
Fast and strongly-consistent per-item resilience
in key-value stores

Konstantin Taranov, Gustavo Alonso, Torsten Hoefler
Systems Group, Department of Computer Science, ETH Zurich

{firstname.lastname}@inf.ethz.ch

ABSTRACT
In-memory key-value stores (KVSs) provide different forms of re-
silience through basic r -way replication and complex erasure codes
such as Reed-Solomon. Each storage scheme exhibits different trade-
offs in terms of reliability and resources used (memory, network
load, latency, storage required, etc.). Unfortunately, most KVSs
support only a single such storage scheme, forcing designers to
employ different KVSs for different applications. To address this
problem, we have designed a strongly consistent in-memory KVS,
Ring, that empowers its users to set the level of resilience on a KV
pair basis while still maintaining overall consistency and without
compromising efficiency. At the heart of Ring lies a novel encod-
ing scheme, Stretched Reed-Solomon coding, that combines hash
key distributions of heterogeneous replication and erasure coding
schemes. Ring utilizes RDMA to ensure low latencies and offload
communication tasks. Its latency, bandwidth, and throughput are
comparable to state-of-the-art systems that do not support chang-
ing resilience and, thus, have much higher memory overheads. We
show use cases that demonstrate significant memory savings and
discuss trade-offs between reliability, performance, and cost. Our
work demonstrates how future applications that consciously manage
resilience of KV pairs can reduce the overall operational cost and
significantly improve the performance of KVS deployments.

CCS CONCEPTS
• Information systems → Distributed storage; • Computer sys-
tems organization→ Reliability; • Applied computing→ Enter-
prise data management;

KEYWORDS
Key-value store, Resilience management, Reed-Solomon, Replica-
tion

ACM Reference Format:
Konstantin Taranov, Gustavo Alonso, Torsten Hoefler. 2018. Fast and strongly-
consistent per-item resilience in key-value stores. In EuroSys ’18: Thirteenth
EuroSys Conference 2018, April 23–26, 2018, Porto, Portugal. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3190508.3190536

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Asso-
ciation for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190536

1 MOTIVATION
Key-value stores (KVSs) were designed as an alternative to conven-
tional database engines to bypass the cost of imposing a schema and
the scalability limitations inherent in the transactional and relational
models used in database engines. KVSs can achieve outstanding per-
formance and scalability while providing resilience through different
storage schemes. One serious downside of existing KVSs, however,
is that the degree of resilience is typically fixed per engine and/or
volume. Many features may affect the choice of a particular KVS,
such as consistency, performance, reliability, or memory cost. These
features are usually determined by the underlying storage schemes
employed by the KVS [12]. As a result, each application needs to
use its own KVS to match its requirements, leading to a proliferation
of engines and a significant deployment and maintenance complex-
ity in real settings. The following table illustrates the trade-offs
between performance, reliability, and storage overheads for three
schemes: Simple storage (no replication), three-fold replication, and
a Reed-Solomon coding scheme.

Scheme Reliability Put
Latency

Put
Throughput

Storage
Cost

Simple None 1x 1x 1x
Rep(3) 2 failures 2x 0.5x 3x
RS(3,2) 2 failures 3.4x 0.31x 1.66x

Databases have addressed parts of this problem by offering differ-
ent consistency guarantees at the SQL level, allowing each applica-
tion to determine the degree of consistency it wants to achieve, while
the engine still preserves the correctness of the data and mediates
among all applications to provide strong consistency. In the cloud,
several approaches have been proposed to classify data according to
its importance and assign different levels of consistency to each one
of them [16, 17, 34], showing the importance of having a flexible
approach to deciding how much replication is needed for each data
item. With the exception of some initial ideas from research [23],
we are not aware of any KVS offering similar functionality.

In this paper, we explore the design and architecture of Ring, a
KVS allowing users to set the level of resilience on a KV pair basis
while still maintaining overall consistency and without compromis-
ing efficiency. An additional benefit of Ring is a more efficient use
of resources such as memory, network traffic, and storage space.

Challenges. At a first glance, it might seem that implementing
Ring requires nothing but just adding various storage schemes to
a known KVS. However, this seemingly easy step entails subtle
technical challenges. The first one is to ensure strong consistency
across storage schemes, so that updating the storage scheme of a key
remains consistent and atomic. By strong consistency we mean that
updates occur atomically and requests need to be seen by all clients in
the same order regardless of failures in the system. However, naively

https://doi.org/10.1145/3190508.3190536
https://doi.org/10.1145/3190508.3190536

EuroSys ’18, April 23–26, 2018, Porto, Portugal K. Taranov, G. Alonso, T. Hoefler

combining different KVSs makes key updates in different storages
either slow or does not guarantee strong (sequential) consistency.

The second challenge is to guarantee the highest possible per-
formance for finding keys with an unknown storage scheme. This
goal requires minimizing communication during the lookup phase.
Ring achieves that with a fully decentralized design. As opposed to
traditional stores [4, 10], it does not rely on a central server to man-
age the location of key items. Instead, it relies on a novel allocation
scheme that guarantees a stable key-to-server mapping regardless of
the storage schemes that are used.

The last challenge is to support memory efficient erasure coding
schemes while maintaining strong consistency. Ring utilizes a com-
bination of replication and optimal erasure codes to allow users to
choose the best reliability-overhead-performance trade-off for every
single data item.

Overview of Ring. Ring’s storage abstraction relies on memgests,
which are different storage schemes with various resilience and
performance properties. The name memgest is derived from the
Latin term gestus, which can be roughly translated as carry or bear.
Ring’s memgests range from Reed-Solomon (RS) codes to flexible
forms of full replication.

Conceptual Contributions. We design a new storage encoding
scheme called Stretched Reed-Solomon (SRS) to maintain a stable
key-to-node mapping regardless of resilience levels used. SRS redis-
tributes the data chunks of optimal RS codes and simple replication
schemes among nodes such that distinct interleaved layers of erasure
coding and replication always share the same distribution for key
hashes. In this way, Ring allows users to change storage schemes
(memgests) transparently and independently from the client. SRS
coding is our key tool to address all three challenges outlined above,
and we show how to combine it with versioning to guarantee strong
consistency.

Technical Contributions. In addition to the SRS scheme itself,
we implement Ring as a fully-functional resilient high-performance
in-memory KVS. We utilize Remote Direct Memory Access (RDMA)
networking to provide low latencies and offload communication
tasks from the CPUs. Our extensive experimental analysis shows
that Ring reaches a low remote read latency of 5µs and an aggregate
throughput of more than 1.5M put requests/sec for unreliably stored
1KiB KV pairs. For reliably stored 1KiB KV pairs, Ring achieves
800K put requests/sec for three-fold replication and more than 300K
put requests/sec for RS (3, 2) Reed-Solomon coding.

In summary, Ring empowers its users to explicitly manage stor-
age schemes for each KV pair, in the same way that they would
manage conventional system resources such as memory or proces-
sor time. The key feature of Ring is that all keys live in the same
strongly consistent namespace, and a user does not need to specify
the storage scheme when looking up a key. Users can update a key’s
storage scheme during the key insertion or at arbitrary points during
execution and still be strongly consistent.

2 RING APPLICATIONS
There are a wide range of scenarios where per-key management
of the storage trade-offs provides a powerful abstraction enabling
a more efficient utilization of expensive DRAM memory. To fully
utilize the overall system, Ring users can flexibly change the storage

scheme for each key at any time during operation. Changing the
storage scheme influences both the network and server CPU loads,
which determine the overall performance of the KVS, an aspect that
we will study in the paper through four use cases.

Transparent multi-temperature data management. Data in
warehouses is often classified according to its temperature. Fre-
quently accessed data is considered hot and must be available at the
highest performance. Rarely accessed cold data permits higher re-
sponse times. Ring can transparently place hot data in high-performance
replicated storage while keeping cold data in low-overhead erasure-
coded storage using standard temperature-tracking schemes [13].
Ring’s SRS storage scheme enables flexible temperature manage-
ment by moving data from cold storage to hot storage fully trans-
parently to users while ensuring strong consistency. It can lead to
significant cost savings while maintaining the highest performance.

Heavy updates. KVSs often experience highly varying load over
time. For example, items in online auctions or limited sales become
very popular during the final stages of the sale. The last seconds of
an auction are usually the ones of highest interest for a bidder and
the system may receive millions of requests per second. A crash
and the corresponding period of unavailability may be disastrous,
even if the data is stored reliably. The designer of an online auction
with heavy updates can use Ring to move items to high-performance,
less reliable storage when a high workload is observed to increase
throughput. Even if it seems counter-intuitive, the overall reliability
is not reduced, for two reasons: First, the data is only stored less
reliably for a short period of time, thus reducing the probability
of data loss. Second, Ring supports versioning, allowing each key
to have multiple versions in different storage schemes, preserving
previous reliable copies of the data.

Importance of the data. The importance of data may change
over time according to the intrinsic nature of the data. For instance,
in iterative algorithms such as PageRank, the time to recover data
increases as the computation progresses because losing data at a
late stage requires expensive recomputation from the start. In other
words, the intermediate page ranks at iteration i + 1 are more impor-
tant than the ones at iteration i. In general, Ring can be useful for
algorithms where the temporal data has to become persistent, since
it dynamically increases the reliability of given KV pairs.

Temporary blob storage. Our last use case concerns typical
cloud storage schemes providing write-commit or write-modify-
commit patterns. Such patterns are typical in block blobs on Azure
Storage and others, where users may upload blobs and after that
decide on whether to store them persistently or not [19]. For example,
many services for uploading pictures allow users to apply filters and
then either commit or discard the changes. Blobs are deleted by
the session management if they have not been committed within
a predefined time. Objects should be stored in less reliable, high-
performance memgests before a final decision is made on their
persistence. This use case generalizes to other user-facing storage
systems, with Ring providing a convenient interface to manage them.

3 STORAGE SCHEMES
We now explain how Stretched Reed-Solomon (SRS) codes are built
and their advantages over classical RS codes. First, we briefly sum-
marize key aspects of the replication (Rep) and Reed-Solomon (RS)

Fast and strongly-consistent per-item resilience in key-value stores EuroSys ’18, April 23–26, 2018, Porto, Portugal

schemes required to build SRS codes. In all our analyses, we assume
a standard fail-stop failure model [30].

3.1 Replication
Replication is the simplest and most widely used approach for
fault tolerance [36]. Numerous methods for data replication such as
primary-backup replication [3], quorum-based replication [2, 14],
and chain replication [35] exist. Primary r -fold replication provides
simple reliability and availability, as any copy of the data can be
read independently, but causes an (r − 1)-fold increase in memory
overhead. Strong consistency is often provided by a distinguished
leader that is responsible for serving client requests. To commit a
put request, the leader has to replicate the request to a majority of
nodes. Therefore, we consider that availability and reliability of the
r -fold quorum-based replication are guaranteed when less than or
equal to

⌊
r−1
2

⌋
nodes are faulty. Conversely, basic fully synchronous

replication can tolerate r − 1 failures, but the unavailability in case
of failures is higher because of the synchronous communication with
worker nodes.

3.2 Reed-Solomon coding
The alternative, (k,m) partial replication through erasure coding
(e.g., Reed-Solomon), uses m additional parity blocks to secure k
data blocks on different servers [26]. Maximum distance separable
(MDS) erasure codes can tolerate up tom simultaneous failures in
a group of k +m blocks, which is the theoretically optimal storage
overhead [26]. RS codes achieve the MDS property and provide a
flexible choice of parameters k andm. The memory overhead is only
proportional to the expected number of failuresm, but requires ac-
cessing at least k data blocks during recovery. Thus, the performance
of erasure coding is affected by faults, which always trigger recovery
operations during which the data under recovery cannot be accessed.
Therefore, systems using erasure codes are less available than ones
using replication schemes in the presence of failures.

A common way to use RS schemes is to split data of size C
into k blocks of size C/k. According to RS (k,m) encoding scheme,
m additional parity blocks are calculated from the k original data
blocks. These blocks are stored on separate nodes and are grouped
to form a stripe with k data blocks (denoted by [D1, ...,Dk]) and
m parity blocks (denoted by [P1, ..., Pm]). We refer to nodes which
store parity blocks as parity nodes, and nodes which store data blocks
as data nodes. We also refer to data on data nodes as primary data,
and data on parity nodes as parity data. This arrangement allows
recovery from any combination of up to m simultaneous failures.
The choice of the parameters k and m influences the fault tolerance,
memory overhead, and recovery time. In the case of failures, the
decoding operation reads any k out of the k +m blocks to recover
the lost blocks. When failures are frequent, the system performance
degrades dramatically due to data recovery.

An RS encoding operation can be represented as a matrix-vector
multiplication where the vector of k data blocks is multiplied by a

particular matrix H =
[

I
G

]
of size (k +m) × k, (see Eqn. (1)).

Here, I is the identity matrix and G is called the generator matrix,
and yields the MDS property [6].

1 0 0 . . . 0
0 1 0 . . . 0
...

...
...
...
...

0 0 0 . . . 1
д11 д12 д13 . . . д1k
д21 д22 д23 . . . д2k
...

...
...
...
...

дm1 дm2 дm3 . . . дmk

︸ ︷︷ ︸
H :k+m×k

×

D1
D2
...

Dk

=

D1
D2
...

Dk
P1
P2
...

Pm

(1)

The matrix G can be constructed from a Vandermonde matrix
(дi j = ji−1), where the elements are calculated according to Galois
Field (GF) arithmetic [8]. In the GF with 2n elements, where n is a
positive integer, addition is equivalent to a bitwise XOR operation.
Multiplying blocks by a scalar constant (such as the elements of
H) is equivalent to multiplying each GF word component by that
constant. The matrix G ensures the main property of the matrix H :
any set of k rows of the matrix H is linearly independent. It means
that the data can be recovered if at least k blocks out of k +m data
and parity blocks are available.

Recovery. Lost data blocks can be reconstructed by solving the
reduced system of linear equations obtained by removing the rows
corresponding to lost blocks in Eqn. (1). Reconstruction of a parity
block is the same as an encoding operation, and involves multiplying
the corresponding row of H by the data vector. Data block recon-
struction takes two steps. The first step is to calculate a decoding
matrix. The decoding matrix is built choosing any k linearly inde-
pendent surviving rows of H , and then taking the inverse of them.
The second step involves multiplication of the previously selected
combination of data and parity blocks by the corresponding row of
the decoding matrix to the missing block.

Update. If data on any server is updated, all corresponding parity
blocks must be updated as well. Fortunately, it is not necessary to
recalculate the whole data in parity blocks, as only recomputation of
the concerned pieces of information is required. An update operation
first calculates the difference between the old and the new data items,
then replicates the update operation to parity nodes. Finally, at the
parity nodes, the stored parity block is XORed with the update oper-
ation multiplied by a corresponding coefficient from the encoding
matrix H .

3.3 Stretched Reed-Solomon coding
In this section, we introduce our Stretched Reed-Solomon (SRS)
codes, which are based on RS codes. A common way of load balanc-
ing RS (k,m) codes among k data nodes is to put an object with a key
to data node i = (h(key) mod k), where h(key) is a hash function.
The major problem in this mapping, and other distribution schemes,
is the coupling between the hash key distribution and the number of
data blocks k. For instance, a storage system based on RS (2, 1) has
2 primary data nodes, and thus has 2 key shards, whereas RS (3, 1)
includes 3 data nodes and 3 key shards. As a result, they cannot
both be accessed with the same key-to-node mapping. Even worse,
when the storage scheme is changed to a different k , the keys need to
be remapped and migrated. Hence a new erasure code is needed to
avoid key remapping when keys are moved across storage schemes.

The main idea behind SRS codes is to ensure the same key-to-
node mapping for a range of RS codes with different k . This is a key
feature of Ring that enables efficiently locating a node responsible

EuroSys ’18, April 23–26, 2018, Porto, Portugal K. Taranov, G. Alonso, T. Hoefler

for any key with the unified mapping, irrespective of the storage
scheme (memgest) chosen for the data.

Derivation. SRS codes are defined by parameters k, m, and s.
The parameters k and m are inherited from RS codes such that
SRS (k,m, s) codes apply a RS (k,m) coding algorithm to the data.
Yet, instead of storing k data blocks on k nodes, the blocks are spread
or stretched over s machines (s ≥ k). As a result, we have s data
nodes andm parity nodes, but the data on them is encoded according
to RS (k,m). Note that SRS (k,m,k) is identical to RS (k,m).

Having s ≥ k data nodes for all RS codes enables them to share
identical key-to-node mappings regardless of the erasure codes.
For instance, if we stretch RS (2, 1) over 3 data nodes and obtain
SRS (2, 1, 3) as in Figure 1, then it will have the same number of
data nodes as RS (3, 1). Hence, SRS (2, 1, 3) and RS (3, 1) can share
a key-to-node mapping, and their data nodes can be stored on the
same physical machines. When resilience requirements for a key
is updated from SRS (2, 1, 3) to RS (3, 1), the key can be moved lo-
cally from one coding scheme to the other, since the masters of two
schemes reside on the same physical node.

We build a family of SRS (k,m, s) codes as follows:

(1) Encode data according to RS (k,m) coding
(2) Compute the least common multiple of k and s.

l = lcm(k, s)

(3) Divide the original data into l blocks:
[
D̃1, ..., D̃l

]
.

(4) Distribute l data blocks over s data nodes such that each data
node stores l/s blocks

(5) Parity blocks are stored onm nodes as in RS (k,m)

The encoding matrix H for RS (k,m) from Eqn. (1) can be expanded
to a stretched matrix Hexp of size l + lm

k × l :

I l
k

0 l
k

0 l
k
. . . 0 l

k
0 l
k

I l
k

0 l
k
. . . 0 l

k
...

...
...

...
...

0 l
k

0 l
k

0 l
k
. . . I l

k
д11I l

k
д12I l

k
д13I l

k
. . . д1k I l

k
д21I l

k
д22I l

k
д23I l

k
. . . д2k I l

k
...

...
...

...
...

дm1I l
k

дm2I l
k

дm3I l
k
. . . дmk I l

k

︸ ︷︷ ︸
Hexp:l+ lmk ×l

×

D̃1
D̃2
...
D̃l

=

D̃1
D̃2
...
D̃l
P̃1
P̃2
...

P̃ lm
k

(2)

where each element is a matrix: In is the identity matrix of size n,
and 0n is the zero matrix of size n.

For RS (k,m), Hexp is a coding matrix corresponding to encoding
l data blocks using an RS (k,m) code. It distributes l data blocks
among k data nodes so that each node stores l/k data blocks. It also
calculates lm/k parity blocks and distributes them amongm parity
nodes so that each node stores l/k parity blocks each. The matrices
H and Hexp are equivalent in terms of data encoding, since they
produce the same output. The matrix Hexp can also be calculated as
entry-wise product of H and an expansion matrix E:

Hexp = H ◦ E = E ◦ H , (3)

where Ei j = I l
k

, H and E are of the same dimensions.

(a) RS (2, 1) (b) SRS (2, 1, 3)

Figure 1: Block distribution for RS (2, 1) and SRS (2, 1, 3)

According to classical Reed-Solomon the i-th data node Di and
j-th parity node Pj are comprised of the following blocks from
Eqn. (2):

Di =
[
D̃ (i−1)l

k +1, ..., D̃ il
k

]
, Pj =

[
P̃ (j−1)l

k +1, ..., P̃ jl
k

]

To obtain the SRS code, we reassign data blocks to s nodes instead
of k. Thus, every data node is responsible for l/s instead of l/k
chunks of data, whereas parity nodes are not involved in stretching
and are kept the same. Therefore, nodes of SRS (k,m, s) store data as
follows:

Di =
[
D̃ (i−1)l

s +1, ..., D̃ il
s

]
, Pj =

[
P̃ (j−1)l

k +1, ..., P̃ jl
k

]

Example of building SRS(2, 1, 3). In this paragraph we intro-
duce an example of creating Stretched Reed-Solomon over three
data nodes. The coding matrix H for RS (2, 1) is presented in Eqn. (5).
The least common multiple of 2 and 3 is 6, so the data is divided
into 6 blocks in order to spread it over 3 nodes. Afterwards, we
expand the coding matrix of RS (2, 1) to 6 blocks by multiplying it by
E according to Eqn. (3), where Ei j = I3 (see Eqn. (5)). As a result,
the data is encoded in Figure 1(a) as follows:

P̃1 = D̃1 ⊕ D̃4 P̃2 = D̃2 ⊕ D̃5 P̃3 = D̃3 ⊕ D̃6 (4)

In RS (2, 1) every server is responsible for l/k = 6/2 = 3 blocks as
shown in Figure 1(a). In SRS (2, 1, 3), we assign l/s = 6/3 = 2 data
blocks for every data node (Figure 1(b)), and the data on them is
encoded with the matrix from Eqn. (5) as in Eqn. (2).

Hexp=

1 0
0 1
1 1

︸ ︷︷ ︸
H

◦

I3 I3
I3 I3
I3 I3

︸ ︷︷ ︸
E

=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

(5)

Properties of Stretched Reed-Solomon codes. An important
feature of SRS (k,m, s) is that it preserves the coding properties
of the original RS (k,m). First, restoring a lost block still requires
collecting k corresponding blocks over s +m nodes, since data is
still encoded according to RS (k,m). Second, when a data server
receives a put request, the request has to be propagated tom parity
nodes. It however leads to memory imbalance as a parity server
is responsible for more data than a data node. Furthermore, it can
be observed that SRS (k,m, s) can tolerate at leastm and sometimes
more simultaneous failures. For instance, SRS (2, 1, 4), can tolerate

Fast and strongly-consistent per-item resilience in key-value stores EuroSys ’18, April 23–26, 2018, Porto, Portugal

2 4 6 8 10 12 14

Reliability (# of nines)

1

2

3

4

5

6

7

8

S
tr

e
tc

h
 p

a
ra

m
e

te
r

(s
)

RS(2,1)

RS(3,1) RS(3,2)

RS(4,1) RS(4,2) RS(4,3)

RS(5,1) RS(5,2) RS(5,3) RS(5,4)

RS(6,1) RS(6,2) RS(6,3) RS(6,4) RS(6,5)

RS(7,1) RS(7,2) RS(7,3) RS(7,4) RS(7,5)

Figure 2: Reliability of Stretched Reed-Solomon coding with
different parameters.

two simultaneous failures when two independent data servers are
failed.

The main benefit of SRS codes is that we can combine many
distinct storage schemes that fit the node layout, and access them
with a unified key-to-node map. Keys can hence be transparently
moved from one scheme to another, since all primary data of all
schemes are present at each node. For example, with s = 4, Ring can
support the following families of SRS coding schemes: SRS (2,m, 4),
SRS (3,m, 4), and SRS (4,m, 4), wherem is an arbitrary integer greater
than one. In practice, the number of parity nodes in RS schemes is
bounded by the number of data nodes, i.e., m < k. Taking that
into account, the total number of different erasure coded storage
schemes with given s equals to s (s−1)

2 . Furthermore, we can include
replication schemes by partitioning them into s shards in order to
have the same key hash distribution as SRS (k,m, s). It enables, even
for moderate s, a very large number of possible storage schemes
(memgests) in a single KVS.

Reliability of SRS codes. In this paragraph we show that RS (k,m)
and SRS (k,m, s) provide a comparable level of resilience. SRS (k,m, s)
distributes the data across more nodes and thus seems more liable
to failures. However, the sparser distribution leads to a lower data
loss after a node failure. We investigate the overall reliability using
Markov models for reliability and availability. We explain the details
in Appendix A and focus on the results here. Figure 2 indicates reli-
abilities of RS codes from which we derive stretched versions. The
diagram shows a vertical line for each stretched code. The lowest
point with the label is RS (k,m) = SRS (k,m,k) and the connected
points above are different stretching factors. The results show that
stretching maintains approximately the same level of reliability. For
example, the family of SRS (3, 1, s) codes provides reliability around
3.5 nines for s ∈ {3, 4, 5, 6, 7}.

An interesting observation is that the reliability sometimes in-
creases when the data is stretched. For instance, SRS (3, 2, 6) is more
reliable than RS (3, 2). One reason for that is that each data node of
a stretched version stores less data than a data node of the original
one, which results in less data requiring recovery in the event of data
node failure. For example, if the system stores 600GiB, in case of a
data node failure RS (3, 2) loses 200GiB and SRS (3, 2, 6) loses only
100GiB. Faster recovery increases reliability because the system can
tolerate more failures if the data has been recovered before the next
failure. In addition, SRS (k,m, s) is sometimes able to tolerate more
than m simultaneous failures. It happens when failed data nodes

store independent data blocks, still allowing the system of equations
in Eqn. (2) to be solved without these nodes.

The availability behaves similarly and the results are presented in
Appendix A.

4 SYSTEM ARCHITECTURE
After establishing the concepts of Stretched Reed-Solomon coding,
we proceed to describe the architecture and the key components of
Ring. We will discuss how Ring combines SRS coding to unify a
flurry of RS coding and replication modes into a high-performance,
fault-tolerant, strongly-consistent in-memory KVS.

5 API
Ring allows clients to access objects identified by a key through
the three standard KV operations get, put, and delete. The
put(key, object, memgestID) operation determines where
the object should be placed based on the associated key, and writes
the object to the memgest of Ring that determines the storage mode.
Ring also supports the standard put(key, object) call which
stores the data in a configurable default memgest. The get(key)
operation locates the object master associated with the key in the
storage system and returns the object. The delete(key) oper-
ation deletes the object associated with a given key. Ring also
supports move, which provides additional flexibility in storing the
data by allowing objects to be moved between memgests.

To manage memgests, clients can dynamically add and remove
memgests from Ring. Clients can create a memgest by sending a
createMemgest(descriptor) request. The descriptor
contains parameters of the storage scheme. It adds additional flexibil-
ity to Ring, since users may tune the KVS by deploying different re-
silience levels. Memgests can be removed with the deleteMemgest
command. Finally, the default storage scheme for new keys can be
specified with setDefaultMemgest(memgestID).

/* Conventional KVS requests */
object_t* get(const key_t)
int put(const key_t, const object_t*)
int delete(const key_t)
/* Resilience management */
int put(const key_t, const object_t*, const id_t)
int move(const key_t, const id_t)
/* Storage scheme management */
id_t createMemgest(const descriptor_t*)
int deleteMemgest(const id_t)
int setDefaultMemgest(const id_t)
descriptor_t* getMemgestDescriptor(const id_t)

5.1 Data layout, memgests
Ring’s storage abstraction relies on memgests, which are differ-
ent storage schemes with various resilience, overhead, and per-
formance properties. Each memgest corresponds to either erasure
coded SRS (k,m, s) or replicated Rep (r , s) schemes. An SRS (k,m, s)
memgest contains s data nodes that handle requests to data blocks
and m parity nodes that receive update requests from the data nodes.
A Rep (r , s) memgest contains s data partitions which are replicated
r times (Figure 3). Ring also supports memgests that are not fault-
tolerant and have no additional storage overheads (Rep (1, s)). They

EuroSys ’18, April 23–26, 2018, Porto, Portugal K. Taranov, G. Alonso, T. Hoefler

Primary data Primary data

Parity data

Figure 3: Various memgests for a 5 node system with 3 coordinators and 2 re-
dundant nodes. The group provides 7 resilience levels: SRS (3, 2, 3), SRS (3, 1, 3),
SRS (2, 1, 3), Rep (1, 3), Rep (5, 3), Rep (4, 3), and Rep (2, 3). Note that stretching only
affects the (blue) data blocks and parity or replica blocks can be allocated arbi-
trarily.

maps keys
to nodes

maps keys
to memgests

replicated
metadata

 memgest

primary data

Figure 4: Request direction mechanism.
The figure depicts only the server’s
coordinator-side data, i.e. without par-
ity and replica related data.

can be used for storing temporal or recomputable data. The unreli-
able memgest offers highest update performance because it does not
replicate put requests and can immediately acknowledge them.

A set of memgests which share the same number of key shards
s constitutes a memgest group with s coordinator nodes and d re-
dundant nodes (Figure 3). We refer to a server with an assigned
shard as a coordinator node, since it coordinates the shard and all
memgests sharing the shard. The parameter d is also an upper bound
on the number of paritiesm in SRS (k,m, s) memgest, and s +d is an
upper bound on the replication factor r in Rep (r , s) memgest. Ring
is configured for particular s and d parameters and does not allow
having families with other parameters. However, our SRS codes al-
low transforming any storage scheme to have s data shards and build
the memgest group from any number of unified storage schemes.

Ring has a distinguished leader, which is responsible for pro-
cessing createMemgest requests. It decides how to distribute
primary and parity data across nodes, and then inform other nodes
about its decision.

We use a simple key-to-node mapping i = (h(key) mod s) to
partition the whole key range into s shards, where each coordinator
node handles one key shard within a memgest group. Thus, on a
single node, memgests share the same key shard, but with different
resilience and performance requirements (blue rectangles in Fig-
ure 3). As a result, our design allows get and put requests to a
certain key to be performed by a single node only. The key thus
suffices to directly retrieve data despite the fact that data can be
stored in one of multiple memgests. Moreover, our storage design
avoids the need for distributed transactions when the data moved
across memgests since all required data is stored locally. In Ring
every object has a version (see Section 5.2), which is incremented
when the object is modified or moved across memgests. It helps to
design a strongly consistent KVS, where only one instance of the
key of a certain version exists across all memgests.

When a client sends a KVS request, it first applies i = (h(key)
mod s) to map a key to node i, which is responsible for storing the
key as in Figure 4. Afterwards, the request is performed locally at
the requested node. For example, Figure 4 depicts a data server that
supports 4 different resilience levels. When a server receives a get
request, it first looks the requested key up from a volatile hashtable,

which maps the key to the list of pairs ⟨version,memдestID⟩. Each
coordinator node only has keys in its volatile hashtable that are
mapped to it by (h(key) mod s) mapping. The volatile hashtable is
used to quickly retrieve the memgestID of the memgest that stores
the highest version of the object. Then the requested object is looked
up from that memgest using ⟨key,version⟩ pair.

Querying of a memgest is done through its metadata hashtable.
The metadata hashtable is a part of each memgest, and is replicated
to survive failures (except the unreliable memgest). In contrast, the
volatile hashtable that solely acts as an interface to the memgests is
not replicated at all. It can be reconstructed by combining metadata
hashtables of all local memgests. During normal operations the
volatile hashtable is kept consistent with the memgests’ hashtables.

5.2 Strong consistency
Strong consistency requires Ring to employ a range of techniques
to ensure existence of only one instance of a key of a certain ver-
sion across all memgests. First of all, the volatile hashtable and all
metadata hashtables are write-ahead on the master node, that is all
modifications are written to them before they are committed. The
write-ahead approach does not violate consistency since, in case
of a data node failure, only committed entries will be recovered.
We also postpone requests that read uncommitted objects. Second,
Ring exploits versioning and increments the key version when a
key migrates across memgests. Ring retrieves the highest version
of the key (even uncommitted) and continues writing with a higher
version. Old versions are removed from the system periodically. It
can be tuned to trigger removing of old versions of a key after every
committed put request to it. It is the main mechanism for strong
consistency in case of failures. It prevents having two distinct copies
of the key with the same version number after failures, which would
lead to an inconsistent state.

Write-ahead and versioning approaches allow serving requests to
distinct memgests independently without waiting. For instance, if
multiple clients want to put new values to the same key simultane-
ously, then their requests can be served together and independently
from each other. An interesting case is when two clients put values
to the same key but to different resilience levels. Since Ring allows
committing the different versions of keys independently, then higher

Fast and strongly-consistent per-item resilience in key-value stores EuroSys ’18, April 23–26, 2018, Porto, Portugal

A

B

C

D

put(key,obj1)

put(key,obj2)

get(key)

get(key)

reply OK

reply OK

reply obj2

reply obj1

write(key,version1,obj1)

write(key,version2,obj2) read(key,version2)

read(key,version1) add to pending requests

committed

committed

Time

Figure 5: Put/get scenario with multiple clients.

versions may be committed earlier than lower versions. It can happen
when one client puts to a fast storage scheme, while another client is
writing the same key to slower storage scheme. The diagram below
illustrates this case for clients A and B. It also shows that client
C gets the highest value committed by B regardless the success of
client A’s request. In other words, the highest version depends on
the last writer only.

A request becomes committed when it is replicated within the
requested memgest; hence puts to unreliable memgests are always
committed immediately. Each memgest has a special replicated log
to propagate updates generated from client requests within itself. To
provide strong consistency, it is allowed to get data from committed
entries only. Thus, the response to the client will be postponed until
the requested entry is committed, as with client D in Figure 5. When
the request from D was received, the highest version of the requested
key was 1. Ring read the uncommitted version of the object and
prepared a reply to the client D. The reply was sent once the version
1 had become committed. To ensure the proper order, the metadata
hashtables store a list of pending get requests and committed flag for
each object.

key,version → data, lenдth, committed, requests︸ ︷︷ ︸
volatile

This information is volatile and can be lost in case of failures. When
an entry becomes committed, the flag is flipped and all pending
replies are sent. It ensures that a get request returns the version (even
uncommitted at that moment) that was the highest when the request
was received by Ring. Ring handles move(key, memgestID)
requests similarly because the object has to be moved from the
memgest with the highest version. Therefore, the move request will
also be postponed if the requested object is not durable.

When clients send a move(key, memgestID) request, the
key has to be moved from one memgest and written to another atom-
ically, so partial updates have to be prevented. Here we benefit from
a feature of Ring’s design: the coordinator of memgests which are
responsible for the same key is situated on a single physical machine
due to the SRS coding. It allows us to avoid expensive locking and
distributed transactions. In case of failures, Ring recovers all recov-
erable versions of keys from multiple memgests. Ultimately, several
resilience requirements can be satisfied at almost no cost, since all
storage management can be performed locally.

5.3 Erasure coded and replicated memgests
All memgests share a similar structure: they have a replicated log
to replicate updates, replicated metadata hashtable, and the actual

data, which is stored separately and treated according to its storage
scheme.

Separating metadata from actual data provides a wide range of
advantages. Firstly, the metadata suffices to serve delete requests.
Secondly, it allows memgests to recover in two steps: metadata
recovery, data recovery. What is more, data recovery can be post-
poned and only recovered on demand which is quite important for
expensive erasure codes. Zhang et al. [39] proposed a similar ap-
proach for erasure codes. They replicated metadata of keys with a
primary-backup replication scheme while actual values are erasure
coded.

The put operation induces an update of the data of a memgest
on the coordinator and redundant nodes. The coordinator thus repli-
cates requests within the memgest. Coordinators of erasure coded
memgests generate special parity updates and replicate them to m
parity nodes to commit the operation, whereas the special processing
of the request is not required for replication scheme, and can be repli-
cated immediately. For replication, we implement quorum-based
replication [27], where requests are replicated on the majority of
nodes within a memgest to ensure their durability. The remaining
nodes in replication scheme are updated asynchronously. Once the
entry is properly replicated to redundant nodes, the put is committed,
and the coordinator replies to the client with an acknowledgment.

Get requests do not alter the data, so they should not be repli-
cated. To ensure that gets do not return stale data, the coordinator
node has to periodically verify its role in the system by reading the
configuration from a replicated state machine [27].

5.4 Balancing
One issue caused by our design is that nodes within a memgest group
occupy different amounts of main memory (see Figure 3). Unfilled
rectangles represent unbalance in memory usage. It is mainly caused
by the design of SRS memgests, where data is stretched over many
servers. Additionally, every parity node stores metadata of all data
nodes from the same SRS coding stripe. Therefore, a parity node
stores more metadata than a data node. In our system, parity nodes
are also responsible for recovering lost data and parity blocks and
therefore require more memory to store blocks under recovery and
recovery metadata. Regarding workload, as parity nodes only need
to participate in put operations, they may become idle for get-mostly
workloads. In contrast, for put-mostly workloads, the parity nodes
may become busy and may become a bottleneck of the KVS. Finally,
during node failures, parity nodes are overloaded by data recovering
processes.

To resolve these issues, we can create many memgest groups and
assign them round-robin to fixed nodes, as has been done in [39]. It
requires creating s + d memgest groups, where s is the number of
shards and d is the number of redundant nodes, since there are s + d
different ways of rotating the single memgest group. As we men-
tioned before, we use sharding to distribute keys among coordinators.
Thus to support multiple memgest groups we also partition shards
into s+d memgest groups. It allows balancing workload and memory
on each node. The shards on one node belong to different memgest
groups, therefore a single node failure leads to a data loss on each
memgest. However, since parity nodes are spread evenly across
machines, the recovery workload also will be uniformly balanced.

EuroSys ’18, April 23–26, 2018, Porto, Portugal K. Taranov, G. Alonso, T. Hoefler

5.5 Membership and handling failures
To deploy Ring, at least s + d nodes are required, where s and d
are coordinators and redundant nodes, respectively. Nonetheless,
the overall system is comprised of s + d + n machines, where n
stands for spare nodes as in Figure 6. Thus, there are two types of
nodes in the system: some that take part in serving requests and
some that do not. Spare nodes are always ready to replace a failed
node and immediately handle the requests for the node. The system
has a leader, which is responsible for membership of nodes and, in
case of failures, for reassigning the roles of failed nodes to healthy
spare ones. The leader is elected according to a leader election
protocol [27].

KVS nodes Spare nodes

Figure 6: The roles inside the cluster. The system consists of
spare nodes and KVS nodes.

While in spare mode, spare nodes incur minimal memory and
CPU load. They use memory only for sending and receiving heart-
beats to check membership and the log that replicates requests for
changing roles. Once the leader recognizes that a node crashed, it
replicates an entry over the log, which consists of the new respon-
sibilities for all of the nodes. Therefore, all servers know about all
changes in the system.

To change the role and start processing requests, a spare node
reads all necessary metadata from alive nodes. Once the metadata
on the node is recovered and the volatile hashtable built, it starts
providing services while performing data recovery in the background.
If the requested data is lost, it will be recovered with an on the fly
recovery algorithm with high priority. For replicated memgest, it will
request a copy of the requested data from any available replica. For
erasure coded memgest, it will start an online decoding algorithm
similar to one introduced in [39]. Data node sends a recovery request
to the parity node responsible for the lost block. Then the parity
node starts block recovery by collecting k available corresponding
blocks from a coding stripe according to RS (k,m) and decoding
them. Finally, the parity node sends the recovered block to the data
node initiated the recovery.

Clients access the data by sending requests using a hash function
to determine the required node. If a data node has failed and a request
is not answered in a predefined period of time, clients re-send the
request through multicast. The request will be serviced only by the
node that is responsible for the requested key. The clients will then
communicate with the new data node directly.

6 EVALUATION
In this section, we evaluate the performance of replication and era-
sure coding approaches on RDMA networks. We use a 12-node
InfiniBand cluster: each node has an Intel E5-2609 CPU clocked at
2.40GHz and WDC WD5003ABYX-01WERA1 internal hard drives.
The cluster is connected with a single switch using a single Mel-
lanox QDR NIC (MT27500) at each node. The nodes are running

Linux, kernel version 3.18.14. Replication and erasure coding are
implemented in C and rely on the following libraries: libibverbs,
an implementation of the RDMA verbs for InfiniBand, and libev, a
high-performance event loop; Jerasure [24], a library in C that sup-
ports erasure coding in storage applications; and GF-Complete [25],
a library for Galois Field arithmetic. Each server is single-threaded,
but can be potentially multi-threaded, e.g., by partitioning keys and
assigning threads to partitions.

Remote direct memory access (RDMA) is an interface that en-
ables direct access to memory located in the user-space of remote
machines on a cluster computer [29]. RDMA allows global computa-
tions without the involvement of CPUs of the machines owning the
memory. It enables those machines to continue unobstructed and im-
proves overall system performance. The remote access is performed
entirely by the hardware (using a reliable transport channel). An
advantage of implementing erasure coding over RDMA is that CPUs
on redundant nodes are not involved in receiving messages. They
can perform other operations, such as data recovery and coding.

6.1 Latency
Ring is designed as a low latency KVS. Figure 7 shows the latency
of put and get requests (split into two figures for readability). We de-
ployed Ring on 5 nodes with 7 memgests: SRS (3, 2, 3), SRS (3, 1, 3),
SRS (2, 1, 3), Rep (4, 3), Rep (3, 3), Rep (2, 3), and unreliable Rep (1, 3).
Since they all share the parameter s, which is equal to 3, we label
them on graphs as SRS32, SRS31, SRS21, REP4, REP3, REP2, and
REP1, respectively. In the benchmark, a single client gets and puts
objects of varying size to/from the system. Each measurement is
repeated 5,000 times, the figure reports the median and the 90th
percentile. According to our implementation the get latencies of all
memgests are the same, therefore we plot only one line in the figure
for all studied schemes. It can be explained by all memgests using
the same algorithm for retrieving data: They first ensure that they are
allowed to reply to get requests by periodically checking the current
node configuration, then respond to the client.

The main difference lies in put requests: The latency for SRS (2, 1, 3)
is the same as for SRS (3, 1, 3), regardless of whether they share the
same number of coordinator nodes s in storage scheme. The reason is
that they have to replicate update to one parity node only. SRS (3, 2, 3)
has the highest latency among the system because the data nodes
are responsible for calculating updates and replicating them to two
parity nodes, whereas other storage schemes are less compute and
network intensive. The rationale is that an unreliable memgest writes
directly to main memory, but erasure coded memgests have to read
memory first to apply XOR operations to the data to build special
updates and replicate them to all parity nodes. The size of the parity
update is larger than the actual request, since the metadata must be
replicated along with the update. Therefore, writing to replicated
memgests is faster than to erasure coded ones, and the lowest put
latency can be observed for the unreliable memgest Rep (1, 3).

We compare Ring with several state-of-the-art KVSs: the single-
threaded caching KVS memcached [9], erasure coded Cocytus
KVS [39]; a strongly-consistent RDMA KVS Dare with in-memory
replication [27]; and a strongly-consistent RDMA KVS RAMCloud
with disk-backed replication [22]. We were not able to reproduce
experiments for Cocytus, hence we used data from their paper [39],

Fast and strongly-consistent per-item resilience in key-value stores EuroSys ’18, April 23–26, 2018, Porto, Portugal

21 22 23 24 25 26 27 28 29 210 211

Object size, bytes

0

5

10

15

20

25

30

L
a
te

n
c
y
,

s

SRS32

REP1

REP2

REP4

(a) Put latency of SRS32, REP4, REP2, and REP1.

21 22 23 24 25 26 27 28 29 210211

Object size, bytes

0

5

10

15

20

25

30

L
a
te
n
c
y
,
s SRS31 SRS21

REP3

get
latency

(b) Put latency of SRS31, SRS21, REP3, and get.

23 24 25 26 27 28 29 210 211

Object size, bytes

0

10

20

30

40

50

60

70

L
a
te
n
c
y
,
s

memcached

memcached
RAMcloud

Dare

Dare RAMcloud

C

put

put
put

get get

get

(c) Put and get latency baselines.

Figure 7: Latency of put and get requests for Ring and other systems.

21 22 23 24 25 26 27 28 29 210 211

Object size, bytes

0

5

10

15

20

25

30

L
a
te

n
c
y
,

s SRS32
REP4

REP2

REP1

(a) Move latency to SRS32, REP4, REP2, and REP1.

21 22 23 24 25 26 27 28 29 210 211

Object size, bytes

0

5

10

15

20

25

30

L
a
te

n
c
y
,

s SRS31 SRS21

REP3

REP1

(b) Move latency to SRS31, SRS21, REP3, and REP1.

Figure 8: Latency of moves.

0s 1s 2s 3s 4s

300K

600K

900K

1200K

1500K

T
h
ro

u
g
h
p
u
t,
 r
e
q
u
e
s
ts

/s
e
c

1 client

2 clients

3 clients

4 clients

memcached

Cocytus

REP1

REP3

2x
4.3x

[39]

Dare

SRS32

Time

Figure 9: Put throughputs of memgests
with 1KiB value size.

evaluated on the cluster hardware comparable to ours. Both CPUs
belong to Intel Xeon E5 family and have the same characteristics ex-
cept the number of cores. However, both KVSs are single-threaded
and it should not influence overall performance. Networks band-
widths are different: they used 10Gb/s NICs whereas our cluster
is armed with 40Gb/s NICs. However, it should not influence the
evaluations either, since RS codes are compute-bound rather than
network-bound. Cocytus achieves throughput of 2.4 Gb/s, which is
less than 10Gb/s.

Memcached does not utilize RDMA to communicate with clients,
therefore it provides higher get and put latencies at about 55µs which
is 10x higher than the REP1 memgest. Cocytus KVS with RS (3, 2)
coding scheme for 1KiB values has get latency 500µs which is 100x
slower than Ring implementation. Also Ring put latencies are 30x
lower than Cocytus’ ones for 1KiB objects for the same coding
scheme. Dare KVS with replication factor 3 provides the same get
latency as Ring, which is not a surprise since they utilize RDMA for
communication with clients. Ring also provides approximately the
same put latency as Dare for comparable REP3 memgest. Another
baseline is RAMCloud with 2 backup stores, which provides median
45 µs latency of putting objects up to 512 bytes using an unloaded
server with a single client. The high latency is resulting from the fact
that our cluster equipped with HDDs instead of SSDs. RAMCloud
replicates a put request 2 times, therefore it corresponds to our REP3
scheme. RAMCloud has lower main memory storage overhead since
it flushes data to disk on backup nodes, whereas Ring stores all data
in main memory. Hence, Ring has lower put latency, and also is
less subject to tail latency, which is typical for disk-backed systems.

Potentially, Ring can also support disk-backed replication and still
be strongly consistent.

6.2 Move requests
In Figure 8, we can see the results of our benchmarks regarding
move operations. We split the data into two subfigures to improve
readability. The graph shows only destination storage schemes be-
cause the source storage scheme does not impact performance due
to the local availability of the data. An interesting observation is
that moving the object to unreliable scheme REP (1, 3) has about the
same latency for all object sizes. The reason is that the client does
not send the object again and it is copied from high-bandwidth main
memory. We can observe a similar pattern for other schemes since
the time of moving the object from the unreliable memgest to the
reliable is lower than putting directly to the second one. However,
put operations are still dominated by building update requests and
replicating them.

Benefits of using move requests. Move requests enable explicit
resilience management and have a range of use cases discussed
in Section 2. Next we outline storage benefits of employing move
requests using the example of utilizing the unreliable memgest for
the Blob storage. Let us estimate the footprint of an object in
memory before it is committed. By commit operation we mean
the decision of storing the object persistently. We denote the time
between the first write and commit operation as τ . The memory
footprint of the object that was written to reliable storage is equal
to the size of object S multiplied by storage overhead O and by
the duration of time it was stored: S · O · τ . When we write first

EuroSys ’18, April 23–26, 2018, Porto, Portugal K. Taranov, G. Alonso, T. Hoefler

1

2

3

4

5

6

N
o
rm

a
liz

e
d
 p

ri
c
e

hot

hot

hot hot hot

cold

cold

cold cold cold

simple simple simple simple simple

Write

Read

Data Transfer

Financial1 Financial2 WebSearch1WebSearch2 WebSearch3

Operation cost

Data Storage

Storage

cost

simple

hot

cold

Figure 10: Storage Pricing for different I/O traces.

to the memgest without additional overhead, the footprint is just
S · τ . We can thus achieve a relative memory reduction of 1

O using
the unreliable storage scheme. The cost of this significant memory
reduction is a single move request, about 5µs.

The unreliable memgest REP (1, s) has also the lowest put latency
among schemes under study. Its put latency is 3x times lower than
latency of SRS (3, 2, 3) and 2x lower than latency of Rep (3, s) (see
Figure 7). Therefore, Ring can provide significant latency reduction
by employing its move requests and also reduce the load in the
backbone network by decreasing the number of replications required
to commit an update. Ring can also store a backup version of a key
to withstand failures. This is beneficial in the dynamic importance
use case.

The next advantage is that the unreliable REP (1, s) memgest has
the highest throughput among all coding schemes (see Figure 9). We
can thus achieve a considerable speedup in throughput by moving
objects to Rep (1, 3) memgest and performing all put requests there.
It corresponds to the Heavy updates use case.

Real-world applications show different access patterns: some ap-
plications are put-heavy, while others are get-heavy. To demonstrate
the influence of storage scheme choice on real-world workloads, we
estimated the price of operations from five traces obtained from the
Storage Performance Council [33] for three storage schemes: Rep (3)
(hot), SRS (3, 2, 3) (cold), and Rep (1) (simple). The first two traces
represent put-heavy OLTP applications running at a large financial
institution. The remaining three are get dominant I/O traces from a
popular search engine. Operation and storage costs for hot and cold
schemes are obtained from Azure Blob Storage Pricing for Central
US [18]. Azure Blob Storage does not provide a simple storage
scheme, thus its price is assumed to be the same as for Rep (3), but
with 3x cheaper puts, as they are not replicated.

Figure 10 shows estimated prices for storing data at a constant ca-
pacity and performing traces with hot, cold, and simple storage
schemes. The estimated costs are normalized and represent the
price relative to no replication. As we can see the choice of stor-
age schemes influences the price dramatically, depending on access
pattern of traces and the volume of stored data. For example, cold
storage is 5.5x more expensive than simple storage and 2x more than
hot storage for the Financial1 trace.

Ring enables multi-temperature data management by moving
data across storage schemes. It can significantly reduce financial
expenses compared to a KVS with a single storage scheme.

6.3 Throughput
Figure 9 shows throughput traces for SRS (3, 2, 3), Rep (1, 3), and
Rep (3, 3). In these experiments clients send requests to Ring with
the same requests rates of 400K requests/sec. The length of the key

0s 1s 2s 3s 4s

100K

200K

300K

400K

500K

T
h
ro

u
g
h
p
u
t,
 r
e
q
/s

e
c (100%:0%)

(95%:5%)

(50%:50%)

(0%:100%)

Time

REP1

0s 1s 2s 3s 4s

100K

200K

300K

400K

500K

T
h
ro

u
g
h
p
u
t,
 r
e
q
/s

e
c (100%:0%)

(95%:5%)

(50%:50%)

(0%:100%)

Time

REP3

0s 1s 2s 3s 4s

100K

200K

300K

400K

500K

T
h
ro

u
g
h
p
u
t,
 r
e
q
/s

e
c (100%:0%)

(95%:5%)

(50%:50%)

(0%:100%)

Time

SRS21

0s 1s 2s 3s 4s

100K

200K

300K

400K

500K

T
h
ro

u
g
h
p
u
t,
 r
e
q
/s

e
c (100%:0%)

(95%:5%)

(50%:50%)

(0%:100%)

Time

SRS32

Figure 11: Single client throughputs of memgests under differ-
ent (get:put) ratios workloads with 1KiB value size.

is 8B, and value size is 1KiB. Every second a new client is created,
which starts sending requests to Ring. Ring achieves put throughput
of almost 1.5M requests/sec under the load of 4 clients for 1KiB
objects with Rep (1, 3). Rep (3, 3) processes requests 2x times slower,
and SRS (3, 2, 3) 4.3x slower than Rep (1, 3). We also compare Ring
throughput with throughputs of memcached, Dare, and Cocytus.
According to our experiments, comparable memgests achieve higher
throughput than memcached, Dare, and Cocytus.

We also use the YCSB [7] benchmark to generate our workloads
for Figure 11. The distribution of the key probability is Zipfian [7],
with which some keys are hot and some keys are cold. The length
of the key is 8B, and value size is 1KiB. We evaluate the systems
with different (get:put) ratios, including equal-shares (50%:50%),
get-mostly (95%:5%) and get-only (100%:0%).

Figure 11 shows traces for SRS (2, 1, 3), SRS (3, 2, 3), Rep (1, 3),
and Rep (3, 3). In these traces a single client sends requests to Ring
with different request rates. Every second the client doubles its
request rate from 128K requests/sec until it reaches 1024K request-
s/sec.

In all experiments the requests were served by 3 coordinator
nodes, and the client accesses them in order. As noted earlier, all
memgests share the same implementation of how get requests are
served, and therefore exhibit the same get throughput of 418K re-
quests/sec. This number drops as the workload’s put ratio is in-
creased. Since our implementation is single threaded, we have not
noticed a significant difference between different storage schemes.
A small drop in throughput of erasure coded schemes for (50%:50%)
workloads is due to differences in memory allocation algorithms for
replicated and erasure coded memgests.

Figure 11 shows that the highest put throughput is achieved by the
unreliable memgest Rep (1, 3) at 290K requests/sec. Other schemes
achieve a slightly lower throughput of 280K requests/sec, despite the
fact that they have to replicate requests. This is due to two effects:
the replicated memgests employing quorum-based replication; and

Fast and strongly-consistent per-item resilience in key-value stores EuroSys ’18, April 23–26, 2018, Porto, Portugal

88KiB
96KiB

112KiB
144KiB

208KiB
336KiB

592KiB
1104KiB

2128KiB

Metadata size

0
100
200
300
400
500
600

R
e

c
o

v
e

ry
,

s

Figure 12: Recovery latencies depending on metadata size.

the current implementation being single-threaded. We believe that a
multi-threaded implementation of memgests can achieve higher per-
formance. Finally, Ring’s throughput of SRS (3, 2, 3) memgest is 1.5x-
2x faster than a comparable Cocytus configuration, which achieves
approximately 220K requests/sec for (100%:0%), (95%:5%), and
(50%:50%) workloads [39].

6.4 Failures and recovery
We evaluate the recovery efficiency of Ring depending on recovered
metadata size (see Figure 12). Each measurement is repeated 500
times, and the figure reports the median and the 90th percentile.
The coordinator node failures are simulated by manually killing
processes on the node. Our evaluations show that for all storage
schemes the median recovery time is 300µs for recovering the co-
ordinator node after a failure with 1MiB of metadata. Ring has to
ensure strong consistency and therefore recover all metadata of all
storage schemes within the system before answering client requests.
Without this measure, there would be a risk for the system to reply
with stale data, since the key with the highest version can be stored
in an unrecovered memgest. The complexity of the recovery process
results in a high variance of metadata recovery time, which includes:

(1) The leader detects the failure and substitutes the failed node
with a spare one.

(2) The leader replicates the new configuration to all nodes.
(3) Once all nodes have received the decision, they start in their

new role, i.e., existing nodes connect to the new node.
(4) The new node creates the required empty memgests and con-

nects to alive nodes.
(5) Once nodes are connected, the new node requests the metadata,

followed by the logs, which store previous requests from clients
to ensure strong consistency.

(6) Once the coordinator nodes have all the metadata, they can
rebuild the volatile hashtable. With only the metadata, the new
node can serve put and delete requests without actual data. To
process get requests, however, the node needs data, which is
either copied or recovered depending on the storage scheme
(Rep or SRS , respectively).

Block recovery. We also evaluate the recovery time of erasure
coded data blocks for different SRS memgests. Figure 13 reports the
median and the 90th percentile. Time is measured from receiving
a request from the client to when the block is fully recovered. As
expected, the time of recovery is correlated to the size of the lost
block. We can also see that the latency of recovering a block encoded
with SRS (3, 1, 3) takes longer than SRS (2, 1, 3), despite the fact that
they have the same number of coordinator nodes. As mentioned
before, the data in SRS (2, 1, 3) is encoded according to RS (2, 1), and
according to RS (3, 1) in SRS (3, 1, 3). It therefore requires collecting
2 blocks for SRS (2, 1, 3) and 3 blocks for SRS (3, 1, 3) to recover one

0.5KiB 1KiB 2KiB 4KiB 8KiB 16KiB32KiB64KiB

Recovered block size

0

10

20

30

40

50

L
a

te
n

c
y
,

s

SRS32

SRS21

SRS21

Figure 13: Recovery latencies for storage schemes SRS (2, 1, 3),
SRS (3, 1, 3) , SRS (3, 2, 3), depending on recovered block size.

lost block. At first glance, it seems that SRS (2, 1, 3) and SRS (3, 1, 3)
are two identical schemes because they are allocated across 4 nodes
and ensure the same throughput and latency. As it can be seen from
the experiment, however, they have have different recovery rates and,
therefore, different resilience. Since SRS (2, 1, 3) recovers faster than
SRS (3, 1, 3), it provides higher reliability and availability guarantees.

Figure 13 shows that SRS (3, 2, 3) and SRS (3, 1, 3) have approxi-
mately the same latencies for all block sizes. This is because the
number of parity nodes affects the number of failures the scheme can
tolerate, while computation stays practically the same. SRS (3, 2, 3)
recovers data a little bit faster because the recovery master requires
any 3 blocks out of 4 available ones, whereas only 3 blocks are
available for reconstruction for SRS (3, 1, 3). Therefore, SRS (3, 2, 3)
can recover faster in the case of a single failure.

7 RELATED WORK
To address opportunities of exploiting explicit resilience manage-
ment, we give an overview of the existing technologies allowing
users to modify storage schemes. In particular, one of the most well-
known KVS, Redis [38], offers the option of determining the degree
of replication of each volume, but it does not allow performing the
update in a per-key manner. It also does not support erasure codes to
reduce memory usage. Redis also does not ensure strong consistency
since it employs asynchronous replication.

Erasure codes also support altering resilience of the data. For
instance, it is well known that RAID6 can be easily converted to
RAID5 and vice versa, but it can take days to decode all the data on
the disks [5].

The known method to combine a wide range of storage schemes
and be able to change them per object is to maintain a special name
node, which stores all metadata and references to requested data
[4, 32, 37]. The name node can, however, become a bottleneck
and be a single point of failure. In addition, this approach leads to
additional hops in data center networks to read and write data.

Another approach of changing storage schemes with low com-
putational overhead is introduced by the BlowFish distributed data
store [15]. BlowFish stores data in a compressed format and enables
dynamically changing the compression factor. A smaller compres-
sion factor indicates higher storage requirements, but also lower
latency (and vice versa). However, to ensure resilience the data itself
is still replicated, and changes in compression do not influence the
reliability of the stored keys. Finally, the granularity for updating the
compression factor is a single shard, whereas Ring supports per-key
resilience management.

EuroSys ’18, April 23–26, 2018, Porto, Portugal K. Taranov, G. Alonso, T. Hoefler

It is worth mentioning that Ring is not the first attempt to create
a KVS that supports multiple resilience levels. For instance, Phan-
ishayee et al. [23] suggest supporting multiple replication algorithms
with different consistency levels [2, 3, 35]. However, this approach
does not support erasure coding and is not strongly-consistent.

8 SUMMARY AND CONCLUSIONS
Modern, in-memory KVSs are widely used because of their perfor-
mance characteristics and their ability to provide fault tolerance and
strong consistency. However, KVSs do not offer users the possibility
to select the most suitable trade-off in terms of fault tolerance, per-
formance, and resource usage. In this paper we have presented Ring,
a distributed in-memory KVS that allows users to control the level of
resilience on a per-key basis and, thus, control the resource usage of
the KVS that better matches the application profile. The core of Ring
is a novel encoding mechanism, Stretched Reed-Solomon (SRS),
which enables strongly consistent systems to support different re-
silience levels on a per-key basis, allows dynamic changes, and does
so transparently, without affecting performance or consistency. The
experimental evaluation indicates Ring provides significant memory
savings and allows choosing the best trade-offs between reliability,
performance, and cost.

Acknowledgements. This work was supported by Microsoft Re-
search through its Swiss Joint Research Centre. We thank our shep-
herd Kimberly Keeton, and the anonymous reviewers for their help
in improving the paper.

A FAULT RESILIENCE ANALYSIS
In this section, we illustrate the model used to verify that our SRS
codes ensure approximately the same level of reliability and avail-
ability as RS codes. We assume a fail-stop model where nodes only
exhibit crash failures, and any correct node in the system can detect
that a particular node has failed. Once a node fails, it can no longer
influence the operation of other nodes in the system. We also assume
that node failures are independent and identically distributed.

A.1 Reliability model for Reed-Solomon
Reliability of a KVS is the ability to perform a required function,
under given environmental and operational conditions and for a
stated period of time [28]. The reliability function R (t) of a KVS
is defined as the probability that the KVS does not lose data in the
time interval (0, t]. We estimate the reliability of the KVS as annual
reliability, i.e., the probability that the data is not lost within one
year. For instance, reliability of 99.99% (i.e., four nines) refers to
the probability of data loss over one year period should be less than
10−2.

We use Continuous-Time Markov Chain (CTMT) model to es-
timate reliability R (t) [28]. CTMT models have been extensively
used for reliability analysis of erasure coded and replicated storage
[11, 31]. The diagram in Figure 14 shows the Markov model for
RS codes that have k data blocks and m parity blocks. RS codes
can tolerate up tom simultaneous failures which is reflected in the
Markov model by m + 1 states. The final state FS stands for the
unrecoverable fail state. The KVS comprises k +m nodes with a
failure rate of a node equal to λ. Finally, µi is a rebuild rate from

Figure 14: Markov model for RS codes with k data blocks and
m parity blocks.

state i to state i − 1, which is considered to be constant µ. The model
also assumes that the KVS restores only one node at a time.

The rebuild rate µ can be calculated as 1/Treconst [20], where
Treconst is the reconstruction time for RS (k,m) coding calculated as:

Treconst =
C

BN
+Tcomp (C), (6)

where C is the full size of data set, BN denotes the network band-
width. Tcomp is the computation time including the encoding and
the decoding time for erasure coding schemes. It can be seen from
Eqn. (6) that the reliability of the KVS depends also on the data size
and bandwidth.

The Kolmogorov problem for Markov chains is defined as:

dP (t)
dt = AP (t)

P (0) = P0
(7)

where A is a transition matrix of the Markov model, P (t) is a vector
of state probabilities and P0 is the initial state vector of the system.
Pi (t) represents the probability that the system is in the state i at the
time t . According to definition of probability

∑
i Pi (t) = 1.

Finally, the reliability R (t) is the sum of all probabilities of being
in functional states. In the case of RS (k,m), the first m + 1 states are
considered to be functional. Hence,

R (t) =
m∑
i=0

Pi (t) = 1 − PFS (t),

where Pi (t) is a solution of the problem (7). In practice, (7) can be
solved with the use of the matrix exponential [1, 21].

The transition matrix of the Markov model is given by

A
m+2×m+2

=

a00 a01 . . . a0FS
a10 a11 . . . a1FS
...

...
...

...
aFS0 aFS1 . . . aFSFS

,

where ai j is the transition rate from state i to state j, when i , j.
Diagonal elements can be calculated as

aii = −
m+2∑
j=0
i,j

ai j .

For instance for RS (3, 2), according to Markov model in Figure 14,
the transition matrix has the following form

A =

−5λ 5λ 0 0
µ −4λ − µ 4λ 0
0 µ −3λ − µ 3λ
0 0 0 0

Fast and strongly-consistent per-item resilience in key-value stores EuroSys ’18, April 23–26, 2018, Porto, Portugal

Figure 15: Markov model for SRS codes with k data blocks
stretched over s nodes andm parity blocks.

A.2 Reliability model for Stretched Reed-Solomon
SRS (k,m, s) is obtained by stretching k data blocks over s nodes.
This manipulation has two side effects: first of all, SRS data nodes
stores less data than RS data nodes, and therefore less data needs to
be recovered in the case of data node failures. In addition, sometimes
SRS (k,m, s) is able to tolerate more than m simultaneous failures.
Thus, the model for RS is not applicable to SRS codes.

Let us define an array f , where fi stands for the probability that
the KVS tolerates i + 1 simultaneous node failures. We can always
estimate fi by total enumeration of all possible failure scenarios.
Since SRS (k,m, s) can always tolerate loss of up tom nodes, fi = 1
for i ∈ [0,m − 1]. We denote the maximum number of simultaneous
failures after which the KVS can be recovered as u. Basically,

u = argmin
i
{ fi−1 , 0 ∧ fi = 0}

The general Markov model for SRS is shown in Figure 15, where
λipi stands for the transition to tolerate i + 1 failures with the con-
dition that it tolerated i failures and λi (1 − pi) reflects opposite
situation when the KVS is not able to tolerate an additional node
failure. Similarly to Markov model for RS , λi is equal to the number
of alive nodes multiplied by a failure rate of a single node. Thus,
λi = (s +m − i)λ, where λ is the failure rate of a single node.

In Figure 15, pi is a conditional probability to tolerate i+1 failures
when i nodes are lost. pi can be estimated as

pi = p (i + 1|i) =
p (i + 1, i)

p (i)
=
p (i + 1)
p (i)

=
fi+1
fi
,

where p (i + 1|i) stands for conditional probability to survive after
i + 1 failures when i failures are already tolerated, p (i + 1, i) is a
probability to tolerate i+1 and i failures. Clearly p (i+1, i) = p (i+1)
since if the the KVS tolerated i + 1 failures then it also tolerated i.

Recovery flows µi represents the average recovery rate from
state i to state i − 1, i.e.; when there are i nodes down. Here we
distinguish between data nodes and parity nodes, because data nodes
in SRS (k,m, s) store less data than in original RS (k,m). Basically,
when i nodes are lost, then there are up to i + 1 different recovery
speed options which are represented by the number failed data nodes.
Thus,

µi =
i∑
j=0

µi jpi j ,

where µi j is a recovery rate when i nodes are lost and j of them
are data nodes and pi j is its probability. µi j and pi j equal 0 when
(i − j) > m, since it is impossible to have more thanm failed parity
nodes.

2.8 2.9 3 3.1 3.2 3.3 3.4

Availability (# of nines)

2

3

4

5

6

7

8

S
tr

e
tc

h
 p

a
ra

m
e

te
r

(s
)

RS(2,1)

RS(3,2)

RS(3,1)

RS(4,2)

RS(5,1)

RS(5,4)

RS(5,3)

RS(4,1)

RS(4,3)

RS(5,2)

Figure 16: Availability of SRS codes with different parameters.

The probability pi j of having j failed data nodes and i − j failed
parity nodes obeys the hypergeometric distribution, that describes
the probability of drawing i data nodes in i + j draws, without
replacement, from a "bag" of size s +m that contains exactly s data
nodes.

pi j =

(sj) (
m
i−j)

i∑
k=0

i−k≤m

(sk) (
m
i−k)

if i − j ≤ m,

0 otherwise,

where
(i
j

)
is binomial coefficient "i choose j".

The recovery rate µi j is a recovery rate when i nodes are lost and
j of them are data nodes. Thus,

µi j =
j

i
µD +

i − j

i
µP ,

where µD and µP are recovery rate of data node and parity node
respectively.

Since parity nodes in SRS (k,m) and RS (k,m) are identical, they
share the same recovery rate µ. We assume that µ is linear with
respect to data size. A data node stores s/k times less data than a
parity node, thus µD = k

s µP =
k
s µ. Finally,

mi j =
j

i

k

s
µ +

i − j

i
µ,

where µ is the recovery rate in RS (k,m) model.
As an example let us consider SRS (2, 1, 4) code. It can always

tolerate a single failure and with probability 2
5 overtake the second

failure. Thus, the Markov model in Figure 15 is comprised of 4
states, and the transition matrix has the following form

A =

−6λ 6λ 0 0
µ1 −5λ − µ1 5λ 2

5 5λ 3
5

0 µ2 −4λ − µ2 4λ
0 0 0 0

The theoretical findings of reliability analysis of SRS codes are

presented in Section 3.3.

A.3 Availability model
Availability is the ability of a KVS to provide immediate access to
information or resources at a stated instant of time or over a stated
period of time. Similar to reliability, availability is estimated as a
sum of probabilities being in available states S:

A(t) =
∑
i ∈S

Pi (t)

EuroSys ’18, April 23–26, 2018, Porto, Portugal K. Taranov, G. Alonso, T. Hoefler

In the case of RS and SRS codes, only the 0 state (S = {0}) is con-
sidered to be available, since in other states there exist unrecovered
data which cannot be accessed immediately.

Next, we introduce the interval availability in the interval (0,τ) as

Aav (τ) =
1
τ

∫ τ

0
A(t)dt

Aav (τ) is just the average value of the point availability over a
specified interval from startup. Finally, availability can be measured
as average availability over a year as Aav (1 year).

Figure 16 indicates estimated availabilities of RS and SRS codes.
Lines represents different stretching factors of SRS (k,m, s) codes
that share the same parent code RS (k,m). It can be observed that all
RS schemes and their stretched variations have availability less than
3.4 nines. In addition, the number of nodes in the stripe decreases the
availability. Maximal availability has been observed for the family
of SRS (2, 1, s) codes and stands at approximately 3.35 nines.

REFERENCES
[1] M. L. Abell and J. P. Braselton. Differential Equations with Maple V®. Academic

Press, 2014.
[2] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li. Paxos repli-

cated state machines as the basis of a high-performance data store. In Symposium
on Networked Systems Design and Implementation (NSDI), pages 141–154, 2011.

[3] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary-backup
approach. Distributed systems, 2:199–216, 1993.

[4] S. Chandrashekhara, M. R. Kumar, M. Venkataramaiah, and V. Chaudhary. Cider:
A Case for Block Level Variable Redundancy on a Distributed Flash Array. In
2017 26th International Conference on Computer Communication and Networks
(ICCCN), pages 1–9, July 2017. doi: 10.1109/ICCCN.2017.8038466.

[5] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID:
High-performance, reliable secondary storage. ACM Computing Surveys (CSUR),
26(2):145–185, 1994.

[6] B. Cipra. The ubiquitous Reed-Solomon codes. Siam News, 26(1):1993, 1993.
[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-

ing cloud serving systems with YCSB. In Proceedings of the 1st ACM symposium
on Cloud computing, pages 143–154. ACM, 2010.

[8] L. E. Dickson. Linear groups: With an exposition of the Galois field theory.
Courier Corporation, 2003.

[9] B. Fitzpatrick. Distributed caching with memcached. Linux journal, 2004(124):5,
2004.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In Proceed-
ings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP
’03, pages 29–43, New York, NY, USA, 2003. ACM. ISBN 1-58113-757-5. doi:
10.1145/945445.945450.

[11] J. L. Hafner and K. Rao. Notes on reliability models for non-MDS erasure codes.
IBM Res. rep. RJ10391, 2006.

[12] R. Hecht and S. Jablonski. NoSQL evaluation: A use case oriented survey. In
Cloud and Service Computing (CSC), 2011 International Conference on, pages
336–341. IEEE, 2011.

[13] Jim Seeger,Naresh Chainani,Aruna De Silva,Karen Mcculloch,Kiran
Chinta,Vincent Kulandai Samy,Tom Hart. DB2 V10.1 Multi-temperature
Data Management Recommendations, 2012.

[14] R. Jiménez-Peris, M. Patiño Martínez, G. Alonso, and B. Kemme. Are Quorums
an Alternative for Data Replication? ACM Trans. Database Syst., 28(3):257–294,
Sept. 2003. ISSN 0362-5915. doi: 10.1145/937598.937601.

[15] A. Khandelwal, R. Agarwal, and I. Stoica. BlowFish: Dynamic Storage-
Performance Tradeoff in Data Stores. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 485–500, Santa Clara, CA,
2016. USENIX Association. ISBN 978-1-931971-29-4.

[16] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consistency Rationing in
the Cloud: Pay Only when It Matters. Proc. VLDB Endow., 2(1):253–264, Aug.
2009. ISSN 2150-8097. doi: 10.14778/1687627.1687657.

[17] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues. Mak-
ing Geo-replicated Systems Fast As Possible, Consistent when Necessary. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 265–278, Berkeley, CA, USA, 2012. USENIX
Association. ISBN 978-1-931971-96-6.

[18] Microsoft Azure. Azure Storage Pricing. https://msdn.microsoft.com/en-us/
library/azure/ee691964.aspx. [Online; accessed 18-Feb-2018].

[19] Microsoft Azure. Understanding Block Blobs, Append Blobs, and Page Blobs.
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/, 2016. [Online;
accessed 18-Feb-2018].

[20] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi. Partial-parallel-repair (PPR): a
distributed technique for repairing erasure coded storage. In Proceedings of the
Eleventh European Conference on Computer Systems, page 30. ACM, 2016.

[21] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of
a matrix, twenty-five years later. SIAM review, 45(1):3–49, 2003.

[22] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, D. Ongaro,
S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang. The
RAMCloud Storage System. ACM Trans. Comput. Syst., 33(3):7:1–7:55, Aug.
2015. ISSN 0734-2071. doi: 10.1145/2806887.

[23] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner, and W. Belluomini. Flex-
KV: Enabling high-performance and flexible KV systems. In Proceedings of the
2012 workshop on Management of big data systems, pages 19–24. ACM, 2012.

[24] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A library in C/C++
facilitating erasure coding for storage applications-Version 1.2. University of
Tennessee, Tech. Rep. CS-08-627, 23, 2008.

[25] J. S. Plank, K. Greenan, E. Miller, and W. Houston. GF-Complete: A comprehen-
sive open source library for Galois Field arithmetic. University of Tennessee, Tech.
Rep. UT-CS-13-703, 2013.

[26] J. S. Plank et al. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-
like systems. Softw., Pract. Exper., 27(9):995–1012, 1997.

[27] M. Poke and T. Hoefler. DARE: High-Performance State Machine Replication
on RDMA Networks. In Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, pages 107–118. ACM,
2015.

[28] M. Rausand and A. Høyland. System reliability theory: models, statistical methods,
and applications, volume 396. John Wiley & Sons, 2004.

[29] R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler. An RDMA protocol
specification. Technical report, IETF Internet-draft draft-ietf-rddp-rdmap-03. txt
(work in progress), 2005.

[30] F. B. Schneider. Byzantine Generals in Action: Implementing Fail-stop Processors.
ACM Trans. Comput. Syst., 2(2):145–154, May 1984. ISSN 0734-2071.

[31] M. L. Shooman. Reliability of computer systems and networks: fault tolerance,
analysis, and design. John Wiley & Sons, 2003.

[32] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file
system. In Mass storage systems and technologies (MSST), 2010 IEEE 26th
symposium on, pages 1–10. IEEE, 2010.

[33] Storage Performance Council. SPC Trace File Format Specification, Revision
1.0.1, 2002.

[34] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and
H. Abu-Libdeh. Consistency-based Service Level Agreements for Cloud Storage.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 309–324, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2388-8. doi: 10.1145/2517349.2522731.

[35] R. Van Renesse and F. B. Schneider. Chain Replication for Supporting High
Throughput and Availability. In OSDI, volume 4, pages 91–104, 2004.

[36] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Database
replication techniques: A three parameter classification. In Reliable Distributed
Systems, 2000. SRDS-2000. Proceedings The 19th IEEE Symposium on, pages
206–215. IEEE, 2000.

[37] M. Xia, M. Saxena, M. Blaum, and D. Pease. A Tale of Two Erasure Codes in
HDFS. In FAST, pages 213–226, 2015.

[38] J. Zawodny. Redis: Lightweight key/value store that goes the extra mile. Linux
Magazine, 79, 2009.

[39] H. Zhang, M. Dong, and H. Chen. Efficient and available in-memory KV-store
with hybrid erasure coding and replication. In 14th USENIX Conference on File
and Storage Technologies (FAST 16), pages 167–180, 2016.

https://msdn.microsoft.com/en-us/library/azure/ee691964.aspx
https://msdn.microsoft.com/en-us/library/azure/ee691964.aspx
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/

	Abstract
	1 Motivation
	2 Ring applications
	3 Storage schemes
	3.1 Replication
	3.2 Reed-Solomon coding
	3.3 Stretched Reed-Solomon coding

	4 System architecture
	5 API
	5.1 Data layout, memgests
	5.2 Strong consistency
	5.3 Erasure coded and replicated memgests
	5.4 Balancing
	5.5 Membership and handling failures

	6 Evaluation
	6.1 Latency
	6.2 Move requests
	6.3 Throughput
	6.4 Failures and recovery

	7 Related work
	8 Summary and Conclusions
	A Fault resilience analysis
	A.1 Reliability model for Reed-Solomon
	A.2 Reliability model for Stretched Reed-Solomon
	A.3 Availability model

	References

