on them. Numba automat-
ically transfers those loops to a separate method, which it attempts
to compile in nopython mode.

Numba supports single- and multi-core CPUs with OpenMP,
Intel TBB, and a simple built-in work-sharing task scheduler. Par-
allelization is enabled through the keyword argument parallel of
the @numba.jit decorator. Furthermore, Numba has a custom loop
iterator, numba.prange, that allows the user to annotate loops whose
iterations can execute concurrently explicitly. Numba also supports
execution on Nvidia and AMDGPUs, but not automatically. Instead,
it exposes the parallel execution model of the hardware directly to
the user, facilitating the writing of GPU kernels.

ICS ’21, June 14–17, 2021, Virtual Event, USA Ziogas et al.

4.1.3 CuPy. CuPy [35] is an implementation of the NumPy mod-
ule for Nvidia/AMD GPUs based on CUDA (or HIP for AMD). It
performs on-the-fly kernel synthesis and uses the optimized CUDA
libraries whenever possible.

CuPy does not optimize NumPy code. Instead, it implements its
version of NumPy ndarray and NumPy methods for GPU execution.
The CuPy API is compatible with NumPy, and in most cases, it is
enough to change the module name from numpy to cupy. Further-
more, it also implements a subset of the SciPy methods. CuPy’s API
also contains methods for transferring data between the host and
the GPU device.

CuPy synthesizes GPU kernels optimized for the exact shapes
and data types of the arguments during runtime. These kernels are
cached, and the synthesis overhead is amortized over subsequent
executions. Moreover, CuPy allows the user to define their own
element-wise and reduction kernels.

CuPy accelerates execution using the optimized CUDA libraries;
cuBLAS, cuRAND, cuSOLVER, cuSPARSE, and NCCL. It can also
improve performance by fusing kernels, according to user defini-
tion. Other optimizations include a custom memory allocator and a
memory pool, which speed up and reduce (respectively) memory
allocations and deallocations.

4.1.4 DaCe. DaCe [11] is a data-centric parallel programming
framework. It accepts programs written in one of the supported
front-end programming languages, including Python with NumPy
ndarray operations. DaCe converts these programs into Stateful
DataFlow multiGraphs (SDFGs), a dataflow-based IR. Subsequently,
it optimizes the IR with graph transformations that are applied ei-
ther automatically or with user-driven intervention. The optimized
IR is then translated to one of the supported back-end programming
languages and subsequently compiled into a shared library. DaCe
supports this way single- and multi-core CPUs, Nvidia and AMD
GPUs, as well as Intel and Xilinx FPGAs.

DaCe optimizes Python programs on a per-function basis, in
a similar manner to Numba. The user must explicitly annotate
Python methods with the @dace.program decorator. Furthermore,
the method arguments must be type annotated using custom DaCe
types that are wrappers around equivalent NumPy data types. Argu-
ments that are NumPy ndarrays must also have their shape defined,
either symbolically or with integer constants. return statements can
have their type automatically inferred and do not need to be type
annotated. Moreover, DaCe offers a parallel loop iterator, dace.map,
which explicitly defines a parallel for-loop in Python code.

DaCe includes an extensive library of graph transformations
that can be utilized to optimize the IR of a Python program. These
transformations include tiling, loop (dace.map) fusion, vectorization,
temporary storage for storing intermediate results in registers and
caches, and elimination of redundant data transfers. The transfor-
mations can be applied either automatically or manually by the user.
This can be achieved by environment variables, programmatically
through the Python code, or interactively.

After optimizing the IR, DaCe generates code for the supported
architectures; in C/C++ for CPUs, CUDA for Nvidia GPUs, and HIP
for AMD GPUs. In addition, FPGAs are supported with High-Level
Synthesis (HLS), with OpenCL for Intel FPGAs and C++ for Xilinx.

4.2 Other frameworks
Apart from those mentioned above, many other compilers, frame-
works, and runtimes accelerate Python and NumPy code. PyPy [42]
is an alternative Python interpreter which can speed up Python
code via JIT compilation. Dask [16] allows Python programs that
use NumPy or CuPy ndarrays to execute in multi-node machines.
We also make a special note of the Cython [10] compiler below.

Cython is a compiler for Python but also an extended program-
ming language between C and Python. It converts code written in a
mix of Python and the Cython language into C. The user may then
employ any C/C++ compiler to generate a shared library and import
it in their Python code as a module. Cython provides significant
speedups over regular Python code while supporting operations
among NumPy ndarrays. However, the latter operations will not
run faster than the execution with regular NumPy unless the user
rewrites them with loops and per-element accesses. Therefore, any
meaningful comparison of Cython against the other frameworks
would require extensive rewriting of the benchmark samples and
is out of the scope of this work.

4.3 Measuring framework-specific code
adaptations

As part of NPBench, we provide a Python program for each of
the samples described in Section 3.1. The user can execute these
programs through a Python interpreter with NumPy. To accelerate
program execution, we provide alternative implementations tai-
lored to each of the frameworks introduced in Section 4.1. These
code adaptations may differ from the reference NumPy program
for two reasons; framework-specific annotations and rewriting of
unsupported NumPy features.

4.3.1 Framework-specific annotations. Frameworks may require
minimal changes, such as importing a module, adding special deco-
rators to the Python methods, or explicitly annotating argument
data types. We describe such framework-specific adaptations and
their use in NPBench in detail below.

Pythran parses Python files and generates templated C++ code
for the included methods, supporting arguments of different data
types and sizes. To avoid unnecessary overheads due to the tem-
plates, the user may optionally place constraints and provide type
hints to the Pythran compiler. These take the form of a comment
beginning with the string #pythran:

pythran export conv2d(float32 [:,:,:,:],
float32 [:,:,:,:])
def conv2d(input , weights):

In the above code, we hint to the Pythran compiler that themethod’s
arguments are 4-dimensional single-precision floating-point arrays.

To execute a Python function with Numba, we annotate it with
the @numba.jit decorator. The decorator has several keyword argu-
ments that may influence performance:

import numba as nb
@nb.jit(nopython=True , parallel=False ,

fastmath=True)
def conv2d_nopython(input , weights):

NPBench: A Benchmarking Suite for High-Performance NumPy ICS ’21, June 14–17, 2021, Virtual Event, USA

The nopython argument allows selecting between object and nopy-
thon mode of execution. In cases where the original code cannot be
executed as-is in nopython mode, we also test the performance in
object mode:

@nb.jit(nopython=False , forceobj=True ,
parallel=False , fastmath=True)

def conv2d_object(input , weights):

The fastmath argument enables the LLVM fast-math flags. We al-
ways set this to true. The parallel argument enables automatic
parallelization of operations. We test with parallel enabled and
disabled. Furthermore, when parallel is enabled, it is possible to
annotate for-loops (Python ranges) as parallelizable explicitly, by
using the numba.prange iterator. When the original code contains
Python ranges (for-loops) that can be executed in parallel, we also
test Numba with a version using numba.prange iterators:

@nb.jit(nopython=True , parallel=True ,
fastmath=True)

def conv2d_nopython_prange(input , weights):
for i in nb.prange(H_out):

for j in nb.prange(W_out):

CuPy provides a NumPy-compatible interface. For example, the
hyberbolic tangent function, equivalent to numpy.tanh, is cupy.tanh.
To minimize the number of required code changes, we rewrite the
NumPy import statement as import cupy as np.

DaCe only compiles annotated @dace.program functions to shared
libraries. Furthermore, DaCe requires the function arguments to be
type annotated, including their shapes, which must be either inte-
ger constants or symbols. DaCe performs symbolic computations
using SymPy [32], a Python library for symbolic mathematics:

import dace as dc
C_in , C_out , H, K, N, W = (

dc.symbol(s, dc.int64) for s in (
'C_in', 'C_out ', 'H', 'K', 'N', 'W'))

@dc.program
def conv2d(

input: dc.float32[N, H, W, C_in],
weights: dc.float32[K, K, C_in , C_out]):

4.3.2 Rewriting unsupported NumPy features. In general, none of
the frameworks support every single NumPy method or syntactic
element. Whenever we encounter such codes, we write customized
best-effort adaptations for each framework. With these adaptations,
we aim to change as little as possible, while preserving the “spirit”
of the original code. In this process, we utilize features supported
by the frameworks but at the same time try to not optimize the code
inadvertently. We demonstrate this approach using as an example
the following code snippet from the 2D-convolution sample:

output[:, i, j, :] = np.sum(
input[:, i:i + K, j:j + K, :, np.newaxis] *
weights[np.newaxis , :, :, :],
axis=(1, 2, 3))

Numba cannot execute the above code as-is in nopython mode for
several reasons. A first issue is the lack of support for tuple of
integers as value for the axis keyword. We overcome this problem

by expanding the sum reduction to three nested ones; one for each
of the three dimensions specified in the tuple:

output[:, i, j, :] = np.sum(np.sum(np.sum(
input[:, i:i + K, j:j + K, :, np.newaxis] *
weights[np.newaxis , :, :, :],
axis=1), axis=1), axis =1)

Next, Numba does not support newaxis indexing (Section 3.2.3). We
generate array views of the same shape as the original code using
the NumPy reshape method instead:

output[:, i, j, :] = np.sum(np.sum(np.sum(
np.reshape(input[:, i:i + K, j:j + K, :],

(N, K, K, C_in , 1)) *
np.reshape(weights , (1, K, K, C_in , C_out)),
axis=1), axis=1), axis =1)

Finally, Numba cannot reshape input[:, i:i + K, j:j + K, :] be-
cause it is not contiguous in memory. We resolve this problem by
forcing a copy of the above slice to a contiguous array:

inp = input[:, i:i + K, j:j + K, :]. copy()
output[:, i, j, :] = np.sum(np.sum(np.sum(

np.reshape(inp , (N, K, K, C_in , 1)) *
np.reshape(weights , (1, K, K, C_in , C_out)),
axis=1), axis=1), axis =1)

5 EVALUATINGWITH NPBENCH
5.1 Code adaptation as productivity metric
We evaluate the NumPy coverage provided by the frameworks
by extracting code-line metrics from the NPBench samples after
adapting them according to Section 4.3. Our intention is to provide
measurements of NumPy “compatiblity” and total effort required.
To that end, we use two metrics; total number of lines and code
coverage relative to the original code.

For the first metric, we count the total number of lines 𝑡 for
each sample and framework using SLOCcount [52]. To make a
distinction between the frameworks, we use subscripts. For exam-
ple, 𝑡𝑛𝑝 is the number of lines for the original NumPy code, while
𝑡𝑐𝑝 is the total length of the CuPy adaptation. We use the Python
Standard’s (PEP8) 80 characters per line limitation [18] and count
all code-lines, including import statements, decorators, and other
framework-specific syntax. We note that SLOCcount ignores com-
ments. However, for Pythran, we add the comment-lines that we
use for type annotation.

For the second metric, we first count the total number of lines
𝑡𝑛𝑝 in the original NumPy code. Then, we count how many of
those lines 𝑙 exist unmodified in the adapted code. We define code
coverage as the ratio 𝑙

𝑡𝑛𝑝
. For example, the reference NumPy code

for the floydwar benchmark is the following:

import numpy as np
def kernel(path):

for k in range(path.shape [0]):
path [:] = np.minimum(

path[:], np.add.outer(path[:, k],
path[k, :]))

ICS ’21, June 14–17, 2021, Virtual Event, USA Ziogas et al.

The code is actually 4 lines long in the Python file (for presentation
reasons, it is spread here over more lines). Therefore, 𝑡𝑛𝑝 is equal to
4. To produce an adaptation for Numba, we first add two lines, one
to import the module and another to annotate the method with the
@numba.jit decorator. Numba cannot handle the call to add.outer

in nopython mode. We remove the offending line and substitute it
with two equivalent lines supported by Numba:

import numpy as np
import numba as nb
@nb.jit(nopython=True , parallel=False ,

fastmath=True)
def nopython_mode(path):

for k in range(path.shape [0]):
for i in range(path.shape [0]):

path[i, :] = np.minimum(path[i, :],
path[i, k] + path[k, :])

𝑡𝑛𝑢𝑚𝑏𝑎 is 7 lines long in the benchmark file. If we compare the two
implementations, we see that they have 3 lines in common; the
import statement for NumPy, the method signature, and the outer
loop using the 𝑘 index. In other words, 𝑙 is equal to 3 and the code
coverage is 𝑙

𝑡𝑛𝑝
= 75%.

In Fig. 2 (best viewed in color and pdf zoom), we present the
results of the NumPy coverage evaluation. Each row represents a
benchmark, while each column corresponds to one of the frame-
works. We plot in the rightmost column the code length (numbers
of lines) for each benchmark written in NumPy. The other columns
represent the frameworks annotated below them. The numbers
in the cells are equal to the difference 𝑡𝑐𝑡 − 𝑡𝑛𝑝 , where 𝑡𝑐𝑡 is the
total number of lines for each of the contenders. Furthermore, each
cell is color-coded to represent code coverage. It ranges from dark
green (100%) to dark red (0%). Cells annotated with the “unsup-
ported” label correspond to cases where it is infeasible to adapt the
benchmark without violating its main purpose.

We discuss interesting observations based on Fig. 2. About half
of the Pythran adaptations have one additional line compared with
the original NumPy code, and they exhibit full (100%) coverage.
These adaptations are identical to the reference benchmarks, apart
from the Pythran-specific comment line that provides type anno-
tations. In a similar manner, half of the Numba programs have
two additional lines. These correspond to the import statement
import numba, and the @numba.jit decorator used to annotate the
Python methods. The CuPy samples exhibit the inverse behavior.
Almost all of them have exactly the same code length as the refer-
ence NumPy codes. However, the corresponding cells are colored
in various shades of green. This is because all CuPy adaptations
edit at least a single line of the original code; they alter the import
statement to import cupy as np.

We further elaborate on a couple of edge cases. The Numba
adaptation of the azimhist benchmark contains 33 lines, compared
with just five lines of reference code; almost seven times as long.
However, the code coverage appears to be high. The original sample
comprises the following five lines:

import numpy as np
def azimint_hist(data ,radius ,npt):

histu = np.histogram(radius ,npt)[0]
histw = np.histogram(radius ,npt ,weights=data)[0]

Cu
Py

Da
Ce

Nu
mb
a

Pyt
hra
n

Nu
mP
y

azimhist
azimnaiv
cavtflow
chanflow
compute
coninteg

crc16
conv2d
lenet
mlp

resnet
softmax
npgofast
mandel1
mandel2

nbody
sselfeng

spmv
sthamfft

hdiff
vadv
2mm
3mm
adi

atax
bicg

cholesky
cholesky2
correlat
covarian
deriche
doitgen
durbin
fdtd_2d
floydwar
gemm

gemver
gesummv
gramschm

heat_3d
jacobi1d
jacobi2d

lu
ludcmp

mvt
nussinov
seidel2d
symm
syr2k
syrk

trisolv
trmm

+0 +37 +28 +31 5
+0 +9 +2 +1 11
+0 +11 +4 +7 60
+0 +10 +4 +7 118
+0 +4 +2 +1 3
+0 +3 +2 unsupported 18
+0 +5 +2 +1 17
+0 +3 +3 +2 18
+0 +7 +8 +6 38
+0 +18 +7 +4 13
+0 +24 +9 +5 34
+0 +3 +5 +1 6
+0 +3 +2 +1 6
+0 +15 +18 +1 13
+0 +35 +24 +11 23
+0 +19 +12 +4 43
+0 +8 +2 +3 14
+0 +4 +2 +1 8
+0 +14 +12 +11 16
+0 +1 +2 +1 23
+0 +4 +2 +2 53
+0 +4 +2 +1 3
+0 +5 +2 +1 3
+0 +3 +2 +1 41
+0 +3 +2 +1 3
+0 +3 +2 +1 3
+0 +5 +2 +1 9
+0 +11 +2 unsupported 3
+0 +4 +2 +1 11
+0 +4 +2 +1 8
+0 +8 +2 +1 36
+0 +4 +5 +1 3
+0 +9 +2 +6 12
+0 +4 +2 +1 8
+1 +3 +3 +2 4
+0 +4 +2 +1 3
+0 +9 +2 +1 5
+0 +4 +2 +1 3
+0 +3 +2 +1 12
+0 +4 +2 +1 19
+0 +3 +2 +1 5
+0 +3 +2 +1 7
+0 +3 +2 +1 8
+0 +5 +2 +1 15
+0 +4 +2 +1 4
+0 +5 +3 +1 23
+0 +3 +2 +1 10
+0 +4 +2 +1 9
+0 +4 +2 +1 7
+0 +4 +2 +1 6
+0 +3 +2 +1 4
+0 +3 +2 +1 6

Figure 2: Code adaptation metrics.

return histw / histu

Although Numba supports the use of the NumPy routine histogram
in nopythonmode, it does not accept the weights keyword argument.
Therefore, we adapt the code by introducing a custom weighted-
histogram implementation [5], which is 28 lines long. However, out
of the five original lines of code, four of them remain in the adapted
version as-is. Only the second numpy.histogram call is substituted
by an invocation of the custom histogram method. For this reason,
the coverage is 80%.

In resnet, a variable x is redefined multiple times as follows:

x = batchnorm2d(padded)

NPBench: A Benchmarking Suite for High-Performance NumPy ICS ’21, June 14–17, 2021, Virtual Event, USA

x = relu(x)

DaCe does not allow redefinition of variables, therefore the code
must be adapted by renaming x, contributing to the low coverage
(~26%):

x = batchnorm2d(padded)
x1 = relu(x)

5.2 Performance
We compare the performance of the frameworks in NPBench on a
machine with two 16-core Intel Xeon Gold 6130 processors and an
Nvidia V100 GPU with 32GB of memory, running CentOS 8. The
CUDA version is 11.1. We use CPython version 3.8.5 as part of an
Anaconda 3 environment.

We test NumPy version 1.19.2 with Intel MKL support, Numba
version 0.51.2 with Intel SVML support, and CuPy 8.3.0. Further-
more, we test the latest versions of Pythran [21] (commit ID 09349c5)
and DaCe [45] (commit ID 4c0429) from their respective GitHub
repositories. We use the same backend compiler for both of them,
GCC version 10.2.0. To benchmark Pythran, we invoke its compiler
with the performance flags that enable vectorization with SIMD
intrinsics and loop parallelization with OpenMP, as suggested by
the developers in their tutorial [46]. For DaCe, we use the default
compilation flags from the DaCe configuration file. Furthermore, we
test it with different sets of automatically applied transformations
that perform loop parallelization, loop tiling, loop fusion, and vec-
torization, among others. We ensure that both Pythran and DaCe
compile with the -ffast-math flag to be consistent with Numba.

We use as a metric the runtime of execution, according to well-
established scientific benchmarking practices [26]. We present the
results for NPBench in Figure 3. Each benchmark is run ten times,
and we compare the median runtime of each benchmark executed
by each framework to the median runtime of that benchmark using
NumPy. The numbers in each cell indicate how much faster/slower
that framework executed the benchmark, except for NumPy, where
we report the median runtime. Red colors (and numbers prefixed
with a downward arrow) are used to show that a framework exe-
cuted a benchmark slower than NumPy, and green (upward arrow)
when it is faster. We classify our benchmarks into domains as de-
scribed in Section 3.1, and indicate the domain of each benchmark
by the color of the respective label. The overview over all domains
serves as a legend. In the domain-overview plot on the top of this
Figure, the numbers correspond to the geometric mean perfor-
mance difference over NumPy across each domain. The total score
is the geometric mean of the speedups of all benchmarks across
all domains. In order to give an indication of dispersion of the ten
measured runtimes around the median, we calculated the 95% confi-
dence interval for the sample median using bootstrapping [17] and
indicate the size of this interval in percent relative to the median
in superscripts, omitting values smaller than 1%.

White areas in the Figure represent combinations for which we
were not able to run the benchmark. We classify these failures into
four categories and annotate them accordingly. If we are unable
to adapt a code sample sufficiently to be accepted by a framework
without parse errors, we mark it as “unsupported”. If an adaptation
is parsed by a framework but fails to compile, we classify it as

a “compilation” error. If the sample compiles but does not finish
execution due to, for example, a segmentation fault, then we mark
it as an “execution” error. Finally, if a framework finishes executing
a benchmark, but the result does not validate against the output of
NumPy, then we record this as a “validation” error.

Figure 3: NPBench performance results.

We highlight select performance case studies below:
covarian computes a covariance matrix and performs worse than
NumPy on all competitors except for DaCe (CPU) and Numba.
Numba itself also runs slower in its native nopython mode and
only runs with roughly the same performance in the fallback ob-
ject mode. This can be attributed to the internal dot product in the

ICS ’21, June 14–17, 2021, Virtual Event, USA Ziogas et al.

application, which is performed on non-contiguous vectors. This re-
sults in a performance warning from Numba, indicating a potential
regression to a more naive implementation in use by Numba and
Pythran. Based on a GPU kernel trace, CuPy utilizes the CUBLAS
matrix-vector multiplication (GEMV) operation for this purpose
but introduces extra memory copies. However, as the problem size
is increased, the performance of CuPy approaches that of NumPy.
crc16, which computes a 16-bit Cyclic Redundancy Check digest
on a buffer, works particularly well on DaCe (CPU), Numba, and
Pythran, with 932–970× speedup. The slow baseline performance
can primarily be attributed to the sequential nature of CRC. This
causes considerable interpreter overhead, easily avoided by ahead-
of-time compilation in DaCe, Numba, and Pythran. For the same
reason, we observe a CuPy slowdown of 65×.
hdiff is a composition of stencils that is representative of many
horizontal stencil programs found in weather models. The baseline
NumPy version implements each stencil as a sequence of offsetted
array slices added to each other to promote vectorization. Based on
the generated Pythran code, Pythran and Numba follow the NumPy
version and can thus reduce the Python interpreter overhead, but
most of the computations remain element-wise vectorized array
operations. For this reason, due to asynchronous (lazy) execution on
the GPU, CuPy achieves 89.4× speedup. The automatically applied
transformations in DaCe introduce high-level optimizations such
as stencil fusion in both CPU and GPU versions, leading to 39.3×
and 359× speedup, respectively.

Discussion. The results show that only Numba (and DaCe, but
only on CPU) provides a complete set of correct results, compared
with the baseline NumPy implementation. Numba exhibits the
highest coverage due to its built-in fallbacks, but not the lowest code
modification overhead, which can be found in Pythran for CPU and
CuPy on GPU, the latter having no modifications at all. While DaCe
provides portability between the two platforms and the highest CPU
performance, its (GPU) coverage and code modifications are mostly
lower than the other implementations. Overall, no single framework
strikes a perfect balance between performance, portability, and
productivity with NumPy.

5.3 Using and Extending NPBench
All of the results described in the previous section can be reproduced
locally. We structure NPBench in folders, one for each benchmark.
In each folder, we include the original NumPy code and the adapta-
tions for the other frameworks. Furthermore, we provide a Python
script that automates the execution of the benchmark with the dif-
ferent contenders, breakdown of compilation and first/subsequent
execution times, validation against the reference NumPy output,
and storage of the results into CSV files. The scripts can be extended
to support other frameworks. Moreover, we provide visualization
scripts that automatically parse the result files into performance
and code coverage heatmaps.

6 RELATEDWORK
There are a plethora of available benchmark suites for the Python
language. We make a distinction between benchmarks aiming to
test Python language implementations and those that test Python-
accelerating frameworks.

In the first category, we find benchmarks such as the Python
Performance Benchmark Suite (pyperformance) [49] and the PyPy
benchmarks [39]. These aim to evaluate Python interpreters in
a wide variety of common every-day use cases. For example, the
Python Performance Benchmark Suite comprises tests for AES en-
cryption, web applications, JSON serialization, message logging,
compilation of regular expressions, and database management. Al-
though such benchmarks provide almost complete coverage of the
Python language, they do not represent HPC applications well.

Benchmarks belonging to the latter category are the NumPy test
suites from the Pythran [20] and Numba [4] developers, as well as
the Cython benchmarks [15]. These aim to test and compare the
performance of Python and NumPy-accelerating frameworks in
codes that fit scientific use-cases. Therefore, there is a significant
overlap with NPBench regarding simple kernels, such as those
belonging to linear algebra. However, NPBench emphasizes larger
samples with higher code complexity that simulate realistic HPC
workloads more accurately.

7 CONCLUSION
Python has taken Data Science and Machine Learning by storm and
is expected to do the same for High-Performance Computing. With
NPBench, we encapsulate both the performance and productivity
aspects of high-performance Python programming. For the former,
we include 37 micro-benchmarks and 15 micro-applications from 8
different scientific domains. For the latter, the benchmarks cover a
wide range of NumPy features and quirks, such as vectorization,
broadcasting, and advanced indexing, all of which can often be
found in scientific computing applications.

To evaluate the benchmarks, we use four state-of-the-art NumPy
frameworks and adapt the codes to run on them. These current
contenders show that while NumPy implementations can achieve
speedups on some workloads, sometimes of three orders of magni-
tude, there is still much to be desired in productivity (e.g., compati-
bility with Python features) and performance. NPBench can thus
act as a guiding reference, both for the scientific community and
for hardware vendors, to drive the development of next-generation
high-performance Python frameworks.

8 ACKNOWLEDGEMENTS
This project received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 program (grant
agreements DAPP, No. 678880 and DEEP-SEA, No. 955606). The
Swiss National Science Foundation supports Tal Ben-Nun (Am-
bizione Project No. 185778). The authors would like to thank Mark
Klein and the Swiss National Supercomputing Centre (CSCS) for
access and support of the computational resources.

REFERENCES
[1] The SciPy community. [n.d.]. Ndarray Indexing. Retrieved 2021-02-04 from

https://numpy.org/devdocs/reference/arrays.indexing.html
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

https://numpy.org/devdocs/reference/arrays.indexing.html

NPBench: A Benchmarking Suite for High-Performance NumPy ICS ’21, June 14–17, 2021, Virtual Event, USA

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

[3] Anaconda Inc. [n.d.]. A 5 minute guide to Numba. Retrieved 2021-02-04 from
https://numba.readthedocs.io/en/stable/user/5minguide.html

[4] Anaconda Inc. [n.d.]. airspeed velocity of an unladen numba. Retrieved 2021-
01-28 from http://numba.pydata.org/numba-benchmark/

[5] Anaconda Inc. [n.d.]. Example: Histogram. Retrieved 2021-02-04
from https://numba.pydata.org/numba-examples/examples/density_estimation/
histogram/results.html

[6] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer,
John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John
Wawrzynek, David Wessel, and Katherine Yelick. 2009. A View of the Par-
allel Computing Landscape. Commun. ACM 52, 10 (Oct. 2009), 56–67. https:
//doi.org/10.1145/1562764.1562783

[7] David H. Bailey. 2011. NAS Parallel Benchmarks. Springer US, Boston, MA,
1254–1259. https://doi.org/10.1007/978-0-387-09766-4_133

[8] M. Baldauf, A. Seifert, J. Förstner, D. Majewski, and M. Raschendorfer. 2011.
Operational convective-scale numerical weather prediction with the COSMO
model: Description and sensitivities. Monthly Weather Review, 139:3387–3905
(2011).

[9] Lorena Barba and Gilbert Forsyth. 2019. CFD Python: the 12 steps to Navier-
Stokes equations. Journal of Open Source Education 2, 16 (2019), 21. https:
//doi.org/10.21105/jose.00021

[10] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Sel-
jebotn, and Kurt Smith. 2011. Cython: The best of both worlds. Computing in
Science & Engineering 13, 2 (2011), 31–39.

[11] Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas, Timo Schnei-
der, and Torsten Hoefler. 2019. Stateful Dataflow Multigraphs: A Data-Centric
Model for Performance Portability on Heterogeneous Architectures. In Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’19).

[12] Gabriel Bengtsson. [n.d.]. Development of Stockham Fast Fourier Transform using
Data-Centric Parallel Programming. Ph.D. Dissertation. http://urn.kb.se/resolve?
urn=urn:nbn:se:kth:diva-287731

[13] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives
for Deep Learning. CoRR abs/1410.0759 (2014). arXiv:1410.0759 http://arxiv.org/
abs/1410.0759

[14] COSMO. 1998. Consortium for Small-scale Modeling. Retrieved 2021-02-04
from http://www.cosmo-model.org

[15] Cython. [n.d.]. Cython Demos/benchmarks. Retrieved 2021-01-28 from https:
//github.com/cython/cython/tree/master/Demos/benchmarks

[16] Dask Development Team. 2016. Dask: Library for dynamic task scheduling. https:
//dask.org

[17] Bradley Efron. 1992. Bootstrap methods: another look at the jackknife. In
Breakthroughs in statistics. Springer, 569–593.

[18] Python Software Foundation. [n.d.]. PEP 8 – Style Guide for Python Code.
https://www.python.org/dev/peps/pep-0008

[19] GitHub. 2020. The 2020 State of the Octoverse. https://octoverse.github.com/
[20] Serge Guelton. [n.d.]. Numpy Benchmarks. Retrieved 2021-01-28 from https:

//github.com/serge-sans-paille/numpy-benchmarks
[21] Serge Guelton. [n.d.]. Pythran. https://github.com/serge-sans-paille/pythran.
[22] Serge Guelton, Pierrick Brunet, Mehdi Amini, Adrien Merlini, Xavier Corbillon,

and Alan Raynaud. 2015. Pythran: Enabling static optimization of scientific
python programs. Computational Science & Discovery 8, 1 (2015), 014001.

[23] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez del R’ıo, Mark Wiebe,
Pearu Peterson, Pierre G’erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[24] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[25] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and Robert W Numrich. 2009. Improving Performance via Mini-applications.
Technical Report SAND2009-5574. Sandia National Laboratories.

[26] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of Parallel
Computing Systems: Twelve Ways to Tell the Masses When Reporting Perfor-
mance Results. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (Austin, Texas) (SC ’15).
Association for Computing Machinery, New York, NY, USA, Article 73, 12 pages.
https://doi.org/10.1145/2807591.2807644

[27] Intel Corporation. [n.d.]. oneAPI Deep Neural Network Library (oneDNN).
Retrieved 2021-02-01 from https://github.com/oneapi-src/oneDNN

[28] Jérôme Kieffer and Giannis Ashiotis. 2014. PyFAI: a Python library for high
performance azimuthal integration on GPU. In Proceedings of the 7th European
Conference on Python in Science (EuroSciPy 2014). arXiv:1412.6367 [astro-ph.IM]

[29] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing,
and Jupyter development team. 2016. Jupyter Notebooks - a publishing format
for reproducible computational workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas, Fernando Loizides and Birgit Scmidt
(Eds.). IOS Press, Netherlands, 87–90. https://eprints.soton.ac.uk/403913/

[30] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-Based
Python JIT Compiler. In Proceedings of the SecondWorkshop on the LLVM Compiler
Infrastructure in HPC (Austin, Texas) (LLVM ’15). Association for Computing
Machinery, New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/
2833157.2833162

[31] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,W. Hubbard, and L. D.
Jackel. 1989. Backpropagation Applied to Handwritten Zip Code Recognition.
Neural Computation 1, 4 (1989), 541–551. https://doi.org/10.1162/neco.1989.1.4.
541 arXiv:https://doi.org/10.1162/neco.1989.1.4.541

[32] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B.
Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-
taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pe-
dregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo,
Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. 2017.
SymPy: symbolic computing in Python. PeerJ Computer Science 3 (Jan. 2017),
e103. https://doi.org/10.7717/peerj-cs.103

[33] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf,
and Oliver Beckstein. 2011. MDAnalysis: A toolkit for the analy-
sis of molecular dynamics simulations. Journal of Computational
Chemistry 32, 10 (2011), 2319–2327. https://doi.org/10.1002/jcc.21787
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21787

[34] Philip Mocz. 2020. nbody-python: Create Your Own N-body Simulation (With
Python). https://github.com/pmocz/nbody-python.

[35] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis.
2017. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In
Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-
first Annual Conference on Neural Information Processing Systems (NIPS). http:
//learningsys.org/nips17/assets/papers/paper_16.pdf

[36] Øystein Sture. [n.d.]. Implementation of crc16 (CRC-16-CCITT) in
python. Retrieved 2021-02-04 from https://gist.github.com/oysstu/
68072c44c02879a2abf94ef350d1c7c6

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[38] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark suite.
URL: http://www. cs. ucla. edu/pouchet/software/polybench 437 (2012).

[39] PyPy. [n.d.]. Benchmarks. https://foss.heptapod.net/pypy/benchmarks.
[40] Python Software Foundation. [n.d.]. CPython. https://github.com/python/

cpython.
[41] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel

N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian
M. Kenney, and Oliver Beckstein. 2016. MDAnalysis: A Python Package for the
Rapid Analysis of Molecular Dynamics Simulations. In Proceedings of the 15th
Python in Science Conference, Sebastian Benthall and Scott Rostrup (Eds.). 98 –
105. https://doi.org/10.25080/Majora-629e541a-00e

[42] Armin Rigo and Samuele Pedroni. 2006. PyPy’s Approach to Virtual Machine
Construction. In Companion to the 21st ACM SIGPLAN Symposium on Object-
Oriented Programming Systems, Languages, and Applications (Portland, Oregon,
USA) (OOPSLA ’06). Association for Computing Machinery, New York, NY, USA,
944–953. https://doi.org/10.1145/1176617.1176753

[43] Nicolas P. Rougier. 2016. rougier/from-python-to-numpy: Version 1.1. Zenodo.
https://doi.org/10.5281/zenodo.225783

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision 115, 3 (01 Dec 2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[45] Scalable Parallel Computing Lab. [n.d.]. DaCe - Data-Centric Parallel Program-
ming. https://github.com/spcl/dace.

http://tensorflow.org/
https://numba.readthedocs.io/en/stable/user/5minguide.html
http://numba.pydata.org/numba-benchmark/
https://numba.pydata.org/numba-examples/examples/density_estimation/histogram/results.html
https://numba.pydata.org/numba-examples/examples/density_estimation/histogram/results.html
https://doi.org/10.1145/1562764.1562783
https://doi.org/10.1145/1562764.1562783
https://doi.org/10.1007/978-0-387-09766-4_133
https://doi.org/10.21105/jose.00021
https://doi.org/10.21105/jose.00021
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287731
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287731
https://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://www.cosmo-model.org
https://github.com/cython/cython/tree/master/Demos/benchmarks
https://github.com/cython/cython/tree/master/Demos/benchmarks
https://dask.org
https://dask.org
https://www.python.org/dev/peps/pep-0008
https://octoverse.github.com/
https://github.com/serge-sans-paille/numpy-benchmarks
https://github.com/serge-sans-paille/numpy-benchmarks
https://github.com/serge-sans-paille/pythran
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/2807591.2807644
https://github.com/oneapi-src/oneDNN
https://arxiv.org/abs/1412.6367
https://eprints.soton.ac.uk/403913/
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/abs/https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1002/jcc.21787
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.21787
https://github.com/pmocz/nbody-python
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://gist.github.com/oysstu/68072c44c02879a2abf94ef350d1c7c6
https://gist.github.com/oysstu/68072c44c02879a2abf94ef350d1c7c6
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://foss.heptapod.net/pypy/benchmarks
https://github.com/python/cpython
https://github.com/python/cpython
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.1145/1176617.1176753
https://doi.org/10.5281/zenodo.225783
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://github.com/spcl/dace

ICS ’21, June 14–17, 2021, Virtual Event, USA Ziogas et al.

[46] Serge Guelton, Pierrick Brunet et al. [n.d.]. Pythran. Retrieved 2021-02-04 from
https://pythran.readthedocs.io/

[47] Stefan Behnel, Robert Bradshaw, Dag Sverre Seljebotn, Greg Ewing, William
Stein, Gabriel Gellner, et al. [n.d.]. Cython for NumPy users. Retrieved 2021-02-04
from https://cython.readthedocs.io/en/latest/src/userguide/numpy_tutorial.html

[48] Christian Stieger, Aron Szabo, Teutë Bunjaku, and Mathieu Luisier. 2017. Ab-
initio quantum transport simulation of self-heating in single-layer 2-D materials.
Journal of Applied Physics 122, 4 (2017), 045708. https://doi.org/10.1063/1.4990384
arXiv:https://doi.org/10.1063/1.4990384

[49] Victor Stinner. 2017. The Python Performance Benchmark Suite. Retrieved
2021-01-28 from https://pyperformance.readthedocs.io/

[50] Swiss National Supercomputing Centre (CSCS). [n.d.]. GT4Py. Retrieved
2021-02-01 from https://github.com/GridTools/gt4py

[51] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[52] David Wheeler. [n.d.]. SLOCCount. Retrieved 2021-02-04 from https://dwheeler.
com/sloccount/

[53] Alexandros Nikolaos Ziogas, Tal Ben-Nun, Guillermo Indalecio Fernández, Timo
Schneider, Mathieu Luisier, and Torsten Hoefler. 2019. A Data-Centric Ap-
proach to Extreme-Scale Ab Initio Dissipative Quantum Transport Simula-
tions. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (Denver, Colorado) (SC ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 1, 13 pages.
https://doi.org/10.1145/3295500.3357156

A BENCHMARK DETAILS
The benchmark codes and the scripts to run them and produce
Fig. (2, 3) can be found in https://github.com/spcl/npbench, the
NPBench GitHub repository. The problem sizes used to measure
the performance of the NumPy-accelerating frameworks are shown
in Tab. 1.

Benchmark Problem Size

doitgen NR = 220,NQ = 250,NP = 270
azimhist 𝑁 = 1000000, npt = 1000
azimnaiv 𝑁 = 1000000, npt = 1000
nussinov 𝑁 = 500

floydwar 𝑁 = 2800
spmv 𝑀 = 𝑁 = 131072, nnz = 262144

covarian 𝑀 = 1200, 𝑁 = 1400
correlat 𝑀 = 1200, 𝑁 = 1400
conv2d Cin = 3,Cout = 16, 𝐻 = 256, 𝐾 = 20, 𝑁 = 8,𝑊 = 256
resnet 𝑁 = 8,𝑊 = 56, 𝐻 = 56,C1 = 256,C2 = 64
softmax 𝑁 = 64, 𝐻 = 16, SM = 512
mlp Cin = 3, 𝑁 = 8, S0 = 30000, S1 = 10000, S2 = 1000
lenet 𝐻 = 256, 𝑁 = 16,𝑊 = 256,Cbfc1 = 59536

gesummv 𝑁 = 11200
gemver 𝑁 = 8000
gemm NI = 2000,NJ = 2300,NK = 2600
mvt N = 16000
npgofast 𝑁 = 12500
trmm 𝑀 = 1000, 𝑁 = 1200
2mm NI = 3200,NJ = 3600,NK = 4400,NL = 4800
3mm NI = 3200,NJ = 3600,NK = 4000,NL = 4400,NM = 4800
symm 𝑀 = 1000, 𝑁 = 1200
syr2k 𝑀 = 1000, 𝑁 = 1200
atax 𝑀 = 18000, 𝑁 = 22000
syrk 𝑀 = 1000, 𝑁 = 1200

crc16 𝑁 = 1000000
mandel2 xn = yn = 1000,maxiter = 200
mandel1 xn = yn = 1000,maxiter = 200

chanflow nx = ny = 101, nit = 50, dt = 0.001
nbody 𝑁 = 100, tEnd = 10.0, dt = 0.01
cavtflow nx = ny = 101, nt = 700, nit = 50, dt = 0.001
fdtd_2d TMAX = 500,NX = 1000,NY = 1200
jacobi2d TSTEPS = 1000, 𝑁 = 2800
jacobi1d TSTEPS = 4000, 𝑁 = 32000
heat3d TSTEPS = 500, 𝑁 = 120
sselfeng 𝑁𝑘𝑧 = 4, 𝑁𝐸 = 10, 𝑁𝑤 = 3, 𝑁𝐴 = 20, 𝑁𝐵 = 4, 𝑁𝑜𝑟𝑏 = 4
coninteg NR = 500,NM = 1000, slabs = 2, numpts = 32

clipping 𝑀 = 𝑁 = 12500
sthamfft 𝑅 = 4, 𝐾 = 10
deriche 𝑊 = 7680, 𝑁 = 4320

trisolv 𝑁 = 16000
gramschm 𝑀 = 240, 𝑁 = 200
ludcmp 𝑁 = 2000
lu 𝑁 = 2000
durbin 𝑁 = 16000
cholesky2 𝑁 = 2000
cholesky 𝑁 = 2000
bicg 𝑀 = 18000, 𝑁 = 22000
adi TSTEPS = 100, 𝑁 = 200
seidel2d TSTEPS = 100, 𝑁 = 400

hdiff 𝐼 = 256, 𝐽 = 256, 𝐾 = 160
vadv 𝐼 = 256, 𝐽 = 256, 𝐾 = 160

Table 1: The problem sizes used tomeasure the performance
in Sec. 5.2.

https://pythran.readthedocs.io/
https://cython.readthedocs.io/en/latest/src/userguide/numpy_tutorial.html
https://doi.org/10.1063/1.4990384
https://arxiv.org/abs/https://doi.org/10.1063/1.4990384
https://pyperformance.readthedocs.io/
https://github.com/GridTools/gt4py
https://doi.org/10.1038/s41592-019-0686-2
https://dwheeler.com/sloccount/
https://dwheeler.com/sloccount/
https://doi.org/10.1145/3295500.3357156

	Abstract
	1 Introduction
	2 NumPy
	2.1 The NumPy ndarray
	2.2 NumPy routines
	2.3 Memory Model and Interoperability

	3 Principles of NPBench
	3.1 Scientific Domains
	3.2 NumPy Coverage

	4 Measuring Productivity with NPBench
	4.1 The Contenders
	4.2 Other frameworks
	4.3 Measuring framework-specific code adaptations

	5 Evaluating with NPBench
	5.1 Code adaptation as productivity metric
	5.2 Performance
	5.3 Using and Extending NPBench

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References
	A Benchmark Details

