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In the context of extended generalized fat tree (XGFT) topologies, widely used in HPC and datacenter

network designs, we propose a generic method, based on integer linear programming (ILP), to efficiently
determine optimal routes for arbitrary workloads. We propose a novel approach that combines ILP with

dynamic programming, effectively reducing the time to solution. Specifically, we divide the network into

smaller subdomains optimized using a custom ILP formulation that ensures global optimality of local so-
lutions. Local solutions are then combined into an optimal global solution using dynamic programming.

Finally, we demonstrate through a series of extensive benchmarks that our approach scales in practice to
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1. MOTIVATION
The suitability of an interconnection network design is typically quantified via simple
metrics such as link bandwidth/latency and bisection bandwidth. However, these met-
rics lead to optimistic estimations on the achievable performance, the latter depend-
ing on the exact combination of communication patterns and routing algorithm being
used. Inefficient routing approaches can induce significant levels of network conges-
tion, which will negatively impact network performance, in terms of both throughput
and latency.

Several characteristics of network topologies determine the options for routing al-
gorithms. An important feature of any interconnection network is path diversity. Path
diversity denotes the number of different ways to route messages between a given
source and destination and consequently quantifies the breadth of the space of possi-
ble routing algorithms and the difficulty of choosing a good algorithm. An intelligent
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choice of the path that each message will follow will have important benefits, e.g. load
balancing and congestion reduction, and will translate to an increase in workload per-
formance. On the other hand, a suboptimal choice can introduce artificial performance
limitations that are neither inherent to the workloads being accommodated nor to the
network itself.

Some of the most popular choices for the interconnection fabric of large scale sys-
tems are variants of the fat tree architecture: fat trees [Leiserson et al. 1992], k-
ary n-trees [Petrini and Vanneschi 1997b] or generic extended generalized fat trees
(XGFTs) [Öhring et al. 1995]. In the enterprise datacenter space, fat trees are the
network architecture of choice [Al-Fares et al. 2008] whereas in the high performance
computing (HPC) space they are by far the dominating topology employed in clusters
using Infiniband technology, clusters which account for more than 40% of the systems
in the latest Top 500 list [Bogdanski et al. 2010; Top 2013]. A few prominent examples
of current HPC installations using fat tree interconnects are TACC Stampede [(TACC)
2011], LRZ SuperMUC , and Pangea , the world’s fastest private supercomputer, which
are ranked as numbers 6, 9 and 11 in the latest Top 500 list [Top 2013], respectively.

All fat tree architectures are characterized by an amount of path diversity that
increases roughly linearly with the size of the network, making the route selection
problem both very important and very challenging. Currently, there is—to the best
of our knowledge—no general solution to the problem of determining optimal routes
for arbitrary workloads running on arbitrary fat trees of reasonable size. In practice,
approximate solutions obtained either heuristically or through dynamic or adaptive
approaches, where the routing decision is dependent on the current state of the net-
work, are used to approximate optimal behavior and performance. However, for certain
workloads such approaches can prove to be insufficient.

This work was originally triggered by a very specific example, described in detail
in [Prisacari et al. 2013]. There, we tackled the problem of optimizing the commu-
nication pattern of the all-to-all exchange collective operation, encountered in many
parallel programming models, for XGFT networks with less then full bisection band-
width. Having established a theoretically optimal way of performing such an all-to-all
exchange, we found that optimizing a communication pattern for a specific network
topology was not sufficient: although the workload and the network guaranteed op-
timal performance, none of the existing routing strategies were able to sustain it. In
other words, the need arose for a practical and scalable method capable of finding opti-
mal routes for a given communication pattern and a given (XGFT) topology. This work
fills this gap, providing a solution for arbitrary communication patterns on arbitrary
XGFT networks..

The core idea of our method is to perform offline a highly optimized search over all
possible routing algorithms, using Integer Linear Programming (ILP). Although this
is not a new idea, previous attempts have failed in applying it to real systems and
concluded that the method is NP-complete and impractical for all but the smallest
network sizes [Elmallah and Culberson 1994]. This paper present a set of key con-
tributions that enable us to find optimal routes for networks interconnecting several
thousands of nodes in a practically feasible amount of time (in the range of hours).

After an initial survey of related work already performed in the field (Section 2), we
start by introducing a novel topological characterization of XGFT networks (Section 3)
that will enable us to construct an efficient ILP formulation of the optimal routing
assignment problem, for arbitrary workloads (Section 4). We proceed to explain how
this solution can be effectively used in practice and present a set of experimental re-
sults that illustrate the benefits that using this approach can bring in a practical sce-
nario (Section 5). Finally, we demonstrate (Section 6) by means of a set of extensive
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benchmarks that our approach is able to generate optimal routing assignments using
only commodity hardware and an open source, free, single-threaded linear program-
ming solver, in a reasonable amount of time, for networks interconnecting thousands
of nodes. Thus, although a polynomial time-to-solution is not guaranteed, we show that
through a series of acceleration strategies (introduced in Section 4) our approach re-
duces the completion time to very manageable values (e.g., in the order of one hour for a
network interconnecting a thousand nodes), making, to the best of our knowledge, the
current work the first to achieve rendering an ILP-based optimal routing assignment
generation approach practical for arbitrary communication patterns in production sys-
tems.

2. PREVIOUS WORK ON LINEAR PROGRAMMING DRIVEN ROUTE OPTIMIZATION
Finding an optimal routing for a specific communication matrix and network topol-
ogy is equivalent to the well-known maximum flow problem, or its generalization, the
multi-commodity flow problem [Srinivasan 1997; Leighton et al. 1991]. For the gen-
eral problem, considering any directed graph, and allowing for fractional flows, non-
integral linear programming formulations exist that are solvable in polynomial time.
However, for integer flows the problem is NP-complete [Even et al. 1976].

Several works exist that do not seek to obtain the optimum integer solution but
rather use the fractional solution as a basis for close-to-optimal routes and then
provide upper bounds on the expected difference to an actual optimal solution.
Räcke [Raecke 2002], for example, showed that it is possible to find an oblivious routing
for any symmetric network (undirected and with equal capacities in both directions),
such that any traffic pattern would only experience a maximum of a poly-logarithmic
increment in contention with respect to the optimum for that specific traffic pattern.
Azar [Azar et al. 2003] later corrected the bound to O(N0.5), with N being the number
of communicating nodes, and developed a linear programming formulation that can be
solved with the Ellipsoid algorithm to obtain a solution in polynomial time. The pro-
posed LP formulation, however, grows exponentially [Applegate and Cohen 2003] with
respect to the network size. Applegate [Applegate and Cohen 2003] later provided an
LP formulation that is polynomial in size with respect to the network size. Building
on Räcke’s and Azar’s work, Applegate further showed that a robust routing can be
obtained with little knowledge of the traffic demands. For the sample Internet Server
Provider (backbone) networks studied, optimizing the oblivious case (where all source-
destination pairs are considered with equal probability) was shown to be significantly
more robust than optimizing for specific traffic patterns.

A more recent work [Kinsy et al. 2009] takes an additional step towards the integral
max-flow problem by using a Mixed Integer LP formulation to find a set of routes for
unsplittable flows, i.e., flows that cannot be separated across different paths. However,
the solution is still not completely integral, as the flows, although unsplittable, may
still be fractional. Furthermore, the author himself states that even this partial integer
optimization is only feasible from a practical point of view for “problems of small size”.

However, none of these works solve the actual integral max-flow problem. It might
be argued that the fractional solution can be made to approximate the integral so-
lution by using a combination of segmentation (breaking the message into smaller
pieces) and dynamic (sprayed) routing when the messages are large enough to be sub-
divided into a sufficient number of smaller units. However, such a solution will still
only be an approximation of the optimal routing and it will require additional hard-
ware support (such as larger routing tables and re-sequencing queues) and introduce
new problems (such as out of order arrivals and segmentation overheads). Further-
more, when a contention-free routing solution exists for a certain topology and traffic
pattern, an approximate routing solution that has even a single unnecessary conflict
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will incur a noticeable performance degradation with respect to the optimum, as the
communications competing for the same link will share the bandwidth of that link [Ro-
driguez et al. 2009a; Rodriguez et al. 2008]. These contention-caused delays will propa-
gate throughout the entire execution, because subsequent transfers, especially in HPC
applications, may depend—directly or through a chain of dependencies—on a given de-
layed transfer. This causes increased jitter, a well-known cause of severe performance
degradation [Petrini et al. 2003; Hoefler et al. 2009].

Other works do attempt to solve the ILP problem, but they generally conclude that
the approach is not feasible for practical network sizes. A notable work that falls in
this category and provides an ILP formulation specifically for multi-stage networks is
due to Elmallah [Elmallah and Culberson 1994]. The paper shows that, although a
polynomial-time algorithm can be found for multi-stage networks having up to three
levels, the problem is NP-complete for networks with more than three levels. Hence,
no attempts were made to find ways of making the optimization process practically
feasible.

Other works have steered away from the NP-complete integer linear programming
and have concentrated on trying to find optimal routes with polynomial-time algo-
rithms for specific networks and/or traffic patterns. For example, in the context of Clos
networks there exist optimal simple routing algorithms when very specific conditions
are met [Jajszczyk 2003]. However, no such results have been obtained for extended
generalized fat trees.

The method we propose is radically different from previous approaches in that:

— the optimum is computed outside of the linear optimization process and the optimal-
ity is embedded in the feasibility conditions (LP constraints), such that the ILP solver
serves only as a feasible solution identifier as all feasible solutions are optimal;

— the optimal routes are not computed for the entire network at once; instead, the prob-
lem is split up into smaller sub-problems that can be solved efficiently using ILP, and
the optimal local solutions are subsequently combined using dynamic programming
into an optimal global solution.

Finally, this is to our knowledge the first work presenting a method to solve the
integral optimal routing problem for arbitrary workloads that can claim practically
feasible completion times for XGFT networks with thousands of nodes and up to 6
levels.

3. EXTENDED GENERALIZED FAT TREES
As we have shown in the motivation section, fat trees are one of the most popular
indirect network topologies used in the design of current HPC systems as well as dat-
acenter networks.

The fat tree family encompasses a broad class of different interconnection layouts
which can all be described as multi-stage tree-like topologies where the bandwidth of
the links may increase towards the root of the tree.

An ideal fat tree is a k-ary tree interconnection network where the bandwidth of each
link towards the root increases in powers of k. The CM-5 [Leiserson et al. 1992] was the
first machine to implement a variant of the ideal fat tree network. More generically, a
full-bisection bandwidth fat tree is a tree interconnection network in which every link
can always accommodate the aggregate capacity of the sub-tree connected to that link.
Such fat tree networks are not realizable for large clusters, as the bandwidth needs to
increase exponentially at each layer towards the root, which would require switches
with either exponentially increasing number of ports or exponentially increasing band-
width per link.
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However, it is possible to construct a tree-like network that exhibits an equivalent
full bisection bandwidth property and uses fixed-capacity switches, i.e., does not re-
quire increasing either the number of ports per switch or the port bandwidth [Petrini
and Vanneschi 1997b; 1997a].

Furthermore, it is possible to construct networks in which the bandwidth towards
the root can be tuned to almost arbitrary values, from the full-bisection bandwidth of
ideal fat trees to reduced bandwidth realizations that have a correspondingly reduced
cost. These are called Extended Generalized Fat Trees or XGFTs. Öhring et al. [Öhring
et al. 1995] provide a generic framework for compactly describing arbitrary XGFT
topologies. In this framework, an XGFT network is completely described by two values
for each tree layer, namely an M value, describing the number of direct descendants of
a node at a specific layer, and a W value, describing the number of direct ancestors of
a node at a specific layer. As such, the network is completely described by a set of pa-
rameters of the form XGFT(H :M1, ...,MH ;W1, ...,WH), where the parameter H corre-
sponds to the number of switch layers of the tree. An XGFT(H :M1, ...,MH ;W1, ...,WH)
is conceptually equivalent to a standard fat tree with downward branching factors
(M1, ...,MH) and upward bandwidths available to every conceptually equivalent fat
tree node at every layer equal to (W1,W1 ·W2, ...,W1 · ... ·WH).

3.1. A new XGFT representation
First, we introduce an alternative way of describing the XGFT topology that will en-
able an easier formulation and understanding of the routing optimization approach
in Section 4. Instead of viewing the XGFT as before as a single, monolithic network
layout, we dissociate it into two complementary aspects:

— On the one hand an XGFT is meant to conceptually mirror a regular tree where
every node has a single ancestor, with the exception of the unique root, which has no
ancestor.

— On the other hand, an XGFT is meant to provide a practical way of ensuring in-
creasing bandwidth towards the root using (relatively) small radix switches. As the
number of ports per switch is limited, the large fat-tree-specific bandwidth that is
required of upper layer switch-to-switch connections cannot be achieved via a mul-
titude of links. The XGFT design solves this problem by replacing the conceptual
exponential-radix fat-tree switch with an exponential (towards the root) multitude of
constant-radix switches. We will show that this separation of the conceptual switches
can be described by a second tree that is regular but inverted (the root layer of this
second tree corresponds to the leaf layer of the XGFT).

In the remainder of this section we will show how these two aspects are completely
described by a single regular tree each, and how the XGFT itself can be described via
this dual view.

Given an XGFT(H :M1, ...,MH ;W1, ...,WH) as described above, we consider two sim-
ple trees MT (H : M1, ...,MH) and WT (H : WH , ...,W1), each with the same number of
layers H + 1 as the original XGFT. For the former, we number the layers starting with
0 from the leaf layer in increments of 1 (Figure 1b), whereas for the latter we number
the layers starting with 0 from the root layer also in increments of 1 (Figure 1c). The
parameters Ml of MT represent the number of descendants of each MT node on layer
l, whereas the parameters Wl of WT represent the number of descendants of each WT
node on layer l − 1.

The bijective correspondence between the standard XGFT characterization and this
new dual characterization is the following. A layer l node in the XGFT is equivalent to
a pair of nodes, one at layer l of MT and one at layer l of WT. The MT node is reached
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a) XGFT(3:4,3,2;1,4,3)

b) MT(3:4,3,2) c) WT(3:3,4,1)
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Level 2

Level 3
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root

root
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Fig. 1. Standard (Figure a) and dual (Figures b and c) representation for a 3-layer network:
XGFT(3:4,3,2;1,4,3). The dual representation is composed of two simple trees, the MT tree (Figure b) and
the WT tree (Figure c). The layers of the WT tree are numbered in the reverse order of that of the XGFT and
MT tree. The MT tree captures the scalability properties of the fat tree that the XGFT is conceptually mod-
eling, i.e., it captures the downward branching factors of the fat tree, with no information on the bandwidth
available at each layer. The WT tree expresses how many links each node has available to the next layer (in
numbering order), which equals the number of upward links for a given node in the original XGFT. Every
XGFT node on layer l, nl, corresponds to a unique pair of nodes, one in the MT tree and one in the WT tree,
also at layer l in their corresponding trees: (mtl, wtl). The filled nodes exemplify such a correspondence. The
figures also show an example path between a source-destination pair as they are reflected by both repre-
sentations. The upward path is shown in a continuous line (in blue), whereas the downward path is shown
dashed (in red). In the MT tree, the path between a fixed source and destination is unique. In the WT tree,
the upward path and the downward path are identical, but any path connecting the root to any node on the
layer where the downward path begins is a valid one.

from the unique root of the MT tree by choosing the same links moving towards lower
index layers as the links that need to be chosen to reach the XGFT node when starting
on any root ancestor of that node. Similarly, the WT node is reached from the unique
root of the WT tree by choosing the same links moving towards higher index layers as
the links that need to be chosen to reach the XGFT node when starting on any leaf
descendant of that node.

Similarly to how every XGFT node on layer l is assigned a set of identifying coor-
dinates (l : mH , ...,ml+1, wl, ..., w1), with 0 ≤ wi < Wi and 0 ≤ mi < Mi, we assign to
every node on layer l in the trees MT and WT a set of coordinates (l : m′H , ...,m

′
l+1)

and (l : w′1, ..., w
′
l) respectively, by simply making a list of the branching choices

required starting on the root of the tree to get to the node in question. Then for-
mally, the pair of (MT,WT) nodes corresponding to an XGFT node with coordinates
(l : mH , ...,ml+1, wl, ..., w1) are the nodes with coordinates (l : mH , ...,ml+1) and
(l : w1, ..., wl) in their respective MT and WT trees.

Figure 1 illustrates the correspondence via the nodes that are filled. The layer 2
XGFT node that is filled corresponds to two filled nodes in the dual representation. To
reach the XGFT node starting from the root layer, one would choose the rightmost link
of any ancestor root, while to reach it starting from the leaf layer, one would choose
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first the only link available, then the second rightmost link. This choice is unique and
allows the determination of the MT and WT corresponding nodes.

A link in the XGFT is represented in the dual representation via a pair of links, one
belonging to MT and one belonging to WT, which are the exact links that connect the
pairs of MT and WT nodes that form the dual representations of the end points of the
original link in the XGFT.

Since the bijection applies to links as well as nodes, it also applies to the paths taken
by messages in the XGFT. Routing can thus be seen as a synchronized movement in
the two trees of the dual representation, between the MT components of the source and
destination on one hand and between the WT components of the source and destination
on the other. An example path in both representations is shown in Figure 1, with the
upward portion of the path being shown as a continuous blue line and the downward
portion as a dashed red line.

The dual representation clearly exposes the XGFT routing-related properties. Specif-
ically, whereas in the MT tree there exists a unique route between any given source
and destination, routing in the WT tree is equivalent to starting from the root, de-
scending into the tree for a number of layers, then returning to the root. Thus, it is
obvious that when moving away from the root of WT (equivalent to moving “up” in
the XGFT), the number of possible ways we have to descend into the WT tree is equal
to W1 ·W2 · ... ·Wl, where l is the maximum descent layer, while when moving back
towards WT’s root (equivalent to moving “down” in the XGFT), there are no choices to
be made, i.e., the path is completely determined by the choices made while descend-
ing. This property of the downward path completely being determined by the upward
path is one of multiple intrinsic properties of XGFT routing which become immediately
obvious in the dual representation, but are not exposed explicitly by the standard char-
acterization.

Another example of such a property, which we will use in our approach and which,
with the standard XGFT model, can require significant effort to prove [Ding et al.
2006] while being obvious in the dual representation, is the following. If during the
upward part of an up-down path, on a node on layer l, the choice was made to route on
the upwards link wl, then on the downward path the message will enter the node on
layer l on link wl as well. In the dual representation, because the upward link choice
is determined solely by the WT tree trajectory, and because in that tree we are taking
the same path first moving away from the root and then in reverse, it is immediate
that the same links will be used.

Summarizing, we have the following properties:

PROPERTY 3.1. In an XGFT, given a message that moves from its source upwards
into the tree up to layer l then descends to its destination, the total number of available
paths that message can choose equals W1 ·W2 · ... ·Wl.

PROPERTY 3.2. In an XGFT, given a message that moves from its source upwards
into the tree up to layer l then descends to its destination, the message having already
performed the upward portion of its path, then the downward path of the message is
unique (i.e., completely determined).

PROPERTY 3.3. In an XGFT, given a message from a source leaf node to a destina-
tion leaf node, the message having advanced from layer l to layer l + 1 using the w-th
upwards link from the node it was on at layer l, then on its downward path, the mes-
sage will descend from layer l+1 to layer l using, in reverse direction, the w-th upwards
link on the node it will reach on layer l.
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4. LINEAR PROGRAMMING OPTIMIZED ROUTING
The exact problem we are solving is the following. We are considering a fixed commu-
nication load that needs to be delivered using the network as a medium. In the most
general case, this means that every source node S needs to send a message to every
destination in a set (with repetition) DS . The set DS can be empty or can contain the
same destination multiple times, the latter case corresponding to the situation where
source S sends multiple messages to a given destination.

Messages traveling through the network can use a variety of paths. Given an as-
signment of a single path to each message in a workload, we define the contention
level induced by the workload on an arbitrary link as the total number of assigned
paths that contain that link. The problem we aim to solve is finding a path-to-message
assignment that ensures that the maximum contention level across all links in the
network is minimized.

This is a problem that has relevance regardless of the network type. However, for
arbitrary workloads and arbitrary networks, finding such an optimum assignment is
typically not possible via a heuristic approach, making it typically necessary to perform
an exhaustive search of the assignment space, which is large enough to make such an
approach impractical. Furthermore, even for specific classes of networks but arbitrary
workloads, exhaustive search might ultimately still be necessary to obtain an optimal
solution.

Nonetheless, in the latter case, an optimized exhaustive search that takes advantage
of the structure of the network has potential to yield a solution in a practical time.

In the remainder of this section, we will present an approach to achieve just that
in the case of arbitrary XGFT networks. We will use an integer linear programming
solver as the means to perform the search (thus benefiting from the large amount
of optimizations done in this field) and provide it with a specification of the routing
problem that ensures rapid convergence.

4.1. Layer-by-layer route optimization
The main problem in performing an exhaustive search on the path-to-message assign-
ment space is that the space in question is extremely large. Indeed, given a workload
composed of N messages and a path diversity for any given source-destination pair of
P , then the total number of possible assignments is PN .

In an XGFT with the specification XGFT (H : M1, ...,MH ;W1, ...,WH), we have
that Pl = W1 · ... · Wl for messages needing to go up in the tree up to layer l be-
fore descending back to the destination. As an example, in a small 1024-node XGFT
(XGFT (4 : 16, 8, 4, 2; 1, 16, 8, 4)) where every node needs to send a single message to
another node across the root (which is a case that is typical in practice, for exam-
ple in many of the phases of an all-to-all exchange), the size of the search space is
5121024 ≈ 102700.

For this reason, our approach divides the network into smaller optimization domains
and propagates solutions from one domain to the next, by using a dynamic program-
ming approach. This reduces the assignment space that needs to be explored, which in
turn reduces search time. However, to allow the method to work correctly, as with any
dynamic programming approach, we must ensure that any solution that is found for a
sub-domain and is propagated as a starting point for the next sub-domain is a partial
solution of an optimum total solution.

In the case of the XGFT network, a natural way of partitioning the topology is on
a per-layer basis. Specifically, messages will first be assigned routing decisions that
allow them to move from layer 0 to layer 1 of the tree. Then, all messages that need to
go up past layer 1 will be propagated in the network according to the previously chosen
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assignment and a new assignment will be chosen that allows them to go from layer 1
to layer 2, and so on up to the root.

With such an approach, the total search space is reduced to a succession of per-
layer search spaces each of a size of approximately WN

l+1, where N is the number of
messages needing to go up past layer l and Wl+1 is the XGFT W parameter at layer l.
Going back to our previous example, this reduces the search space to a maximum size
of 161024 ≈ 101200, significantly smaller than for the original approach. The difficulty,
once more, lies in ensuring the global optimality of the union of sub-solutions.

4.2. Single-layer problem formulation
The problem we want to solve is the following. Given a workload as described above, a
layer l of the XGFT and a set of routing assignments for the messages in the workload
for layers 0 through l− 1, we want to generate a set of routing assignments for layer l.

The first thing to notice is that we can use the lower layer routing assignments
to generate a ”position” in the network for every message reaching layer l. Thus,
every node at layer l will be assigned a set of messages, some of which need to be
routed downwards, others routed upwards. Property 3.2 ensures that messages that
are routed downwards have their entire path already decided. Therefore, routing as-
signments need only be generated for messages routed upwards.

The output of our algorithm must thus be, for every message that is to be routed
upwards of layer l, a choice among the Wl+1 upward links available to that message on
the node it is on. This choice needs to:

(1) fulfill a local optimality criterion for the links going upwards at the current layer;
(2) ensure that the locally optimal solution is part of a globally optimal solution;
(3) since the choices made going upwards also permanently determine the downward

path and since we know what links those messages will use going down, at the
same layer (according to Properties 3.2 and 3.3) the current choice must also ensure
Properties 1 and 2 for the downward path.

The latter property actually requires that two optimization criteria be pursued si-
multaneously (one for messages on their upward path and the other for the same mes-
sages on their downward path) and this is actually what makes the optimization pro-
cess very difficult to achieve by other means than an exhaustive search.

4.3. Upward local optimality criterion
Given a set of n messages present on a given node of the tree at layer l that need to
move to layer l + 1 and given Wl+1 choices in terms of links those messages can move
on, the minimum achievable contention level across the links is clearly dn/Wl+1e. To
ensure not only a minimum maximum contention level across links but also a complete
load balancing of traffic, we also need to impose a lower limit on the number of mes-
sages routed on any given link of bn/Wl+1c. To understand why this is necessary, let us
take the example of n = 7 messages needing to be distributed across W = 3 links. The
minimum achievable contention level across the links is dn/W e = 3. However, without
the strict load balancing lower limit, one acceptable assignment would be 3, 3, 1, that
is, having two links assigned 3 messages each and the third link assigned a single mes-
sage. This would cause the third link to receive much fewer messages than the others.
A more balanced assignment would be 3, 2, 2. In general, a perfect load balancing of
messages across links is ensured by any assignment where the difference (in number
of messages assigned) between the lowest utilized link and the highest utilized link is
at most 1 message. The lower bound mentioned above guarantees this property. En-
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a) Non-optimal routing b) Optimal routing

Fig. 2. Example of two route assignments for an XGFT (2 : 2, 2; 3, 3) network and a workload consisting of
4 messages, shown as red dots in Figure a) and as green dots in Figure b), sent from every leaf node source
to leaf node destinations across the root. Both assignments are optimal for the lowest layer of links, however
the assignment in Figure a) is non-optimal for the second layer (the leftmost second layer node for example
has 4 messages to distribute among 3 links) while the assignment in Figure b) is optimal.

forcing it is done however at the expense of reducing the density of feasible solutions
in the search space. This is the only local optimality criterion.

4.4. Global optimality preserving criteria
First, let us illustrate through an example why the local optimality conditions are
insufficient, in that a locally optimal partial solution to the route assignment prob-
lem can prove to not constitute a part of a globally optimal solution. Let’s take the
XGFT (2 : 2, 2; 3, 3) illustrated in Figure 2 and let’s assume a workload where every
leaf node needs to send 4 messages across the root. The locally optimal upper bound
for the number of messages that cross each upwards link at layer 0 is dn/W1e which,
given that n = 4 and W1 = 3 is 2. One solution (illustrated in Figure 2a) that is lo-
cally optimal at layer 0 is to assign, on every node, 2 of the 4 messages to link 0 and 1
message to each of the other two upward links. Propagating the messages to layer 1,
this would lead to 4 of the 6 layer 1 nodes receiving 2 messages while the remaining 2
nodes at that layer would receive 4 messages each. Given that the number of upward
links at layer 1 is W2 = 3, this leads to a contention level of at least 2 (the latter two
nodes have to distribute 4 messages across 3 links). However, there exists a different,
optimal route assignment (illustrated in Figure 2b) that induces a contention level on
layer 1 upward links of only 1 (this can be achieved for example by having leaf node
i, where nodes are numbered consecutively from left to right, assign 2 messages to
upward link i mod W1 and 1 message to each of the remaining 2 upwards links). We
have thus shown that the local optimality criterion is insufficient.

Let us now derive in the general case the optimality preserving criteria for the global
solution. Given two messages at layer l, on different XGFT nodes, four conditions need
to be fulfilled in order for those two messages to contend for a link at layer l + λ:

(1) the messages need to start their downstream portion of the path at a layer strictly
larger than l + λ

(2) the messages need to eventually propagate to the same node in the MT tree at
layer l + λ, which is equivalent to them being on layer l nodes in the MT tree that
have a common ancestor at layer l + λ

(3) the messages need to eventually propagate on the same node in the WT tree at
layer l + λ, which is equivalent to them being on the same layer l node in the WT
tree and them picking exactly the same w-s at layers l through l + λ− 1
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(4) the messages need to pick the same link wl+λ+1 at layer l + λ

However, we do not know the routing assignments of the messages at layers above
l. Hence, we must ensure that in the case of an optimum assignment for layers l + 1
through l + λ, our current layer l assignment still allows for optimality for layer l + λ.
The messages at layer l that, with the knowledge we currently have, can potentially
contend on layer l+ λ are those messages that descend at a layer strictly greater than
l + λ, that have a common ancestor in the MT tree at layer l + λ, and that are on the
same WT tree node at layer l. Let’s denote, for every pair (mtl+λ, wtl) of an MT tree
ancestor at layer l+ λ and a WT tree node at layer l, the number of messages that can
potentially contend at layer l+ λ as being cuλ,mtl+λ,wtl (the ”u” standing for ”upwards”).

An assignment at layer l separates these messages into Wl+1 different groups,
where contention can only appear within each individual group (i.e., among mes-
sages for which the routing assignment allocated the same upward link index). The
local restriction ensures only that the number of messages that have potential to con-
tend post-assignment (i.e., the number of messages in every group) is upper bounded
by

∑
{mtl|ancestor(mtl)=mtl+λ}dcu0,mtl,wtl/Wl+1e. The optimal assignment however is one

where the cuλ,mtl+λ,wtl messages that will reach past layer l + λ are assigned evenly
between groups. The condition that enforces the optimum assignment is thus that the
number of messages in a group be upper bounded by dcuλ,mtl+λ,wtl/Wl+1e.

Once more, we can additionally impose a load balancing restriction by lower bound-
ing the same number of messages by bcuλ,mtl+λ,wtl/Wl+1c. These optimality preserving
restrictions need to be enforced for every λ up to the root and for each given λ, for every
mtl+λ.

4.5. Improving search convergence
Strong restrictions, such as the ones above, allow in principle a more aggressive prun-
ing of invalid partial solutions during the optimization process. However, in practice
we have found that past a certain point they will also diminish the density of feasible
solutions in the restriction of the search space they define, making the overall comple-
tion time of the search higher.

Hence, there is potential to improve the completion time by providing slightly
weaker restrictions, that are nonetheless optimality preserving (they ensure the same
maximum contention level) at the expense of inducing a load across links that might
be less than ideally balanced.

The local criterion is not only sufficient but also necessary, so no restriction relax-
ation is possible in its case. However, weaker conditions can be formulated when en-
suring global optimality.

The strong restriction states that the size of a group of messages choosing the same
upward link must be upper bounded by dcuλ,mtl+λ,wtl/Wl+1e. This is equivalent to en-
suring that messages that have potential to contend at layer l+λ will be split as evenly
as possible across the Wl+1 upward links available at layer l. Looking at the WT tree,
one can clearly see that once having reached layer l + 1, each of these groups of mes-
sages will be split further, again evenly (due to the local optimality criterion that will
be enforced in the next layer), into Wl+2 groups, and so on up to layer l + λ. So all in
all, the set of messages in one of the original layer l groups will have potential to be
split into Wl+2 · ... ·Wl+λ+1 groups until contending at layer l + λ. Therefore, if that
group contained n messages, the contention level those messages will induce at layer
l + λ will be dn/(Wl+2 · ... ·Wl+λ+1)e.
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The strong restriction imposes an upper limit on what n can be. However, we can
see that increasing n from that limit to the first multiple of (Wl+2 · ... ·Wl+λ+1) actually
has no influence on the contention level induced at layer l + λ.

Consequently, we can replace the strict upper bound derived above by
dcuλ,mtl+λ,wtl/Wl+1/(Wl+2 · ... ·Wl+λ+1)e ·(Wl+2 · ... ·Wl+λ+1). We will call this acceleration
technique restriction relaxation.

A second method to improve the completion time of the optimized exhaustive search
is to remove superfluous restrictions. We mentioned above that the local restriction
ensures by itself an upper bound of

∑
{mtl|ancestor(mtl)=mtl+λ}dcu0,mtl,wtl/Wl+1e for the

number of messages in a group. If this limit is lower than or equal to either the strong
upper bound or the upper bound obtained through restriction relaxation, then we can
eliminate the strong/relaxed restriction altogether. We will call this acceleration tech-
nique restriction elimination.

The applicability of these techniques is dependent on both the structure of the topol-
ogy and that of the workload so it might not always be possible to accelerate the search
using these approaches. However, when it is possible, the resulting routing assignment
ensures an optimal maximum contention level across links, at the possible expense of
having less-than-perfect balancing of load across links.

4.6. Downward path restrictions
Until now we have only discussed about enforcing the load induced by messages mov-
ing towards the root of the tree. However, the routing decisions taken going upwards
completely determine the downward path as well due to Properties 3.2 and 3.3). En-
suring an optimal maximum contention level on the downward links is equivalent to
considering them as upwards links in a time-reversed message flow, where messages
depart from their destination and finish at their source, and then applying the same
restrictions to the exhaustive search as above.

Within the optimization step of a single layer, both the downward and upward con-
ditions must be enforced simultaneously to ensure an overall optimum maximum link
contention level.

The remainder of this section formalizes the approach described thus far.

4.7. Formal description of the optimization constraints
A message m(id, s, d, δ, l,mtu, wtu,mtd, wtd, w

id
l+1) at layer l is characterized by:

— a unique id id
— its source node index s
— its destination node index d
— the layer at which is starts its downward path δ
— the current layer l
— the MT node and WT node indices at layer l on the upward path mtu and wtu
— the MT node and WT node indices at layer l on the downward path mtd and wtd
— the choice at layer l widl+1

The first 4 fields are computed at the beginning and remain unchanged for the du-
ration of the routing assignment generation across layers. The rest of the fields are
initialized and updated as follows.

Initialization:

—mtu = s
—wtu = 0
—mtd = d
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—wtd = 0
— l = 0

Update when moving to the next optimization layer, for messages that need to move
upwards at that layer:

—mtu = ancestor(mtu)
—wtu = descendant(wtu, w

id
l+1)

—mtd = ancestor(mtd)
—wtd = descendant(wtd, w

id
l+1)

— l = l + 1

The optimization step at an arbitrary layer l receives as input the set of messages
M that have advanced to that layer (each message missing the widl+1 parameter) and
needs to output for each message m(id, ...) the link choice widl+1.

We introduce the following notations. For a given l, a given λ, a given node mtl+λ in
the MT tree at layer l + λ and a given node wtl in the WT tree at layer l, we denote by
Mu
λ,mtl+λ,wtl , independent of the routing choice at layer l, the set of messages that:

— reached layer l moving upwards,
— begin their downward path at a layer strictly greater than l + λ,
— have propagated moving upwards to layer l on a node that has node mtl+λ as an

ancestor in the MT tree,
— and have propagated moving upwards to layer l on node wtl in the WT tree.

Furthermore, we denote the subset of messages in Mλ,mtl+λ,wtl that have their rout-
ing choice equal to wl+1 where 0 ≤ wl+1 < Wl+1, by Mu

λ,mtl+λ,wtl,wl+1
.

We introduce analogous notations for the downward path: Md
λ,mtl+λ,wtl and

Md
λ,mtl+λ,wtl,wl+1

.
Formally:

Mu
λ,mtl+λ,wtl = {m(id, s, d, δ, l,mtu, wtu,mtd, wtd, w

id
l+1)|

δ > (l + λ), ancestorλ(mtu) = mtl+λ, wtu = wtl} (1)

Mu
λ,mtl+λ,wtl,wl+1

= {m(id, s, d, δ, l,mtu, wtu,mtd, wtd, w
id
l+1)|

m ∈Mu
λ,mtl+λ,wtl , w

id
l+1 = wl+1} (2)

Md
λ,mtl+λ,wtl = {m(id, s, d, δ, l,mtu, wtu,mtd, wtd, w

id
l+1)|

δ > (l + λ), ancestorλ(mtd) = mtl+λ, wtd = wtl} (3)

Md
λ,mtl+λ,wtl,wl+1

= {m(id, s, d, δ, l,mtu, wtu,mtd, wtd, w
id
l+1)|

m ∈Md
λ,mtl+λ,wtl , w

id
l+1 = wl+1 (4)

With these notations, we then have that:

cuλ,mtl+λ,wtl = |M
u
λ,mtl+λ,wtl |. (5)

and the strong condition for the upward path then is:
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∀λ ≥ 0,∀mtl+λ,∀wtl,∀0 ≤ wl+1 < Wl+1, |Mu
λ,mtl+λ,wtl,wl+1

| ≤ dcuλ,mtl+λ,wtl/Wl+1e, (6)

where the local optimality criterion corresponds to λ = 0 and the global optimality
conditions correspond to λ > 0.

Similarly, given the notation:

cdλ,mtl+λ,wtl = |M
d
λ,mtl+λ,wtl |, (7)

the strong condition for the downward path is:

∀λ ≥ 0,∀mtl+λ,∀wtl,∀0 ≤ wl+1 < Wl+1, |Md
λ,mtl+λ,wtl,wl+1

| ≤ dcdλ,mtl+λ,wtl/Wl+1e (8)

Should we wish to enforce strict load balancing, two more conditions need to be
added: one for the upward path:

∀λ ≥ 0,∀mtl+λ,∀wtl,∀0 ≤ wl+1 < Wl+1, |Mu
λ,mtl+λ,wtl,wl+1

| ≥ bcuλ,mtl+λ,wtl/Wl+1c, (9)

and one for the downward path:

∀λ ≥ 0,∀mtl+λ,∀wtl,∀0 ≤ wl+1 < Wl+1, |Md
λ,mtl+λ,wtl,wl+1

| ≥ bcdλ,mtl+λ,wtl/Wl+1c (10)

Should we wish to enforce the relaxed restrictions, the conditions change as follows.
For the upward path:

∀λ ≥ 0,∀mtl+λ,∀wtl,∀0 ≤ wl+1 < Wl+1,

|Mu
λ,mtl+λ,wtl,wl+1

| ≤ dcuλ,mtl+λ,wtl/Wl+1/(Wl+2 · ... ·Wl+λ+1)e · (Wl+2 · ... ·Wl+λ+1), (11)

and for the downward path:

∀λ ≥ 0,∀mtl+λ,∀wtl,∀0 ≤ wl+1 < Wl+1,

|Md
λ,mtl+λ,wtl,wl+1

| ≤ dcdλ,mtl+λ,wtl/Wl+1/(Wl+2 · ... ·Wl+λ+1)e · (Wl+2 · ... ·Wl+λ+1), (12)

4.8. Routing as a linear programming problem
As explained earlier in this section, we model the routing problem as an exhaustive
search in the routes-to-messages assignment space. The size of the space we need to
explore is immense and as such an optimized approach that is able to prune infeasible
partial solutions very early is critical. In order to benefit from existing work, we model
the routing problem as a linear optimization problem with binary variables and use
an independently optimized linear programming solver to produce the solution.

To ensure as aggressive a pruning of the search space as possible, our method em-
beds the optimality of the solution not in the optimization function of the linear pro-
gramming specification but in the feasibility constraints themselves. This way, any
feasible solution is an optimum solution and any non-optimum solution is eliminated
implicitly.

The problem formulation for layer l uses multiple binary variables named using the
form varl,id,wl+1

. If the solution contains a value of 1 for varl,id,wl+1
, it signifies that the

message with the identifier id should be routed on the upward link with index wl+1 at
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layer l. For a given linear optimization problem, l is fixed, id is the identifier of any
message with δ > l and wl+1 takes values between 0 and Wl+1 − 1.

In order to express the restrictions defined above as linear programming constraints,
it is sufficient to express the values of

—Mu
λ,mtl+λ,wtl

—Md
λ,mtl+λ,wtl

— |Mu
λ,mtl+λ,wtl,wl+1

|
— |Md

λ,mtl+λ,wtl,wl+1
|

in terms of the variables introduced above.
The former two are not dependent on the optimization process and their exact values

can be precomputed in a straightforward fashion from the distribution of messages
across nodes at layer l, which is an input to the optimization process. Once these sets
are established, the number of elements in each set is also readily available. The latter
two can be expressed as:

|Mu
λ,mtl+λ,wtl,wl+1

| =
∑

m(id,...)∈Mu

λ,mtl+λ,wtl

varl,id,wl+1
(13)

|Md
λ,mtl+λ,wtl,wl+1

| =
∑

m(id,...)∈Md

λ,mtl+λ,wtl

varl,id,wl+1
(14)

This allows us to express all restrictions previously mentioned as an ILP problem.
However, none of these restrictions actually enforce a property that is not related to
the optimization but is intrinsic to routing itself: a message cannot be routed on more
or less than one link at any given layer. This is equivalent to:

∀id,
∑

0≤wl+1<Wl+1

varl,id,wl+1
= 1 (15)

Finally, as the optimality of the solution is embedded in the feasibility constraints,
no optimization function is provided as part of the ILP formulation.

5. PRACTICAL RELEVANCE
In this section, we delve into some of the practical aspects and relevance of our ap-
proach. In the first part, we describe the exact steps that need to be undertaken to
effectively use the method in practice. In the second part, we present how we suc-
cessfully applied our approach to obtain optimal routes for an actual, relevant and
challenging HPC workload that was provably optimum for the target topology, but for
which existing state-of-the-art routing strategies for fat tree networks were not able
to sustain the optimal level of performance. We demonstrate that in conjunction with
our proposed pattern-aware route optimization, the workload was able to achieve the
expected levels of performance and overall system performance was improved beyond
the state of the art.

5.1. Usage of the method
The method is designed to be used in practice as follows: To achieve maximum per-
formance, the routing optimization algorithm needs to be made aware of the exact
network configuration that is targeted as well as of the workload or mix of workloads
to be optimized for. While the structure of the network is typically fixed and known
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before-hand, a workload characterization step might be necessary to extract the pat-
terns in the communication steps of the targeted applications. Alternatively, synthetic
traffic patterns that are known to approximate typical application mixes can also be
used.

The workload and network specification are then utilized to generate the routing
decisions, using an offline iterative process with as many steps as layers there are in
the network, as follows. For each layer of the network, starting with the lowest, an
ILP formulation is generated according to the procedure detailed in Section 4. The re-
sulting problem specification is supplied as input to an ILP solver (in our benchmarks,
detailed in Section 6; we used the solver included in the freely available open-source
framework GLPK [Makhorin 2013]). The solution produced by the solver is translated
into a routing assignment for the current layer using once more the procedure detailed
in Section 4. The routing assignment is then used to generate the workload as it prop-
agates to the next layer and we move on to the next iteration.

The end result of this process is the complete set of routing decisions. This set is
then transferred to the network, typically via programming of the routing tables.

5.2. Practical use case

Table I. Benchmarked XGFT configurations.

Number of leaf nodes Topology specification
16 XGFT (2 : 8, 2 : 1, 4)
32 XGFT (3 : 4, 4, 2 : 1, 4, 2)
64 XGFT (3 : 8, 4, 2 : 1, 8, 2)

128 XGFT (3 : 8, 8, 2 : 1, 8, 4)
256 XGFT (4 : 8, 4, 4, 2 : 1, 8, 4, 2)
512 XGFT (4 : 8, 8, 4, 2 : 1, 8, 8, 2)

1,024 XGFT (4 : 16, 8, 4, 2 : 1, 16, 8, 2)
2,048 XGFT (5 : 8, 8, 4, 4, 2 : 1, 8, 8, 4, 2)
4,096 XGFT (5 : 8, 8, 8, 4, 2 : 1, 8, 8, 8, 2)
8,192 XGFT (5 : 8, 8, 8, 8, 2 : 1, 8, 8, 8, 4)

Each topology is specified using the the XGFT (H :

M1,M2, ...,MH : W1,W1,WH) notation introduced by [Öhring
et al. 1995]. H + 1 is the number of network layers, the list of
M parameters defines the number of descendants a node at ev-
ery layer has, while the list of W parameters characterizes the
bandwidth available at each layer in the tree and is equal to the
number of ancestors a node has on every layer.

The need for a generic optimal routes generator emerged in the process of developing
and evaluating theoretically optimal communication patterns for all-to-all message
exchanges over slimmed fat tree networks.

The all-to-all message exchange is a communication pattern performed by concur-
rent tasks where every task needs to exchange a single distinct message with every
other task. Due to the large amount of traffic it generates (the number of messages
scales quadratically with the number of communicating tasks), it is one of the most
challenging communication patterns to optimize and scale. The fact that it is the core
message exchange in many relevant applications [Sur et al. 2004] makes its optimiza-
tion all the more important. Indeed, all-to-all is the core message exchange in two of
the NAS Parallel Benchmarks kernels [Bailey et al. 1995]: FT (FFT) and IS (Integer
Sort), but more notably required in several physics simulations working in the spectral
domain requiring distributed transpose operations, such as in GYRO (time-dependent,
non linear Gyro-Kinetic-Maxwell (GKM) equations solver) [Alam and Vetter 2006], as
well as full physics simulations of Global Atmospheric Models using a Double Fourier
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Fig. 3. Completion time comparison for the optimized all-to-all communication pattern between the opti-
mized routing algorithm and five other routing approaches commonly used in XGFTs for varying networks
sizes under fixed 4 KB message size. The scale for the y axis is logarithmic.

Series (DFS) dynamical core [Park et al. 2013], which while increasing precision and
efficiency with respect to the state-of-the-art, still “suffers from the inherent scalability
problem of the spectral model; namely, the transpose operation (or all-to-all communi-
cation) required for transforming wave space to grid space or vice versa” [Park et al.
2013].

In a recent work [Prisacari et al. 2013] we addressed all-to-all optimization in the
context of fat tree networks. We considered a case where each leaf node of an XGFT net-
work is assigned a single task. Furthermore, we considered the case where messages
are not aggregated and where a given task only sends its own messages (it cannot
act as a proxy task for another message source). Therefore, the load-optimization is
performed only via the order in which every source chooses its destinations. The basic
idea behind the exchange is to spread traffic as evenly as possible across the different
subtrees at every layer, such that any given link of the fat tree conceptually modeled by
the XGFT will be traversed in any of the phases by a minimum number of messages (if
the total number of messages traversing that link in the complete exchange is n, and
there are p phases, then in any given phase there are exactly bn/pc or dn/pe messages
traversing that link).

This resulted in a set of highly intricate per-phase workloads that are provably
bandwidth-optimal for the conceptual fat tree. Despite this optimality, when evaluated
in practice, the performance of the approach showed significant degradation compared
to the optimum level. The cause was the fact that the routing algorithms were not able
to sustain the theoretically ideal workload performance.

[Prisacari et al. 2013] also derived the minimum amount of bandwidth required
at each fat tree layer to ensure contention-free traffic in each exchange phase. The
higher the layer, the more potential for bandwidth reduction exists compared to the
full bisection design. In an XGFT, the bandwidth is tunable via the W parameters.
The topologies that we consider all have exactly the minimum amount of bandwidth
at the top layer (the one where the most reduction is possible), whereas every other
layer has the full bisection bandwidth. The resulting topologies are XGFTs with as
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Fig. 4. [Prisacari et al. 2013] Completion time comparison between the optimized communication pattern
(OPT) with optimal routing and two other commonly used patterns – XOR (binary exclusive or) and LIN
(linear shift) – for varying networks sizes for fixed 4 KB message size (Fig. a) and for varying message size
under fixed 512 nodes network scale (Fig. b). Note the linear scale for the y-axis in a) and the logarithmic
scale for the y-axis in b).

little as 16 and as many as 8, 192 leaf nodes, with a number of layers between 3 and 6.
The exact configurations are detailed in Table I.

Taking the ideal completion time as the baseline, Figure 3 shows the temporal over-
head induced by several routing approaches compared to that induced by the optimal
routing for a network interconnecting 512 nodes that exchange 4KB messages. The
routing approaches that were used are some of the commonly employed strategies for
fat tree networks [Zahavi 2011; Flich et al. 2012; Requena et al. 2007]:

(1) Static random: On the upwards path, the upward link is chosen at random, but the
choice is fixed for every message between the same (source,destination) pair.

(2) Dynamic random: Similar to the previous approach, but with a choice that changes
dynamically for every message.

(3) Heuristic routing: An optimized heuristic approach detailed in [Rodriguez et al.
2009a].

(4) Source-mod-K [Kariniemi 2006; Öhring et al. 1995].
(5) Destination-mod-K [Lin et al. 2004; Zahavi et al. 2007; Rodriguez et al. 2009b].

In all cases, the optimized routing showed a performance benefit of at least 40% com-
pared to the best performance achieved across all other routing strategies.

Using the approach presented in this work, the artificially induced routing bot-
tleneck was eliminated, and the measured performance matched ideal estimates in
the case of large message exchanges to within a 3% difference, whereas previous ap-
proaches would be between 40% and 140% less efficient. Figure 4 shows more detailed
results for the different networks shown in Table I and for different message sizes.

6. ALGORITHM PERFORMANCE EVALUATION
In benchmarking the efficiency of the approach, we will use the workload and net-
work configurations presented in the previous section. This particular workload is es-
pecially well suited for the benchmark for several reasons. First of all, we look at the
bandwidth-optimal all-to-all exchange as a set of multiple independent phases which
we optimize separately. This gives us the opportunity of assessing the variability in
completion time that is to be expected from the route optimization algorithm when
dealing with multiple workloads. Second, each individual phase constitutes a partic-
ularly difficult to optimize traffic pattern, as showed by the performance that other
routing approaches induce and as such they will test the ability of the route optimiza-
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tion process of finding solutions that are very rare in the search space. Finally, the
workloads in this particular set satisfy the conditions necessary to make the appli-
cation of the acceleration techniques described in section 4 possible. As such, we will
be able to also measure the impact of the techniques on the completion time of the
algorithm.

6.1. Benchmarking system description
The benchmarks were conducted using a commodity mid-level system with an Intel(R)
Core(TM) i7-2600 CPU @ 3.40GHz and 16 GB of RAM. The linear programming solver
used is the freely available open-source glpsol solver that is included in the GNU Lin-
ear Programming Kit v4.50 [Makhorin 2013]. An important limitation of this solver is
that it is single-threaded, so although the CPU we are using has significant potential
for parallel acceleration, we do not benefit from it (using a commercial parallel solver
will in all likelihood produce the ideal routing in a significantly smaller amount of
time). The glpsol solver’s behavior has a high degree of tunability via the numerous
command line parameters it takes. Among other things, one can tune

— the selection of the branching variable (via the parameters --first, --last, --mostf,
--drtom, --pcost)

— the backtracking strategy (via the parameters --dfs, --bfs, --bestp, --bestb)
— the type of heuristic cuts to be applied to the search space (via the parameters --

gomory, --mir, --cover, --clique, --cuts)

For a given combination of the above parameters, it might be the case that some
workloads on a given topology are a worst case for the solver, in that they take a par-
ticularly long time to optimize (much longer than the average completion time across
other workloads on the same topology). However, it is often, if not always, the case
that changing the parameters, and thus the heuristic of the solver, will lead to differ-
ent worst case scenarios, such that across a set of parameter combinations the worst
cases are eliminated altogether. As such, we analyzed several combinations of the pa-
rameters above.

Furthermore, we configured the solver:

— to use the MIP presolver (parameter --intopt),
— to use exact arithmetic (parameter --exact) and
— to consider the integer variables binary (parameter --binarize).

Lastly, we enabled the feasibility pump heuristic (parameter --fpump) which greatly
accelerated the finding of feasible solutions, which in our case were also optimal solu-
tions (the optimality is embedded in the feasibility conditions, not in any optimization
function).

6.2. Results
Before presenting the results for the individual per-phase workloads making up the
bandwidth-optimal all-to-all exchange, it is important to specify that the process of op-
timizing the entire exchange is highly parallel. The serial portion of the process (that
can only be further accelerated by a parallel solver) is the single phase optimization.
Given a reasonable number of execution threads and/or machines with a small amount
of memory each, the determining of the route for the entire exchange can be done in
an amount of time in the same order of magnitude as the time necessary to optimize a
single phase. A similar rationale stands behind using different combinations of param-
eters for the solver for those few phases that might be more problematic to optimize. In
practice, when the optimization of a workload would exceed a certain amount of time,
we would in parallel start optimization processes with different sets of parameters for
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Fig. 5. Duration of the route optimization process for a workload constituting of a single phase of the
bandwidth-optimized all-to-all exchange. Every line corresponds to a fixed network size (the legend shows
the number of communicating nodes corresponding to that network). The completion time of the process
was measured for every all-to-all phase then sorted in increasing order and plotted left-to-right to show
their distribution. To enable using the same X-axis interval for all network sizes, given that the number of
phases is equal to the number of communicating nodes, we use a step-wise constant graph, where the width
of each step is constant for a given network size: 1 for the 512 leaf nodes XGFT, 2 for the 256 one, 4 for the
128 one and so on up to 32 for the 16 leaf nodes XGFT. The increase in completion time with the network
size is faster than linear and the distribution of the completion time for a fixed network size sees significant
variability, with the slowest phase to complete being up to 3 times slower than the average.

the ILP solver and halt the execution of all these parallel processes once a single one
of them completes.

We will start with presenting the completion times achieved with the strongest re-
striction method, which, as we will see, is the slowest to complete and consequently
limited in its application to larger size networks. Nonetheless, the strongly restricted
approach is able to successfully generate optimal routes for XGFT networks with 1024
leaf nodes in under 30 hours for a single phase of the all-to-all workload. In order to
show how the completion time of the algorithm varies with the network size, we ran
the optimization process on every one of the phases of the complete all-to-all exchange,
for several XGFTs with as few as 16 and as many as 512 leaf nodes. Figure 5 shows the
(sorted) completion times of the optimization processes across the different phases of
the all-to-all exchange. For smaller network sizes we have less phases to benchmark
(the number of phases is equal to the number of communicating nodes), so in order to
allow for the same X axis interval to be used for all curves, the completion times are
plotted as step-wise constant graphs, with a step width inversely proportional to the
total number of phases. The conclusion is that the completion time of the optimization
process scales faster than linear with the network size. As we progressively double
the number of leaf nodes in the XGFT, starting with 32, the average completion time
for the generation of optimized routes for a single phase increases first 2.5 times, then
approximately 4 times, then 10 and then another 10 times. When moving to 1024 (from
512) leaf nodes, the completion time will actually increase 100-fold, due to limitation of
the ILP solver.

In the same figure one can observe that, while most workloads (each correspond-
ing to a phase of the all-to-all exchange) have a completion time close to the average,
there are a few phases for which the exchange structure seems to pose significantly
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Fig. 6. Impact of salting the heuristics of the linear programming solver. The chart on top shows the com-
pletion times of the optimization process for every phase of an optimized all-to-all exchange on a 512 leaf
nodes XGFT, for one, two and three combinations of solver parameters. When using more than one combina-
tion, the completion time of a phase is computed as being the minimum completion time among the different
combinations of parameters used. Similarly to before, the X-axis does not represent the phases in their nat-
ural order, but instead in increasing order of optimization process completion time, so that the distribution
of the completion times becomes apparent. The chart on the bottom zooms in on the tail of the distribution,
i.e. the phases that take the most time to optimize. By using only two additional heuristic approaches, we
are able to significantly flatten the tail, reducing the ratio between the slowest to complete optimization and
the average optimization completion time from 3 to 2 - effectively a 30% reduction in the completion time of
the slowest optimization process.

more problems in terms of finding the optimized routes. There might be an interest,
particularly in the case where a parallel setup would be available that would allow
optimization of a large number of workloads simultaneously, to reduce the completion
time of these outliers, as it is these difficult to optimize workloads that would actually
limit the parallel completion time. Thus, it would be beneficial to flatten the tail of the
distribution. As explained above, this is possible without changing the problem formu-
lation, simply by varying the heuristics of the linear programming solver through the
usage of a slightly different combination of command line parameters.

Figure 6 shows how the distribution evolves when using two and three heuristics
compared to the single heuristic case. What we can see is that by using only two addi-
tional heuristics we are able to progress from having the slowest optimization process
being 3 times slower than the average to it being only twice as slow. This is particularly
of interest in the case of larger networks where this decrease in completion time can
mean obtaining the results hours or even days earlier.

For some types of networks and workloads, we cannot improve the completion time
further. However, for other cases, where the accelerations techniques described in Sec-
tion 4 are applicable, we can simplify the job of the linear solver and consequently
achieve lower optimization durations. The workload we chose for our benchmarks falls
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Fig. 7. Reduction in completion time of the optimization process achievable when using restriction relax-
ation (in red) and, in addition, restriction elimination (in yellow) compared to the standard strong restriction
formulation (in blue). The benchmarked system is a 512 leaf node XGFT and the curves show the completion
time of the optimization process for each of the phases of an optimized all-to-all exchange, ordered from left
to right.

in this latter category and as such we can use it to evaluate the impact of the acceler-
ation techniques.

The first acceleration technique we introduced, constraint relaxation, consisted in
imposing weaker conditions in the ILP formulation, all the while preserving the opti-
mum maximum contention level on any link property, at the expense of load not being
entirely evenly balanced. The second acceleration technique, constraint elimination,
consisted in removing optimality propagation conditions when they were not needed
due to the relaxed limits that the first technique introduced. Figure 7 illustrates the
evolution of the completion time for the 512 leaf node topology when applying con-
straint relaxation alone and then in conjunction with constraint elimination. We also
show on the same figure the original, non-accelerated completion time for reference.
What we observe is that relaxing the constraints and reducing the number of con-
straints brings a significant improvement. The first acceleration technique reduces
the average and maximum completion time by a factor of approximately 5 while the
second acceleration technique further reduces the completion time by a factor of ap-
proximately 2.

Due to this significant acceleration, we are now able to apply the method in the
approximately same amount of time to networks that are 4 times larger in terms of
leaf nodes: routing assignments for networks with 4096 leaf nodes can be determined
in under one day. The evolution of the average completion time is shown in Figure 8.

Given a larger time budget, larger networks can be optimized as well. However, due
to the faster than linear scaling, the feasible size will not increase significantly. Finally,
without changing in the least the method, but by using a more complex commercial lin-
ear programming solver that has in particular the ability to perform the optimization
of a single workload in parallel, further reductions in the optimization time can be
envisioned.
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Fig. 8. Average completion times for the optimization process across the different phases of the all-to-all
exchange on multiple XGFT topologies. The columns in blue show the completion time in the case where
strong restrictions are enforced, while the columns in red show the completion time when both restriction
relaxation and restriction elimination are employed.

7. CONCLUSIONS
We presented a method of determining an optimal assignment of routes for arbitrary
communication workloads performed by concurrent tasks interconnected via arbitrary
extended generalized fat tree networks. The method is based on formulating the rout-
ing problem as a set of constraints composing an integer linear programming problem
and solving that problem by means of an open-source ILP solver.

As evidenced by the literature and by our own experiments, solving the integer lin-
ear programming problem for the entire network in a single step has proven to be
infeasible from a computational point of view. Instead, our approach decomposes the
global linear programming problem into multiple, smaller, LP formulations, each cor-
responding to a single layer of the fat tree network and solvable within a reasonable
time frame.

Our approach ensures that the local optima can be combined into a globally opti-
mal solution (and not just an approximation thereof), via a combination of additional
global optimality-preserving constraints and a dynamic-programming-based construc-
tion of the global solution. Furthermore, to facilitate the formulation of the former, we
introduced a novel generic mathematical XGFT model, referred to as dual representa-
tion, that reflects the routing-related properties of XGFTs in a much clearer way than
existing models.

Finally, we evaluated the scalability of our approach by applying it to a very chal-
lenging workload from the routing point of view: a bandwidth-optimal all-to-all person-
alized exchange. Our method was able to derive the optimal routes for this workload on
relatively large XGFT networks comprising up to 8, 192 nodes, using only commodity
hardware and a freely available non-parallel solver.
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