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Abstract—The cost of data movement has always been an important concern in high performance computing (HPC) systems. It has

now become the dominant factor in terms of both energy consumption and performance. Support for expression of data locality has

been explored in the past, but those efforts have had only modest success in being adopted in HPC applications for various reasons.

them However, with the increasing complexity of the memory hierarchy and higher parallelism in emerging HPC systems, locality

management has acquired a new urgency. Developers can no longer limit themselves to low-level solutions and ignore the potential

for productivity and performance portability obtained by using locality abstractions. Fortunately, the trend emerging in recent literature

on the topic alleviates many of the concerns that got in the way of their adoption by application developers. Data locality abstractions

are available in the forms of libraries, data structures, languages and runtime systems; a common theme is increasing productivity

without sacrificing performance. This paper examines these trends and identifies commonalities that can combine various locality

concepts to develop a comprehensive approach to expressing and managing data locality on future large-scale high-performance

computing systems.

Index Terms—Data locality, programming abstractions, high-performance computing, data layout, locality-aware runtimes
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1 INTRODUCTION

THE computing industry has entered a period of technol-
ogy transition as we strive for the next 1,000 x perfor-

mance improvement over the previous generation of
petaflops-scale computing platforms. Over the past 30 years,
we have come to expect a 1,000 x increase in HPC system

performance via technology scaling. With the end of con-
ventional improvements to technology (Dennard scaling),
which started in approximately 2004, single processing
core performance has ceased to improve with each genera-
tion. The industry has adopted a new approach to perfor-
mance scaling by packing more cores into each processor
chip. This multicore approach continues to drive up the
theoretical peak performance of the processing chips, and
the computing industry is on track to have chips with
thousands of cores by 2020 [1]. The other consequence of
the new technology scaling trend is that the energy effi-
ciency of transistors is improving as their sizes shrink, but
the energy efficiency of wires is not improving. Therefore,
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the relative cost of computation to data movement has
become further skewed in favor of computation.

By 2018, further improvements to compute efficiency will
be undercut by the energy required to move data to the
computational cores on a chip [2] and are manifested in sub-
stantial bandwidth tapering at every level of the memory
and communication hierarchy. Bandwidth tapering has
been a challenge since the dawn of cache hierarchies, and
the remedies (loop blocking, strip-mining, tiling, domain
decomposition, and communication optimizations/topol-
ogy mapping) have been studied for decades. Although the
research community has developed extensive compiler and
library solutions, only a fraction of these are available in
general-purpose systems. Furthermore, with the increase in
the parallelism and memory hierarchy going from system
to node to compute unit level, the already difficult task of
managing parallelism has become much more complex. The
solutions for bandwidth tapering challenges now need their
counterparts at the intranode, internode and global system
level communication. Moreover, the dual tension of increas-
ing levels of parallelism and core heterogeneity create an
intractable explosion in complexity. There is an urgent need
for higher level of abstraction in order to shield the applica-
tions developers from this complexity and reduce the effort
needed to port codes to different computing platforms.

One critical abstraction needed for future tractability of
the application space is data locality; a way of expressing
computations so that information about proximity of data
to be used can be communicated to the optimizing software
stack. The impact of data locality optimization has moved
from being a tuning option to a central feature of code writ-
ing to get any performance improvement at all. There needs
to be a formalization of commonly used approaches to
make the implementations reusable and parametrizable so
that a common data abstractions can be used portably and
flexibly across multiple architectures, without manually re-
tuning for each new system. The need for performance por-
tability is on the rise in direct correlation with the rise in
platform heterogeneity.

Application developers have begun to realize the enor-
mity of the challenge facing them and have started a dia-
logue with researchers in programming abstractions to look
for effective solutions. This development has opened up a
real opportunity for the higher level abstractions to gain
traction in the applications communities, especially when
the application developers are kept in the loop. We con-
ducted a series of workshops on the topic of programming
abstractions for data locality for high performance comput-
ing (HPC) that gather practitioners and researchers from all
applicable areas, including the computational scientists
from multiple science domains [3], [4], [5]. This survey
paper distills the outcomes of the series thus far. The objec-
tive of this effort is to facilitate the development of this criti-
cal research area by; (1) defining a common terminology to
facilitate future exchange of ideas in the field, (2) describe
the current trends in various research domains that directly
influence data locality, and (3) recommend directions for
future research. We do not claim to have solved or covered
every aspect of this enormous challenge, however, the inter-
disciplinary exchanges between domain scientists and com-
puter scientists at the workshop, and dissemination of the

gathered knowledge plays an essential role in maintaining
forward progress in this area.

Locality can be expressed and managed at various level
in the computational ecosystem. The bulk of the paper is
divided into sections corresponding to research areas that
are actively engaged in exploring the issues of locality.
Section 2 defines common terminology used to describe
the state of the art in concerned research areas. We exam-
ine data locality in the context of data structures and
library support in Section 3, language and compiler sup-
port in Section 4, runtime approaches in Section 5, and sys-
tems level support in Section 6. All of these research areas
have one goal in common, to help applications effectively
use the machine for computational science and engineer-
ing. Section 7 serves two purposes, it describes challenges
and expectations from application developers, which in
turn provide perspective and cohesiveness to the research
areas discussed in earlier sections. We summarize our find-
ings in Section 8.

2 TERMINOLOGY

We begin by defining commonly used terminology in
describing efforts aimed at addressing data locality.

Data locality is indicative of how close data is to where it
needs to be processed, shorter distance imply better data
locality. A data structure is the organization of a data type
onto some particular memory architecture. The memory
subsystem is composed of several memory arrays, which
can be defined as memory spaces. Not all memory spaces can
be managed directly by the programmer (e.g., caches).
However, new architectures tend to have multiple user-
manageable memory spaces with varying performance
characteristics and usage restrictions (e.g., constant memory
of GPUs).

Application performance is constrained by both time and
energy costs of moving data in service of the computation,
which is directly affected by the data access pattern. The
data access pattern is a composition of data layout, data
decomposition, data placement, task placement, and how
the parallel tasks traverse the data structure. Fig. 1 illus-
trates these concepts.1 Given a data type and memory space
(e.g., an array of memory cells), we define data layout as an
injective mapping from the elements of the data type to the
cells of the single memory space. By extension, we define a
distributed layout as the mapping of the elements to multiple
memory spaces. Usually a layout can be considered a
parameter of a data structure. Layout affects data access
patterns, and hence performance, therefore, selecting an
appropriate map to data structures is important.

Data decomposition is the way that data is partitioned into
smaller chunks that can be assigned to different memory
spaces for introducing data parallelism or improving data
locality. Data placement is the mapping of the chunks of data
from a domain-decomposed data structure to memory
spaces. Task placement is the assignment of threads of execu-
tion to a particular physical processor resource and its
related set of memory spaces. Many contemporary pro-
gramming environments do not offer an automatic method

1. The figure is inspired by Fuchs and Fuerlinger [6].
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to directly relate the task placement to the data placement,
aside from loose policies such as first touch memory affin-
ity. Index space defines the index domain for data. Iteration
space refers to the set of points in a multi-dimensional loop
nest irrespective of traversal order. The dimensionality of
the iteration space is typically defined in terms of the
number of loop nests (e.g., an N-nested loop defines an
N-dimensional iteration space). Traversal order indicates the
order in which the loop nest visits these indices.

A tiling layout is often used to exploit the locality of hier-
archical memories. This layout can be viewed as adding
additional dimensions to the iteration space in order to
identify the tiles and the elements within the tiles. Thus a
fully tiled D-dimensional array will have 2 �D dimensions.
An array implementation may retain aD-dimensional inter-
face by using integer division and modulo (or integral bit
shift and mask) operations to map a D-dimensional tuple to
a 2 �D tuple and then to the tile and element. Algorithms
are usually written in terms of the higher-dimensional lay-
out, so loop nests are deeper than D levels. A benefit of til-
ing is because of their explicitly defined sizes, the compiler
can perform optimizations that would not be available
otherwise.

An array may have a recursive tile layout where the
member is itself a tile, for example, hierarchical tiled arrays [7].
Such hierarchical layouts may be used to better manage the
locality of data in a hierarchy of memory spaces; for exam-
ple, the top level mapped to a set of distributed memory
spaces and the nested levels corresponding to the cache
hierarchy within a local memory space.

A library is an active library if it comes with methods for
delivering library-specific optimizations [8], for example,
template metaprogramming in C++ or lightweight modular
staging in Scala. An embedded domain-specific language (DSL)
is a technique for delivering a language-based solution
within a host general-purpose language. Directive-based lan-
guage extensions such as OpenMP and OpenACC use anno-
tations to drive code transformation. Object visibility
determines whether data objects are visible globally from
anywhere or are visible only locally on the node. Multireso-
lution language philosophy is a concept in which the pro-
grammers can move from language features that are more
declarative, abstract, and higher level to those that are more
imperative, control oriented, and low level as required by
their algorithm or performance goals.

The task-based runtime implements a scheduling strategy
that imposes a partial ordering on the tasks within each

queue and optionally among queues as well. The runtime
may use the specific knowledge of the underlying machine.
Scheduling can be static so that data locality can be enforced.
Scheduling can also be dynamic, using work sharing where a
single queue lists all the work to be done, or work stealing,
where a queue is assigned to each computing resource and
an idle process can steal work from another’s queue.

3 DATA STRUCTURES AND LIBRARY SUPPORT

The traditional view of flat memory is not consistent with
the actual memory subsystems of modern computers. Mem-
ory is organized into banks and NUMA regions, cache hier-
archies, specialized memories such as scratchpad storage,
read-only memories, etc. This disconnect makes develop-
ment of efficient data structures very challenging.

3.1 Key Points

We identified two design principles as important and
desired by application programmers: Algorithmic execution
dependencies and separation of concerns. Note that, in this
Section, we use the term application as the user of a library,
which in a layered software architecture may be another,
higher-level, library or domain-specific language.

3.1.1 Algorithmic Execution Dependence

In general determining what layout an algorithm should
use is difficult. The implementation of an algorithm is
written by accessing data elements through some interfa-
ces, for instance using a tuple of indices to access a multi-
dimensional array. An implementation can leverage
temporal locality by accessing the same data elements
multiple times, and spatial locality by accessing nearby
data elements, where nearby is here a logical concept
related to the abstract data type, and not to the imple-
mentation of the data structure. We refer to this locality
as algorithmic locality. The optimal data locality of the
implementation is reached when the data structure lay-
out, in memory, lets the algorithm find the corresponding
elements in the closest possible location (relative to the
processing elements used by the threads). Different
implementations have different algorithmic localities and
therefore require different data structures layouts.

Typically, the algorithmic locality also depends upon
input, so the layout can be chosen only for the likelihood of
locality. For certain applications such as linear algebra or
finite-difference stencils, the trace can be determined by a
few simple parameters such as array sizes, which can be
used to determine the best layout effectively. These cases
are well represented in HPC applications, and several solu-
tions have been implemented to exploit locality, especially
in computing nodes. Multi-node implementations require
the integration with the system-scale locality management
discussed in Section 6.

Note that we highlight the usefulness of picking the best
layout by analyzing the abstract algorithm instead of re-
structuring an existing code. The latter would usually lead
to convoluted, non-portable, and unmaintainable code. A
library of algorithms and data structures should enable an
efficient coupling of algorithms and data structures map-
pings. Libraries differ on how this coupling can be specified

Fig. 1. illustration of concepts that are important for data locality for a
dense two dimensional array. Example iteration space, traversal order,
decomposition, data placement and data layout are shown.
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or found, and how concerns are separated between applica-
tion programmers and library programmers.

3.1.2 Separation of Concerns

Separation of concerns is a fundamental motivation for
developing libraries of algorithms and data structures to be
used within applications. A well-defined separation of con-
cerns clearly identifies who (library or application) is
responsible for what. Our focus is on managing data local-
ity, so we limit this what to the mapping of data structures
to memory spaces and algorithms to execution spaces.

Separating Explicitly by Threads. A parallel-enabling
library should provide concurrent threads. Different solu-
tions differ on the guarantees they provide for safety, prog-
ress, and placement of threads. Low level libraries like
pthreads leave all these concerns to the application, others
offer different levels of guarantees depending on the appli-
cations (and programmers) they are targeting. An emerging
trend in HPC is to delegate responsibilities to libraries, com-
pilers, and runtime systems.

Separating by Parallel Patterns. A common separation is a
parallel pattern and code body that is executed within a pat-
tern. This can also be explained as decoupling loop iteration
space from the loop body itself. For example, a loop over a
range of integers (e.g., FORTRAN do-loop, C/C++ for-loop)
is a serial loop pattern that executes a loop body (codelet).
Depending on the inter loop actions performed by the loop
body this serial loop pattern can often be simply translated
to the foreach, reduce, or scan (i.e., prefix sum) data-parallel
pattern. Other patterns are possible, as stencil-like iterations
on multidimensional arrays.

In this strategy the application is responsible for identify-
ing the parallel pattern and providing the codelet that is
(thread) safe to execute within that pattern. The library is
then responsible for mapping execution of that codelet onto
the execution space according to the pattern and for manag-
ing the pattern’s inter thread interactions. For example, a
parallel reduce requires thread-local temporary values and
inter thread reduction of those temporary values.

Separating Location Policies. The mapping of application
code bodies via parallel patterns has a spatial and temporal
scheduling consideration: For example, on which core or
when the execution of the code body will occur and whether
the mapping is static or dynamic. We label the set of param-
eters that govern the answers to these questions as an loca-
tion policy. The number and extensibility of such parameters
that a parallel-enabling library has and exposes define the
flexibility of that library.

Separating Data Structure Layout. Within a memory space
a computer language hard codes the layout of their data
structures, for example FORTRAN arrays, C/C++ arrays, or
C/C++ classes. A library can define data types that abstracts
the layout specification from the data type mapping. The
parameter(s) of this specification may be static (defined at
compile time) or dynamic (defined at runtime) and affect
the compiler’s ability to optimize code accordingly. A
library can also define data types with distributed layouts
that span multiple memory spaces and can define opera-
tions for moving data between memory spaces. The flexibil-
ity of this strategy is limited by the layout capabilities and
their extensibility.

Integrating Separations. These separation-of-concerns
strategies can provide significant flexibility through high-
level abstractions (spaces, patterns, policies, layouts).
However, the data locality and thus the performance of a
parallel algorithm is determined by the mappings (data
and execution) to hardware that are implemented by
these abstractions. Thus, the integrated set of parameters
for these abstractions must be chosen appropriately for
the algorithm and underlying hardware in order to
achieve locality and thus performance. A well-designed
parallel-enabling library will provide and expose these
parameters such that changing the underlying hardware
requires no changes to the application codelets and trivial
changes to the abstractions’ parameters. Such parameter
changes could even be chosen automatically based on the
target hardware architecture.

3.2 State of the Art

Within the confines of existing language standards one is
constrained to leveraging market breadth of the supporting
tool chain (e.g., compilers, debuggers, profilers). Wherever
profitable, the research plan can redeem existing languages
by amending or extending them (e.g., by changing the speci-
fications or by introducing new APIs). Examples include
Kokkos [9], TiDA [10], GridTools [11], hStreams [12], and
DASH [13].

The Kokkos library supports expressing multidimen-
sional arrays in C++, in which the polymorphic layout can
be decided at compile time. An algorithm written with Kok-
kos uses the abstract machine of C++ with the data specifi-
cation and access provided by the interface of Kokkos
arrays. Locality is managed explicitly by matching the data
layout with the algorithmic locality. TiDA allows the pro-
grammer to express data locality and layout at the array
construction. Under TiDA, each array is extended with
metadata that describes its layout and tiling policy and
topological affinity for an efficient mapping on cores. Like
Kokkos, the metadata describing the layout of each array is
carried throughout the program and into libraries, thereby
offering a pathway to better library composability. TiDA is
currently packaged as Fortran and C++ libraries and
adopted by the BoxLib AMR framework [14].

GridTools provides a set of libraries for expressing dis-
tributed memory implementations of regular grid appli-
cations, such as stencils on regular and icosahedral grids.
It is not meant to be universal, in the sense that non
regular grid applications should not be expressed using
GridTools libraries. Since the constructs provided by
GridTools are high level and semi-functional, locality
issues are taken into account at the level of performance
tuners and not by application programmers [15]. It
expects the application to use its patterns. The hStreams
library provides mechanisms for expressing and imple-
menting data decomposition, distribution, data binding,
data layout, data reference characteristics, and location
policy on heterogeneous platforms. DASH is built on a
one-sided communication substrate and provides a Parti-
tioned Global Address Space (PGAS) abstraction in C++
using operator overloading. The DASH abstract machine
is basically a distributed parallel machine with the con-
cept of hierarchical locality. It is a very general library
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designed to address scaling of applications at system
scale, while leaving the managing of threads in a node to
the application.

Table 1 offers a quick comparison between the libraries
presented in this Section. This is intended to be a simple
sketch and should not be treated as a comprehensive com-
parison of these quite complex and rich libraries.

Clearly, no single way of treating locality concerns exists,
nor is there consensus on which one is the best. Each of
these approaches is appealing in different scenarios that
depend on the scope of the particular application domain.
The opportunity arises for naturally building higher-level
interfaces by using lower-level ones. For instance, TiDA or
DASH multidimensional arrays could be implemented
using Kokkos arrays, or GridTools parallel algorithms could
use the DASH library and Kokkos arrays for storage. This is
a potential benefit from interoperability that arises from
using a common language provided with generic program-
ming capabilities. One outcome of the survey is to initiate
efforts to explicitly define the requirements for a common
runtime infrastructure that could be used interoperably
across these library solutions.

4 LANGUAGE AND COMPILER SUPPORT FOR DATA

LOCALITY

While significant advances have been seen in libraries for
existing programming languages, especially C++, in facili-
ties that allow for data-locality optimizations, significant
limitations remain in what can be accomplished with librar-
ies alone. C/C++ and Fortran, which dominate the high-
performance computing landscape, offer limited facilities
for compile-time introspection. By contrast, custom lan-
guages are designed to present language-intrinsic abstrac-
tions that allow the programmer to explicitly expose
parallelism and locality. Such abstractions in turn signifi-
cantly simplify compiler analysis and optimization and also
assist locality management at both runtime and system lev-
els discussed in Sections 5 and 6.

4.1 Key Points

The following features are key to understanding and
designing for data locality from the language and compiler
perspective.

4.1.1 Object Visibility

One of the most significant axes in the relevant design
space is the choice between local-by-default and global-
by-default object visibility. Local-by-default visibility (or
local-only visibility) is familiar to any user of MPI, and
message-passing is still often an effective way to optimize
for data locality. MPI, however, is not the only common
example; most GPU-targeted programming models
(OpenCL, CUDA, etc.) explicitly represent local memory
domains and force the programming to arrange any nec-
essary transfers. The disadvantage of local-by-default vis-
ibility, however, is that it tends to be cumbersome to use.
Furthermore, programmer productivity can be low
because data locality must be managed in every part of
the code, even where performance is not critical or the
necessary management logic is boilerplate.

Two commonplace language-design techniques improve
upon this local-by-default situation. The first, exemplified
by Loci [16], provides a programming environment in
which declarative annotations, and other functional pro-
gramming techniques can be employed to drive the auto-
mated generation of the communication-management and
task-scheduling logic. Declarative solutions tend to have
much greater semantic freedom than those embedded in
imperative programming languages, allowing more inva-
sive transformations between the input and the resulting
implementation. The disadvantage of such systems tends to
be generality, and such systems tend to be domain specific.

The second commonplace technique to improve upon the
local-by-default situation is to move toward a global-by-
default model, at least for certain classes of objects. PGAS
models, now widely available from Fortran Co-Arrays [17],
Chapel [18], Julia [19], and many other languages, provide
some differentiation between local and global objects but
allow global access without explicit regard for locality con-
siderations. The compiler and/or runtime system might
optimize layout and placement of objects based on their
global access pattern, but the degree to which this optimiza-
tion can be usefully done is still an open question.

On the far end of the spectrum are solutions that do not
expose any data-locality information to the user directly but
depend solely on compilers and runtime libraries to per-
form any desirable data-locality optimizations. OpenMP
falls into this camp, and current experience suggests that
the more advanced data locality optimizations sought might
prove indefinitely out of reach for its trivial user-facing
locality model. One might argue that such optimizations are
more important for tools not restricted to the shared-mem-
ory part of the hierarchy; but experience suggests that
between NUMA and the proliferation of cores per node,
data-locality optimizations are important both on-node and
over distributed-memory systems.

4.1.2 Requirements

Effective abstractions for data locality need to have low
overhead and high-level semantic information, including
information about data dependencies needed by the
compiler’s optimizer and runtime library. Dealing with
side-effects is key to dependence analysis, and this is an
area in which declarative solutions and novel languages
often hold distinct advantages because traditional lan-
guages make conservative assumptions about the behavior
of external function calls. The abstractions need to cover

TABLE 1
Comparison of the Libraries Discussed in Section 3.2 with

Respect to the Separation of Concerns

Lib. Scale Threads Patterns Policies Layout

Kokkos Node Yes Yes+ Yes Yes
TiDA Node+ Yes No Yes Yes
GridTools Node Yes Yes Yes Yes
hStreams Node Yes No Yes Future
DASH System No Yes+ No Yes

“Scale” refer to the ability of the library to handle inter-node communication.
TiDA has ongoing development to do so. “Threads” tells if the library handles
low level thread managing. In “Pattern”, a “Yes+” entry symbolizes the fact
that the library provide patterns but also direct managing by the application.

UNAT ETAL.: TRENDS IN DATA LOCALITYABSTRACTIONS FOR HPC SYSTEMS 3011



data movement, be it automatic (via caching or similar) or
explicit; different levels of control are desirable for different
use cases. Profiling, auto-tuning and user feedback are
important additions to purely static determinations, and
while user-provided hints will remain important, only tools
using these more automated measurement-driven techni-
ques are likely to scale to large codes. Finally, the abstrac-
tions have to be composable as no convergence exists yet on
what are the most productive paradigms for portable high-
performance codes. While the hierarchical nature of modern
hardware is well established, the extent and semantics of
exposure to the users are not yet settled; and the optimal
answer may be domain specific. Some solutions may be spe-
cific to parts of the hierarchy; and an overall solution may
require separate tools for different parts of the solution,
making composability a key requirement.

A generic goal, at a programmatic level, is to encour-
age programmers to expose all available parallelism in
their source code and let the compiler and/or runtime
system choose how to best use that freedom on a particu-
lar hardware architecture. In practice, this means that the
parallelism often needs to be coarsened into larger task
units. For example, even if all discretized grid points are
independent, having one dispatched task per grid point
is likely impractical. The space of potential coarsenings
often grows quickly, and so some combination of profile-
driven feedback and auto-tuning, user-provided grouping
preferences, and heuristics are necessary in practical
tools. We also note that even within a particular coarsen-
ing scheme, task-execution ordering is important to pre-
serve locality, and ordering considerations must be part
of the relevant cost model.

4.1.3 Adoption

Regardless of the flavor of the solution, widespread adop-
tion can be supported only if the implementations are
treated as proper software engineering projects. It is critical
to have invested stakeholders because these projects often
involve long time horizons and considerable infrastructure
work. They also need a coherent support model and quick
bug fixes. Adoption is also greatly enhanced for tools with a
small initial learning curve and those that enable incremen-
tal transitioning from existing codebases to new ones.

4.2 State of the Art

Advances are being made in both C++ and FORTRAN. In
C++ memory-aliasing attributes and parallel-algorithm
abstractions are being designed, while in FORTRAN PGAS-
style Co-Arrays [20] are now part of the standard. New lan-
guages, both general-purpose languages such as Chapel
and Julia and domain-specific languages such as Loci, have
production-quality implementations and growing user
communities. Custom languages have also benefited from
strong community compiler infrastructures, which enable
functionality reuse. Higher-level tools need standardized,
or at least well-supported, lower-level interfaces upon
which to build. We also note that the line between the lan-
guage and library is fuzzy in terms of capability and respon-
sibility, and successful programming models often combine
a targeted set of language capabilities with strong libraries
built on top of those facilities.

Chapel [18] is an emerging language that uses a first-
class language-level feature, the locale, to represent regions
of locality in the target architecture. Programmers can rea-
son about the placement of data and tasks on the target
architecture using Chapel’s semantic model, or runtime
queries. Chapel follows the PGAS philosophy, supporting
direct access to variables stored on remote locales based on
traditional lexical scoping rules. Chapel also follows the
multiresolution philosophy by supporting low-level mecha-
nisms for placing data or tasks on specific locales, as well as
high-level mechanisms for mapping global-view data struc-
tures or parallel loops to the locales. Advanced users may
implement these data distributions and loop decomposi-
tions within Chapel itself and can even define the model
used to describe a machine’s architecture in terms of locales.

X10 [21] is another PGAS language that uses places as
analogues to Chapel’s locales. In X10, execution must be
colocated with data. Operating on remote data requires
spawning a task at the place that owns the data. The user
can specify that the new task run asynchronously, in which
case it can be explicitly synchronized later and any return
value accessed through a future. Thus, X10 makes commu-
nication explicit in the form of remote tasks. Hierarchical
Place Trees [22] extend X10’s model of places to arbitrary
hierarchies, allowing places to describe every location in a
hierarchical machine.

Unified Parallel C (UPC), Co-Array Fortran (CAF), and
Titanium [23] are three of the founding PGAS languages.
UPC supports global-view data structures and syntactically
invisible communication while CAF has local-view data
structures and syntactically evident communication. Tita-
nium has a local-view data model built around ZPL-style
multidimensional arrays [24]. Its type system distinguishes
between data guaranteed to be local and data that may be
remote, using annotations on variable declarations. On the
other hand, access to local and remote data is provided by
the same syntax. Thus, Titanium strikes a balance between
the HPF and ZPL approaches, making communication
explicit in declarations but allowing the same code frag-
ments to operate on local and remote data.

Recent work in Titanium has replaced the flat SPMD
model with the more hierarchical Recursive Single-Pro-
gram, Multiple-Data (RSPMD) model [25]. This model
groups together data and execution contexts into teams that
are arranged in hierarchical structures, which match the
structure of recursive and compositional algorithms and
emerging hierarchical architectures. While the total set of
threads is fixed at startup as in SPMD, hierarchical teams
can be created dynamically, and threads can enter and exit
teams as necessary. Titanium provides a mechanism for
querying the machine structure at runtime, allowing the
same program to target different platforms by building the
appropriate team structure during execution.

Other work has been done to address the limitations of
the flat SPMD model in the context of Phalanx [26] and
UPC++ [27], both active libraries for C++. The Phalanx
library uses the Hierarchical Single-Program, Multiple-Data
(HSPMD) model, which is a hybrid of SPMD and dynamic
tasking. The HSPMD model retains the cooperative nature
of SPMD by allowing thread teams, as in RSPMD, but it
allows new teams of threads to be spawned dynamically.
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Unlike SPMD and RSPMD, the total set of executing threads
is not fixed at startup. Both RSPMD and HSPMD allow
expression of locality and concurrency at multiple levels,
although through slightly different mechanisms, allowing
the user to take advantage of hierarchical architectures. The
UPC++ library uses RSPMD as its basic execution model
but additionally allows X10-style asynchronous tasks to be
spawned at remote locations. This allows execution to be
moved dynamically to where data are located and adds a
further degree of adaptability to the basic bulk-synchronous
SPMDmodel.

Compilations of both local-by-default and global-by-
default languages can be facilitated with recent develop-
ment in polyhedral analysis, which allows the compiler to
model the iteration space and all data dependencies for so-
called affine code regions. An affine region is a block of
code where all loop iteration variables and array accesses
can be modeled by affine functions in Presburger arithme-
tic [28]. The polyhedral program representation can be used
to automatically parallelize programs [29] and more
recently automatically map them to complex accelerator
memory hierarchies [30], [31].

5 TASK-BASED RUNTIME APPROACHES FOR DATA

LOCALITY

Traditionally, task-based runtime systems have been used
to enable a problem-centric description of an application’s
parallelism while hiding the details of task scheduling to
complex architectures from the programmer. This separa-
tion of concerns is probably the most important reason for
the success of using runtime environment systems for task
models. It enables developers to taskify their applications
while focusing on the scientific algorithms they are most
familiar with. This paradigm breaks the standard bulk syn-
chronous programming model inherent to runtimes sup-
porting many state-of-the-art languages (e.g., PGAS), as
previously mentioned in Section 3. Programmers delegate
all responsibilities related to efficient execution to the task
scheduling runtime thereby achieving higher productivity
and portability across architectures. In light of the growing
importance of locality management, runtime systems will
need to move past only considering task-centric attributes
(load balance, etc.) to ones that take into account data-cen-
tric attributes (data movement, memory bandwidth, etc.).

5.1 Key Points

At a very basic level, a locality-aware runtime is responsible
for mapping the abstract expression of tasks and data at the
application level to hardware resources, both compute and
memory. The important question, however, is where one
draws the line between the programmer (or higher-level
abstraction), the runtime and the hardware. Traditionally,
hardware has managed a lot of the locality (through the use
of cache), but this is shifting as, necessarily, hardware can
implement only a limited number of schemes that may not
be adapted to all application patterns. Although the exact
borders of a locality-aware runtime remain the subject of
healthy research, researchers agree that with exascale sys-
tems, locality-aware runtimes will need greater cooperation
between software and hardware.

5.1.1 Runtime Involvement in Data Locality

Data locality is relevant at three levels: The expression of
parallelism in the application, the association of this
expressed parallelism and the data, and the mapping of the
tasks and data to computing and memory resources. Paral-
lelism can be expressed in either a data centric or a task cen-
tric view. In the former case, parallelism is expressed
mostly through the chunking of data into subsets that can
independently be operated on, whereas in the latter case,
parallelism is obtained through the chunking of the compu-
tation into independent subsets. The expression of parallel-
ism is usually done outside the runtime either directly by
the programmer or with the help of higher-level toolchains.

Whether the application has been divided in a task-cen-
tric or a data-centric manner, data and tasks need to be
respectively associating tasks and/or data with the chunks
and making runtime aware of them with the respective task
chunks and data chunks identified in the first step. Whether
the chunking is task-centric or data-centric, the association
between specific data or task and their respective chunks
must be made known to the runtime. The question of task
and data granularity also comes up at this level, but addi-
tional information is available to answer it: At this stage,
tasks and data are associated so the runtime has more infor-
mation to determine the optimal granularity level taking
into account both computing resources and memory resour-
ces. For example, the presence of vector units and GPU
warps may push for the coarsening of tasks to be able to
fully occupy these units; this will be, in turn, limited by the
amount of memory (scratchpads, for example) that is close
by to feed the computation units. Considerations such as
over-provisioning which provides parallel slack and helps
ensure progress, will also factor in granularity decisions at
this level.

The third level involving data locality is scheduling. Pre-
vious efforts in resource allocation have frequently focused
on improving the performance of an application for a partic-
ular machine, for example, by optimizing for cache size,
memory hierarchy, number of cores, or network intercon-
nect topology and routing. This is most efficiently done
with static scheduling. Task-based runtimes that schedule
statically may still make use of specific knowledge of the
machine to perform their scheduling decisions. Static sched-
uling of tasks has several advantages over dynamic sched-
uling provided a precise enough model of the underlying
computing and networking resources is available.

The static approach will become more difficult with
increase in machine variability. Therefore, while static or
deterministic scheduling enables offline data locality optimi-
zations, the lack of a dependable machine model may make
the benefits of dynamic scheduling, namely, adaptability and
load-balancing,more desirable. Of course, in the presence of a
machine model, the dynamic scheduling may also take
advantage of the machine hardware specifications by further
refining its runtime decisions. This holistic data-locality strat-
egy at the system level is further explained in Section 6.

5.1.2 Abstractions for Locality

Task-based programming models are notoriously difficult
to reason about and debug given that the parameters
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specified by the programmer to constrain execution
(dependences) purposefully allow for a wide range of exe-
cution options. Certain task-based runtime systems, which
allow the dynamic construction of the task-graph (such as
OCR), only exacerbate these problems. Tools allowing the
programmer to understand the execution of a task-based
program need to be developed. This is particularly true
when the decisions taken by these runtimes will be more
and more impacted by data locality considerations that may
be obscure to the end user.

These tools will need to cover two broad areas: 1) informa-
tion on the execution flow of the application in terms of the
tasks and data-elements defined by the user and, more
importantly 2) information about the mapping of those tasks
and data-elements to the computing and memory resources.
For instance, OmpSs [32] and its dynamic runtime Nanos++
comes with substantial supports for performance analysis in
the form of instrumentation tools for tracing and profiling of
the task executions. In particular, the core instrumentation
package Extrae [33] and the flexible data browser Paraver [34]
provide useful insights on task scheduling and hardware
usage in order to help the application developer identifying
potential performance bottlenecks.

Nested or recursive algorithmic formulation as in cache
oblivious algorithms [35] is a well-known technique to
increase data reuse at the high levels of the memory hierar-
chy and, therefore, to reduce memory latency overheads.
This often requires slight changes in the original algorithm.
Nested parallelism can also enable a smart runtime to deter-
mine an optimal level of granularity based on the hardware
available. This does require, however, that the runtime be
made aware of the hierarchical nature of the tasks and data
so that it may properly co-schedule iterations that share the
same data. This approach is well suited for applications that
have well defined data domains that can be easily divided
(spatial decomposition, for example).

For algorithms that do not expose as much structure,
nested parallelism may not be suited. A more generalized
notion of closeness is needed: Programmers need to be able
to express a certain commonality between tasks in terms of
their data. The reason is that reducing data movement
needs to happen at all levels of the system architecture in
order to be effective: From the single CPU socket within a
multi-socket shared-memory node up to multiple distrib-
uted-memory nodes linked through the high-performance
network interconnect. This bottom-up approach highlights
the need for programmers to expose various levels of close-
ness so that a runtime can map the application’s abstract
structure to the concrete hardware instance it is executing
on, as detailed by the machine model.

Many numerical algorithms are often built on top of opti-
mized basic blocks. For instance, dense eigensolvers require
three computational stages: matrix reduction to condensed
form, an iterative solver to extract the eigenvalues, and back
transformation to get the associated eigenvectors. Each
stage corresponds to an aggregation of several computa-
tional kernels, which may already be optimized indepen-
dently for data locality. However, the ability to express
locality constraints across the various steps is important. In
other words, the way locality can be composed is important
to express.

5.2 State of the Art

Standardization is widely considered desirable, but there is
a disagreement as to the level at which this standardization
should happen. One option is to standardize the APIs at
the runtime level in a way similar to the Open Community
Runtime (OCR) [36]. Another option is to standardize the
interface of the programming model, as OpenMP or
OmpSs [32] do. Currently there is no clear reason to decide
for a particular scheme, so both approaches are being
actively researched.

A locality-aware runtime needs to know about associa-
tions of data and tasks in order to simultaneously enable
scheduling tasks and placing data. This association can be
explicitly specified by the user (for example in OCR), dis-
covered by an automated tool (for example, with the
RStream compiler [37]), extracted from a more high-level
specification from the user (Legion [38], HTA [7],
RAJA [39], OpenMP, etc.), or from the application meta-
data as in Perilla [40].

Another big challenge is how to communicate the hierar-
chical data properties of an application to the runtime so
that they can be exploited to generate efficient schedules.
Classical random work stealers (e.g., Cilk) do not exploit
this. Socket-aware policies exist (e.g., Qthread [41]) that per-
form hierarchical work stealing: First among cores in a
socket and then among sockets. Some programming models
expose an API that allows programmers to specify on which
NUMA node/socket a collection of tasks should be exe-
cuted (e.g., OmpSs [32]). Configurable work stealers that
can be customized with scheduling hints have also been
developed [42]. A more extreme option is to allow the appli-
cation programmer to attach a custom work-stealing func-
tion to the application [43].

6 SYSTEM-SCALE DATA LOCALITY MANAGEMENT

The highest level in the stack is the whole system, which
usually comprises a complex topology ranging from on-
chip networks to datacenter-wide interconnection topolo-
gies. Optimizing for locality during program execution at
this level is equally important to all other levels.

6.1 Key Points

System-scale locality management consists of optimizing
application execution, taking into account both the data
access of the application and the topology of the machine to
reduce node-level data movement. Therefore, in order to
enable such optimization two kinds of models are required:
An application model and an architecture model. At system
scale one must describe the whole ecosystem. Among the
relevant elements of the ecosystem are: The cache hierarchy;
the memory system and its different operating modes such
as slow and large versus fast and small, or persistent versus
volatile; the operating system; the network with concerns
such as protocol, topology, addressing, and performance;
the storage with its connected devices and strategy; and the
batch scheduler which has the knowledge of available
resources, and other applications running that may interfere
with execution.

Applications need abstractions allowing them to express
their behavior and requirements in terms of data access,
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locality and communication at runtime. For these, we need
to define metrics to capture the notions of data access, affin-
ity, and network traffic. Defining metrics to describe the
application behavior in a concise and precise manner is still
a research topic. Often, an affinity graph describing how the
different parts of the application interact is useful in manag-
ing locality. However, such affinity can be positive (compo-
nents need to be mapped close together due to shared data)
or negative (components need to be spread across the sys-
tem because of potential contention when accessing shared
resources: Memory, storage, network, etc.). A good model
of affinity is not yet available in the literature.

A hardware model is needed to control locality.
Modeling future large-scale parallel machines will have
to describe the memory system better, provide an inte-
grated view with the nodes and the network. The mod-
els will also need to exhibit qualitative knowledge, and
provide ways to express the multiscale properties of the
machine.

6.1.1 Trends and Requirements

We can see different trends affecting the way locality is
managed at system scale.

Concerning node and topology modeling, we note that
even if most NUMA systems are mostly hierarchical, this is
no longer true when we consider the network. Moreover,
manycore architecture such as the Intel Knights Landing do
not feature a strict hierarchical memory. This means that
process placement algorithms need to be able to address
arbitrary topologies.

Moreover, even large networks often have low diameter
(e.g., diameter-3 Dragonfly [44] or diameter-2 Slim Fly [45]
topologies). Therefore, topology mapping could become
less important in some cases as the placement may have a
smaller impact on the performance or simple random strate-
gies provide close-to-highest performance. Yet, this is not
generally true for low-diameter topologies [46]. Precise
models of application behavior and the underlying platform
are needed in order to understand how placement and data
layout impact performance.

In the case of very large machines such as top-end super-
computers featuring millions of cores, the algorithmic cost
of process placement becomes very high. Being able to
design hierarchical algorithms is required in that setting.

Another important consideration is the ability to deal
with dynamic behavior. Topology-aware dynamic load bal-
ancing is a hot topic [47], [48], which concerns itself with
managing change in application behavior and coping with
affinity dependence in the input dataset. This requires mod-
ification of the affinity modeling from a static model (e.g.,
the same communication matrix for the whole application
execution) to a dynamic model (e.g., instantiating the com-
munication matrix at runtime).

At system scale it is important to manage affinity for the
whole application ecosystem. Currently, locality is managed
independently for the volatile memory, the NVRAM, the
storage, the network, etc. It is crucial to account for these
different resources at the same time to perform global local-
ity optimizations. For instance, optimizing storage access
and memory access simultaneously results in good perfor-
mance gain as shown in early results [49].

Additionally, research into the layer above the parallel
file system is beginning to uncover methods of orchestrating
I/O between applications [50]. This type of high-level coordi-
nation can assist in managing shared resources such as net-
work links and I/O gateways and is complementary to an
understanding of the storage data layout itself. It can also
enable optimization of locality management for several
applications at the same time.

6.2 State of the Art

No strict standard way exists to describe and enforce pro-
cess and thread mapping. For example, techniques for
thread binding depend on the underlying operating system,
the runtime system (MPI, PGAS, etc.), and even the imple-
mentation (e.g., OpenMPI versus MPICH).

Arguably some progress has been made, for example,
MPI-3 provides an interface that allows one to detect which
processes are in a shared-memory domain (i.e., on the same
node) [51]. Other interfaces, for example, thread binding at
startup, are not standardized, but MPI allows them to be
implemented at the mpiexec level.

Modeling the data-movement requirements of an appli-
cation in terms of network traffic and I/O can be supported
through performance-analysis tools such as Scalasca [52] for
distributed memory or performance counter analysis for
shared-memory systems. It can also be done by tracing data
exchange at the runtime level with a system such as OVIS
[53], [54], by monitoring the messages transferred between
MPI processes, for instance.

Hardware locality (hwloc) [55], [56] is a library and a set
of tools for discovering and exposing the hardware topol-
ogy of machines, including processors, cores, threads,
shared caches, NUMA memory nodes, and I/O devices.
Netloc [57], [58] is a network model extension of hwloc to
account for locality requirements of the network, including
the fabric topology. For instance, the network bandwidth
and the way contention is managed may change the way
the distance within the network is expressed or measured.

The problem is even more important if we consider the
way applications are allocated to resources and how they
access storage. This requires optimizations between applica-
tions. Currently, resource managers or job schedulers such
as SLURM [59], OAR [60], LSF [61], or PBS [62] allocate
nodes to processes. However, none of them can match the
application requirements in terms of communication with
the topology of the machine and the constraints incurred by
already mapped applications. Similarly, parallel file sys-
tems such as Lustre [63], GPFS [64], PVFS [65], and
PanFS [66] and I/O libraries such as ROMIO [67],
HDF5 [68], and Parallel netCDF [69] are responsible for
organizing data on external storage (e.g., disks) and moving
data between application memory and external storage over
system networks.

7 APPLICATIONS EXPECTATIONS FROM

ABSTRACTIONS

An application developer is concerned with end-to-end par-
allelization and may be faced with different parallelization
needs in different parts of the application [70]. Data locality
for applications is often a direct map from their modeling

UNAT ETAL.: TRENDS IN DATA LOCALITYABSTRACTIONS FOR HPC SYSTEMS 3015



and discretization methods. We can loosely map the appli-
cations along two dimensions: Spatial connectivity and
functional connectivity. In this map the lower end of the
spatial connectivity axis would have applications that are
embarrassingly parallel and the top end would have
dynamic connectivity such as adaptive meshing. The func-
tional connectivity axis would have single physics applica-
tions at the lower end, whereas at the high end would be
applications where the components are swapped in and out
of active state. Being placed higher along an axis implies
greater challenges in achieving locality. HPC applications
typically fall into the fourth quadrant, both spatial and func-
tional connectivities are high [5].

Applications communities have well known and valid
concerns about wisely utilizing the developers time and
protecting the investment already made in the mature pro-
duction codes of today [71], [72]. An important consider-
ation for the applications community, therefore, is the time
scale of change in paradigms in the platform architecture
and major rewrites of their codes. Even with those con-
straints, however, many possibilities exist in application
infrastructure design to expose the potential for data local-
ity, and therefore performance, if appropriate abstractions
can be made available. A stable programming paradigm
with a lifecycle that is several times the development cycle
of the code must emerge for sustainable science. It can take
any of the forms under consideration, such as embedded
domain-specific languages, abstraction libraries, or full lan-
guages, or some combination of these, as long as long term
support and commitment are provided, as well as a way to
make incremental transition to the new paradigm.

7.1 Overview of Concerns

Abstractions often apply easily to simple problems; but
where the computation deviates from the simple pattern,
the effectiveness of the abstraction decreases. A useful
abstraction would allow itself also to be ignored or turned
off as needed. In the context of data locality that might
mean an ability to express the inherent hierarchical parallel-
ism in the application in a declarative instead of imperative
way, leaving the code translators (compilers or autotuners)
to carry out the actual mapping.

Other less considered but possibly equally critical con-
cerns relate to expressibility. Application developers can
have a clear notion of their data model without finding
ways of expressing the models effectively in the available
data structures and language constructs. There is no theo-
retical basis for the analysis of data movement within the
local memory or remote memory. Because of this lack of for-
malism to inform application developers about the implica-
tions of their choices, the data structures get locked into the
implementation before the algorithm design is fully fleshed
out. The typical development cycle of a numerical algorithm
focuses on correctness and stability first, and then perfor-
mance. By the time performance analysis tools are applied,
it can be too late for anything but incremental corrective
measures, which usually reduce the readability and main-
tainability of the code. A better approach would be to model
the expected performance of a given data model before
completing the implementation and to let the design be
informed by the expected performance model throughout

the process. Such a modeling tool would need to be highly
configurable, so that its conclusions might be portable
across a range of compilers and hardware and valid into the
future, in much the same way that numerical simulations
often use ensembles of input-parameter space in order to
obtain conclusions with reduced bias. Below we discuss
application developers’ concerns that tie into the data local-
ity abstractions discussed in earlier sections.

7.2 Data Structures

Data layout and movement have a direct impact on the
implementation complexity and performance of an applica-
tion. Since these are determined by the data structures used
in the implementation, this is an important concern for the
application. Any effort that moves in the direction of allow-
ing the application to describe the working set through a
library or an abstraction is likely to prove useful.

Most languages provide standard containers and data
structures that are easy to use in high-level code; yet few
languages or libraries provide interfaces for the application
developer to inform the compiler about expectations of data
locality, data layout, or memory alignment. For example, a
common concern for the PDE solvers is the data structure
containing multiple field components that have identical
spatial layout. Should it be an array with an added dimen-
sion for the field components or a structure; and within the
array or structure, what should be the order for storing in
memory for performance [73], [74]. There is no one best lay-
out for every platform. State of the art abstractions and tools
described in Section 3 are working towards making that a
programming abstraction concern instead of an application
concern. Other abstractions that could be helpful for perfor-
mance include allowing persistence of data between two
successive code modules.

7.3 Languages and Compilers

The state of the art in parallel programming models cur-
rently used in applications is a hybrid model such as
MPI+OpenMP or MPI+CUDA/OpenCL. The former is both
local-by-default (MPI) and global-by-default (OpenMP),
while the latter is local-by-default only (object visibility
defined in Section 4). Since the two models target different
classes of platforms, they do not really overlap. PGAS mod-
els have much less penetration in the field than do the above
two models. In general a global-by-default model is easier to
adopt but it is much harder to make it performant. The real
difficulty in designing for parallelism lies in finding the best
hierarchical decomposition inherent to the application. That
is basically the hierarchical version of the local-by-default
approach. Abstractions such as tiling can be helpful in
expressing hierarchical parallelism. Because of being explic-
itly aware of locality, local-by-default design can be more
easily mapped to a performant global design.

The transition to a new programming language, although
likely to be optimal eventually, is not a realistic solution in
the near term. In addition to the usual challenge of sustain-
ability (it might go away), need for verification dictates
incremental adoption for existing codes. Therefore, either
embedded DSLs or new languages with strong interopera-
bility with the existing languages are likely to have better
chance at being adopted. The amount of effort required by
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the applications to transition to the new programming
model will be another factor in its success. Irrespective of
which solution emerges, it must provide a robust and clean
way of handling threads for interoperability among various
components of the application. Also, just-in-time compila-
tion will be helpful to many applications with highly vari-
able runtime characteristics.

7.4 Runtime

The vast majority of applications in computational science
and engineering continue to operate in largely bulk-syn-
chronous mode, with a few notable exceptions such as Uin-
tah [75], and applications built upon Charm++ [76] such as
NAMD [77]. As the applications see it, this approach has
two major benefits: many applications have a built in regu-
larity, and therefore map well to the bulk-synchronous
mode, and it takes care of dependencies within the applica-
tion trivially. Evidence indicates, however, that this state of
affairs may not remain attractive or even feasible because
heterogeneity in hardware is unfavorable to regulate lock-
step execution. Additionally, capability additions in appli-
cations make them more heterogeneous. However, the jury
is still out on whether the overheads of asynchronicity will
be outweighed by the benefits of pipelining and overlap-
ping permitted by the task-based runtime. A good API that
allows articulating the hierarchical decomposition and
dependencies easily is likely to be helpful to applications to
think about runtime locality, and to reason about their code
functionally without implementing it in a functional lan-
guage. Such an approach is needed to their way away from
bulk synchronism.

7.5 System-Scale

System-wide scalability is an important cross-cutting issue
since the targets are very large-scale, high-performance
computers. On the one hand, application scalability will
depend mostly on the way data is accessed and locality is
managed. On the other hand, the proposed solutions and
mechanisms have to run at the same scale as the application
which limits their inner decision time. That, in turn, makes
it important to tackle the problem for the whole system:
Taking into account the whole ecosystem of the application
(e.g., storage, resource manager) and the whole architecture
(i.e., from cores to network). Novel approaches are needed
to control data locality system wide, by integrating cross-
layer I/O stack mechanisms with cross-node topology-
aware mechanisms. Another challenge is that often each
layer of the software stack is optimized independently to
address the locality concerns with the result that outcomes
sometime conflict. It is therefore important to observe the
interaction of different approaches and propose integrated
solutions that provide a global optimization across different
layers. An example of such an approach is mapping inde-
pendent application data accesses to a set of storage resour-
ces in a balanced manner. This approach requires an ability
to interrogate the system regarding what resources are
available, some distance metric in terms of application pro-
cesses, and coordination across those processes (perhaps
supported by a system service) to perform an appropriate
mapping. Ultimately, the validation of the models and solu-
tions to the concerns and challenges will be a key challenge.

8 SUMMARY

The objective of the series of workshops on Programming
Abstractions for Data Locality (PADAL) is to form a com-
munity of researchers with the notion that data locality
comes first as the primary organizing principle for compu-
tation. This paradigm shift from compute-centric towards
data-centric specification of algorithms has upended
assumptions that underpin our current programming
environments. Parallelism is inextricably linked to data
locality, and current programming abstractions are cen-
tered on abstractions for compute (threads, processes, par-
allel do-loops). The time has arrived to embrace data
locality as being the anchor for computation. PADAL has
identified a community that is actively exploring a wide-
open field of new approaches to describing computation
and parallelism in a way that conserves data movement.
A number of these projects have produced working tech-
nologies that are rapidly approaching maturity. During
this early phase of development, it is crucial to establish
research collaborations that leverage for commonalities
and opportunities for inter-operation between these
emerging technologies.

Much research in this area (as with all emerging fields
of research) has focused on rapidly producing implementa-
tions to demonstrate the value of data-centric program-
ming paradigms. In order to get to the next level of
impact, there is a benefit to formalizing the abstractions for
representing data layout patterns and the mapping of com-
putation to the data where it resides. It is our desire to cre-
ate standards that promote interoperability between
related programming systems and cooperation to ensure
all technology implementations offer the most complete set
of features possible for a fully functional programming
environment. The only way to achieve these goals is for
this community to organize, consider our impact on the
design of the software stack at all levels, and work together
towards the goal of creating interoperable solutions that
contribute to a comprehensive environment.
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