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• Plain COO – slow fine-grained n-dimensional tensors 
• Hybrid COO – fast blocked n-dimensional tensors
• CSR – fast fine-grained two-dimensional tensors  
Sparse operators: ~3% of all operators (not even convolution)
torch.autograd support: ~0.2% of all operators
No general pipeline for sparsity : no custom formats, no re-sparsifying 
in runtime, no control over sparsity in training.
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Top: Forward-pass runtime of a single BERT 
(base, uncased) [1] encoder layer from 
HuggingFace [2]. We sparsify the weights of 
feedforward layers and attention projections 
(except biases; shaded right).

Configuration: batch size 8, sequence length 
128. CPU: Intel i7–4770.

n:m sparsity format: each group of m elements 
has n nonzeros [3]

State of the sparsity in PyTorch
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Sparsifier types and examples, the number of passes over a tensor made, their memory requirements (nnz total 
nonzeros, block size b when blocking), and sparsifier type. Some complex weight sparsifiers could be implemented more 
efficiently than with materialization.

Construct sparse model Sparsify existing dense model
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