
Automatic Verification of RMA Programs via
Abstraction Extrapolation

Cedric Baumann1, Andrei Marian Dan1, Yuri Meshman2, Torsten Hoefler1,
and Martin Vechev1

1 Department of Computer Science, ETH Zurich, Switzerland
2 IMDEA Software Institute, Madrid, Spain

Abstract. Remote Memory Access (RMA) networks are emerging as
a promising basis for building performant large-scale systems such as
MapReduce, scientific computing applications, and others. To achieve
this performance, RMA networks exhibit relaxed memory consistency.
This means the developer now must manually ensure that the additional
relaxed behaviors are not harmful to their application – a task known to
be difficult and error-prone. In this paper, we present a method and a
system that can automatically address this task. Our approach consists
of two ingredients: (i) a reduction where we reduce the task of verify-
ing program P running on RMA to the problem of verifying a program
P on sequential consistency (where P captures the required RMA be-
haviors), and (ii) abstraction extrapolation: a new method to automati-
cally discover both, predicates (via predicate extrapolation) and abstract
transformers (via boolean program extrapolation) for P . This enables us
to automatically extrapolate the proof of P under sequential consistency
(SC) to a proof of P under RMA. We implemented our method and
showed it to be effective in automatically verifying, for the first time,
several challenging concurrent algorithms under RMA.

1 Introduction

Remote Memory Access (RMA) programming is a technology used in modern
data centers to communicate between machines with low overhead. It enables low
latencies (< 1µs [26]) and high bandwidth. In RMA, remote operations are exe-
cuted by the underlying network interface controller bypassing the CPU and the
operating system (in contrast to regular network operations). The network card
reads the data using Direct Memory Access (DMA), sends it over the network,
and finally the receiving network card writes the data using DMA. This approach
is faster than traditional network communication because in data centers, the
direct access propagation delay is small compared to a network message stack
overhead of standard sockets. RMA technology is available in several networks:
InfiniBand [43], IBM Blue Gene Q [6], IBM PERCS [9], Cray Gemini [7] and
Aries [25]. Typically, the RMA functionality is available through RMA libraries
(InfiniBands OFED [37], Cray DMAPP [18], Portals4 [12]). Middleware applica-
tions, such as the Hadoop File System [32], then call the RMA interface directly.

Newer developments introduce RMA extensions for Ethernet (RoCE [13]) or IP
routable RMA protocols (iWARP [40]).

RMA instructions of a program are executed asynchronously, i.e., the execu-
tion of the program proceeds without waiting for the completion of the remote
RMA operations. To offer guarantees on the completion of remote operations,
RMA provides the flush statement, which enforces that all remote operations
to a certain machine are executed before the execution continues.

As expected, verifying programs running under RMA is challenging because
they exhibit additional relaxed behaviors beyond those allowed by sequential
consistency (SC). Moreover, programs executing under RMA exhibit behaviors
not possible under other relaxed memory models such as Total Store Order (x86
TSO) or Partial Store Order (PSO) [19]. The goal of this paper is to address this
challenge, namely, develop automated techniques for verifying RMA programs.

The problem. Given a program P running on an RMA network and a safety
specification S, our goal is to answer whether P satisfies S under RMA, indicated
as P |=RMA S .

Our Work. In our work we approach this challenge via predicate abstraction [28],
a method shown effective in verifying concurrent programs [24, 30] and x86
TSO and PSO programs [20]. Standard predicate abstraction ([11, 28]) as-
sumes sequential consistency (SC). Given a program P and a set of predicates
V = {p1, . . . , pn} over the variables in P , standard predicate abstraction builds
a boolean program B = BP(P ,V) that contains one boolean variable for each
predicate in V . The boolean program comes with the guarantee that if B satisfies
a property S, then the program P satisfies S as well:

B |=SC S =⇒ P |=SC S

Checking whether B |=SC S is typically done via a (three-valued) model checker.
If a spurious counter-example execution trace is found by the model checker,
then the initial set of predicates V is refined and the procedure is repeated. An
overview of this approach is illustrated in the left part of Figure 1.

Reduction. However, the above guarantee does not hold when replacing SC with
relaxed memory models, such as x86 TSO or PSO, because naive application of
standard predicate abstraction for relaxed memory model programs is unsound
([20]). To address this issue, we reduce the problem of verifying RMA programs
to SC verification (the Reduction box in Figure 1) by automatically constructing
a new program P that captures RMA behaviors as part of the program. P uses
set variables and boolean flags to account for these behaviors. If P satisfies a
property S under sequential consistency, then P satisfies S under RMA:

P |=SC S =⇒ P |=RMA S

Fig. 1. Predicate abstraction for sequential consistency (left) and our verification
method for RMA programs (right).

Predicate extrapolation. Given the newly generated program P , we automatically
generate a set of predicates V based on the original set of predicates V (the Pred
Extrapolation box in Figure 1). This process is called predicate extrapolation and
we denote it as EP(V) = V . A part of the new predicates in V contain universal
quantifiers over elements of sets. Compared to the original set of predicates
V , the extrapolated set V is approximatively twice as large (experimentally
observed on our benchmarks), therefore limiting the applicability of standard
predicate abstraction (requires an exponential number of calls to an SMT solver,
in the worst case). We address this limitation by introducing the boolean program
extrapolation technique.

Boolean program extrapolation. To side-step the potential exponential blow up,
we construct a sound approximation of BP(P,V): we introduce a novel extrapo-
lation function EBP (the Bool Prog Extrapolation box in Figure 1) to construct
a boolean program B = EBP(P , V ,B) without any call to the SMT solver. The
boolean program extrapolation is based on the boolean program B = BP(P, V)
and satisfies:

B |=SC S =⇒ BP(P , V) |=SC S

Overall approach. Automated verification of P |=RMA S takes place in four
steps:

1. Verify under SC : given a set of predicates V , build a boolean program B =
BP(P, V) and show that B |=SC S.

2. Reduce to SC : Build the program P (to capture RMA behaviors for P)
and extrapolate the corresponding set of predicates V = EP(V) from the
predicates V that worked under SC.

3. Construct extrapolated boolean program: given program P , set of predicates
V , and boolean program B = BP(P, V), construct extrapolated boolean
program B = EBP(P , V ,B).

4. Verify boolean program: whether B |=SC S, using a model checker. If the
check fails due to abstraction imprecision, we refine the abstraction and
restart the verification process. Otherwise, the program P satisfies property
S under RMA and the process completes successfully.

Main Contributions. The main contributions of this paper are:

– A program reduction, based on sets, from RMA to SC. The construction
allows us to handle traces with infinite number of relaxed memory operations.

– A novel abstraction approach for programs running on RMA, using predi-
cates over sets and a boolean program extrapolation technique which requires
no calls to the underlying SMT solver for building the boolean program.

– An implementation of our approach in a tool that can, for the first time,
automatically verify several challenging (including infinite-state) concurrent
algorithms running on the RMA model.

Our work can be seen as a step towards the more general problem of adapting
the proof of one program to the proof of a more refined program, technically
achieved here via abstraction extrapolation (in the case of predicate abstraction,
extrapolation of the boolean program).

2 Overview

We illustrate our approach on a small RMA program shown in Figure 2. In this
example, Process 1 declares a shared variable Y with initial value 1. Process 2

declares shared variables R and X, initializes them to 0 and 2, respectively. Next,
it declares a local variable r. It then remotely puts the value of X into Y. Then,
X is set to 3 and the value of Y is remotely read from Process 1 and is written to
R. Finally, the process assigns R to local variable r. The specification (assert)
is that at the end of the program (final), r is different than 3.

Under SC semantics, the only possible value of r at the end of the program is
2. However, under RMA semantics, r can have any value from the set {0,1,2,3}.
Note that under other relaxed consistency models, such as x86 TSO, PSO, and
C++ RMM, the value of 3 is not possible for r. Yet, under RMA, the put from
the shared location X to Y, can be delayed until after assigning 3 to X. That value
can then be read into R and put into local variable r, leading to an assertion
violation. A developer will then have to manually infer the flush statements that
are required to enforce the specification, when running under RMA semantics.
We next introduce the semantics of RMA networks.

2.1 RMA Semantics

Process 1 :
1 shared Y = 1 ;

Process 2 :
1 shared R = 0 , X = 2 ;
2 local r ;
3 put (Y, 1 , X) ;
4 store X = 3 ;
5 R = get (Y, 1) ;
6 load r = R;

assert final (r != 3) ;

Fig. 2. RMA program consisting
of two processes and a specification
(shown at the end) which checks
whether the value of local variable
r is equal to 3.

In RMA programs, a process can access
shared variables of remote processes using re-
mote statements such as put or get. These re-
mote statements are executed asynchronously
— the process executing them does not wait
for the completion of the remote statement,
instead it continues the execution of its pro-
gram. In hardware, the program executing on
a CPU relegates the remote operation execu-
tion to a component called Network Interface
Controller (NIC) which connects to a NIC on
a remote machine. The two NICs complete the
operation, on shared locations assigned to the
operation, without involving either the local
or the remote CPU. flush statements are the
main mechanism to guarantee that pending
remote statements to a specific remote pro-
cess are completed. A flush(pid) statement
acts like a barrier, blocking the execution on
the process until all pending remote statements to process pid are completed.
The flush is expensive (increases latency) and should be used sparingly.

Table 1. Basic statements which
capture the essence of RMA pro-
gramming.

Statement Description

load u = X; local read
store X = expr; local write
X = get(Y, pid); remote get
put(Y, pid, X); remote put
flush(pid) flush

Syntax. We consider a basic programming
language, shown in Table 1, that offers RMA
primitives such as put, get and flush. The
load u = X; statement reads the value of
shared variable X and writes it in local vari-
able u. The store X = expr statement writes
to shared variable X the value of the expres-
sion on the right hand side (arithmetic ex-
pression over local variables). The put and
get statements operate over shared variables
X and Y, and also take as argument the iden-
tifier of the process storing the remote variable. The flush statement takes as
argument a process id. The semantics of these statements are described next.

Semantics. Let Procs be a finite set of process identifiers and p ∈ Procs a
process id. Let Vars be the set of all variables. We assume that each variable
is uniquely identified (no two variables have the same name) and we define
proc : Vars → Procs as the function mapping each variable to the process where
it is declared. We define a transition system as a tuple (s0, Σ, T), where Σ is
the set of program states, s0 ∈ Σ is the initial state, and T ⊆ Σ × Actions ×Σ
is a transition relation. The Actions set contains all statements in the simple
language, and the nicr and nicw actions which correspond to the asynchronous

non-deterministic execution of the remote statements:

Actions = {put , get ,nicr ,nicw , load , store,flush}

A program state s ∈ Σ is a tuple 〈pc,M,R,W 〉, where:

– pc : Procs → Labels is the map from process identifiers to labels. The next
label that comes after label l ∈ Labels is denoted by n(l).

– M : Vars → D is the state of the memory, mapping each variable to a value
in the domain D.

– R is a mapping from process ids to the set of pending remote read operations
triggered by the given process. For p ∈ Procs, each read operation r ∈ R(p)
has a variable to be read, denoted with var(r) ∈ Vars. Additionally, r is
mapped to a following write action denoted succ(r).

– W is the mapping from process identifiers to the set of pending remote
write operations triggered by the given process. Given p ∈ Procs, for each
w ∈W (p), we define the variable to be written, var(w) ∈ Vars and the value
to be written val(w) ∈ D.

The initial state s0 has both, the set of pending reads and the set of pending
writes initialized to be empty (∀p ∈ Procs : R(p) = W (p) = ∅). These semantics
are introduced by [17] and match the configuration without in-order routing,
where operations are not ordered between the same source and destination pro-
cesses. Each rule corresponds to a transition s

a−→ s′, where a ∈ Actions and
s, s′ ∈ Σ, s = 〈pc,M,R,W 〉 and s′ = 〈pc′,M ′, R′,W ′〉.

When a put action is executed, a pending read operation r is added to R,
and a following write operation w is declared. The variables read and written
by r and w correspond to the arguments of the put statement. The get action
has similar semantics. The execution of the pending read operations in R is non-
deterministic and, after reading the value of the target variable, the following
write operation is added to the set of pending writes W . Similarly, the pending
writes are executed non-deterministically. The local store and load actions are
executed synchronously and interact directly with the memory M (storing a
value, or reading from memory), without using the pending operation sets R
and W . Assuming process p ∈ Procs issues a flush action, after its execution
the set W (p) does not contain any pending write operations to the target process
of the flush. Similarly, the set R(p) does not contain any pending read operations
from the target process of the flush, and additionally none of the successor write
operations of the pending read operations in R(p) write to the target process.
Next, we briefly recap standard predicate abstraction, assuming SC.

2.2 Predicate Abstraction under Sequential Consistency

This section illustrates the standard predicate abstraction procedure applied to
the example program in Figure 2, assuming SC.

SC semantics. When restricting an RMA program to SC, we assume that
all remote operations (e.g., the get statements in Figure 2) are executed syn-
chronously. For example, the R = get(Y, 1) statement has the same semantics as
a normal assignment R = Y. For our example, the predicates sufficient to verify
the specification are:

V = {(r 6= 3), (R 6= 3), (Y 6= 3), (X 6= 3)}

This set of predicates can be determined either manually or using a counter
example guided refinement loop. The result of applying predicate abstraction on
the example program using the predicates in V is a concurrent boolean program
that soundly represents all possible behaviors of the original program.

Boolean program construction. The resulting boolean program has four boolean
variables {B1, B2, B3, B4} (one for each predicate in V). For each statement
of the program P , standard predicate abstraction computes how the state-
ment changes the values of the predicates. For instance, statement R = get(Y, 1)

(which for SC we interpret as R = Y) at line 5 in Process 2 assigns to variable
B2 (corresponding to the predicate (R 6= 3)) the value of B3. We say that the
predicate B2 is updated using the cube of size 1 containing the predicate B3. In-
tuitively, (R 6= 3) holds after the statement R = get(Y, 1) if (Y 6= 3) holds before
the statement. More details about standard predicate abstraction are presented
in subsection 4.1.

The complexity of building the boolean program using standard predicate
abstraction is exponential in the number of predicates in V ([11, 28]) and its
main component is the search of cubes (conjunctions of predicates or negated
predicates that imply a given formula). Optimizations such as bounding the size
of cubes to a constant k lead to a complexity of |V |k, by building a coarser
abstraction, therefore losing precision.

2.3 Predicate Abstraction for RMA Programs

We next illustrate our RMA verification approach which is based on extrapolating
the proof of the program under sequential consistency (discussed in more detail
in subsection 2.2).

Step 1: Verify P under SC. The input for this step is the program P (Figure 2)
and the set of predicates V shown in subsection 2.2. Here, we assume all remote
statements are executed synchronously. After the program is verified, the result-
ing boolean program B = BP(P, V) will be used for extrapolation in the third
step of our approach.

Step 2: Construct the reduced program P . We reduce the problem of verifying
P under RMA semantics to the problem of verifying a new program P under
SC. The program P non-deterministically accounts for all possible asynchronous
behaviors of P under RMA.

Auxiliary variables. To construct P , we introduce auxiliary variables of two
types: sets and boolean flags. Additionally, we use two methods: addToSet, that
takes as arguments a set and an element, and adds this element to the set, and
randomElem, that takes as input a set and returns a random element of the
set. The sets accumulate all values that can be read by a get statement, or all
possible values that can be written remotely by a put statement. In our example,
we introduce two set variables: X1Set and Y1Set. For example, variable X1Set

stores all values of variable X that the put statement at line 5 in Figure 2 can
write to Y. Initially, X1Set and Y1Set are empty. A boolean flag is introduced for
each remote statement. It represents whether the remote statement is pending
to be executed asynchronously by the underlying network. For the example in
Figure 2, we introduce variables Put1Active and Get1Active, initially set to false,
corresponding to the put and get statements.

Process 2 :
1 shared R = 0 , X = 2 ,
2 Put1Active = false ,
3 Get1Active = false ,
4 Y1Set = ∅ ,
5 X1Set = ∅ ;
6 local r ;
7 // put(Y, 1, X);

8 if (! Put1Active)
9 Put1Active = true ;

10 X1Set = {X}
11 else

12 addToSet (X1Set ,X) ;
13 // X=3;

14 if (Put1Active && ?)
15 Y = randomElem (X1Set) ;
16 addToSet (Y1Set ,Y) ;
17 if (?) Put1Active=false ;
18 store X = 3 ;
19 if (Put1Active)
20 addToSet (X1Set ,X) ;

21
...

Fig. 3. Running example translation
excerpt of P : this program contains
the RMA behaviors affecting the orig-
inal program P .

Statement translation. Next, for each
statement of P , we generate a correspond-
ing code in P . The result of translating the
program in Figure 2 is partly shown in Fig-
ure 3 (only translation for lines 1−4 of the
original program is shown).

Lines 2− 5 initialize the introduced aux-
iliary variables (initializing boolean flags
such as Put1Active and sets such as X1Set).
Lines 7−12 represent the translation of the
put statement, where the flag Put1Active

is set to true and the current value of
variable X is added to X1Set. Next, the
X = 3 statement of program P corresponds
to lines 13-20. If the put operation is ac-
tive, then the value 3 is added to X1Set (in
line 20). Before it, remote operations are
non-deterministically executed. Lines 14-
17 represent the non-deterministic asyn-
chronous execution of a pending remote
operation. In this case, the only pending
operation corresponds to the put state-
ment. The ? in the condition of line 14
represents a non-deterministic choice of
whether to take the branch or not. Line
15 selects a random element from the set
X1Set and assigns it to Y. The transformation process is described in detail in
subsection 3.1.

Predicate extrapolation. For the newly generated program P shown in Figure 3,
our technique automatically extrapolates the set of predicates V to a new set of

predicates V = EP(V). Given the newly introduced set variables, we generate
predicates that are universally quantified over all the elements of a set. For exam-
ple, given the initial SC predicate (X 6= 3), we generate the quantified predicate
∀e ∈ X1Set : e 6= 3 . For simplicity, we denote the predicate as (X1Set 6= 3). We
assign a special logic to the case where (X1Set 6= 3) is false - it implies that all
the elements in X1Set are equal to 3:

(X1Set 6= 3) =

 true, ∀e ∈ X1Set : e 6= 3
false, ∀e ∈ X1Set : e = 3
?, otherwise

This predicate allows to keep track of the values added to the set. When all the
elements of the set are different than 3, then the predicate is true. Importantly,
the predicate is false only when all the elements of the set are equal to 3; other-
wise, the value of the predicate is unknown, and we denote this value by ?. The
result of applying predicate extrapolation will return the following set:

V = V ∪ {(X1Set 6= 3), (Put1Active = true)}

For each boolean flag that the program translation introduces (e.g., Put1Active),
the predicate extrapolation will add a predicate that tracks the value of the flag.
In our example, the new predicate is (Put1Active = true). More details about
predicate extrapolation are presented in subsection 4.2.

Step 3: Construct the Extrapolated Boolean Program After performing the sec-
ond step, we obtain a program P and a set of predicates V . Applying standard
predicate abstraction and building a boolean program BP(P , V) requires a sig-
nificantly higher computational effort than building BP(P, V). The reason is
that P contains more instructions than P that have to be analyzed, and V has
more predicates than V . Instead, we generalize the idea of predicate extrapola-
tion [20] to boolean program extrapolation: starting from the boolean program
constructed for the SC semantics B = BP(P, V), we construct a new boolean
program B = EBP(B,P , V). By extrapolating the boolean program, we avoid
performing additional cube search (we do not require calls to an SMT solver) to
construct B, because we extrapolate cubes already found for the construction of
B.

For instance, at line 15 of Figure 3, the statement Y = randomElem(X1Set),
where a random element of X1Set is selected and assigned to Y, the boolean
program extrapolation will use as input the transformers in the boolean pro-
gram B that correspond to the statement put(Y, 1, X) from Figure 2. For the
statement put(Y, 1, X), the predicate (Y 6= 3) is assigned the value of (X 6= 3).
We extrapolate this boolean assignment for the statement put(Y, 1, X), and the
predicate (Y 6= 3) is assigned the value of the predicate (X1Set 6= 3). If the
predicate (X1Set 6= 3) is true, then all the elements inside the set X1Set are
different than 3. Therefore, selecting a random element of the set and assigning
it to X makes the value of (Y 6= 3) true. If the predicate (X1Set 6= 3) is false, it
means that the elements in X1Set are equal to 3, and assigning any of them to Y

makes the predicate (Y 6= 3) false. A formal description of the boolean program
extrapolation is presented in subsection 4.3.

Step 4: Model Checking We verify if B, constructed in Step 3, satisfies the
specification S, using a model checker. If there is no reachable state in the
program that contradicts S, then the verification succeeds. If an error state is
discovered, there are two possibilities: either the error state is spurious, and we
refine the abstraction, or it is a valid error state, and the original program P
needs more flush statements such that property S holds under RMA. If we add
flush in all possible locations the program is guaranteed to verify, since the
program is then limited to SC executions.

Verification results. The specification holds under RMA semantics with a single
flush statement added to the program, after the put(Y, 1, X) instruction of line
3. It is important to observe that this allows the program to retain RMA specific
behaviours that do not violate the assertion and are not possible under SC. For
example, the value r = 0 is not possible under SC, while under RMA, the value
of r at the end of the program can be 0. This is because an asynchronous get

operation, can be executed even after Process 2 assigns the value of R to r.
Although the get reads into R the value 2 from Y (that value reached there with
the put of line 3 and the following flush), the line 6 assignment will write the
value of R from initialization into r. Adding a flush after the get statement would
eliminate this state under RMA. However, the state satisfies the specification of
interest (r 6= 3), and our procedure successfully identifies which flush statement
is not required.

3 Reduction of RMA programs

In this section, we describe the source-to-source transformation of a program P
running under RMA semantics to a new program P running under SC semantics,
such that P soundly approximates P . The main idea is to generate a program
P which encodes the RMA semantics of program P .

3.1 Reduction: RMA to SC

We define the translation function that takes as input a statement from program
P and returns a list of statements of program P :

[[]] : Stmt → List〈Stmt〉

Set variables. The newly generated program P contains, in addition to the vari-
ables of program P , two types of auxiliary variables that contribute to capturing
the semantics of RMA programs. Let sid be a mapping that takes as input a

Table 2. The source to source translation of statements from program P running on
RMA to a new program P running on sequential consistency. p is the identifier of the
process that executes the statement.

[[store X = a]] [[put(Y, pid, X)]]

remoteOps(X)
store X = a;
B ∀s ∈ read(X):

if active(s)
addToSet (set(s) ,X) ;

if (! active(s))
active(s) = true ;
set(s) = {X} ;

else addToSet (set(s) , X) ;

[[flush(pid)]] remoteOps(X)

while (
∨

s∈remote(p,pid) active(s))

B ∀s ∈ chain(remote(p, pid)):

if (active(s) ∧ ?)
trg(s) = randomElem (set(s)) ;
if (?) active(s) = false ;

while (?)

B ∀s ∈ chain(write(X)):

if (active(s) ∧ ?)
trg(s) = randomElem (set(s)) ;
addToSet (Sets(trg(s)) , trg(s)) ;
if (?) active(s) = false ;

remote statement (put or get) of program P and returns a unique identifier of
that statement. The first type of auxiliary variables are sets. For each remote get

statement s of the form var dst = get(var src, pid) we introduce a set variable.
The name of the set variable is the concatenation of the var src variable, the
unique identifier of the get statement sid(s) and the string “Set”. For example,
assuming the statement X = get(Y, pid) with unique identifier 1, we generate the
set variable Y1Set. Similarly, for each put statement put(var dst, pid, var src),
we generate a set variable corresponding to var src and the statement identifier.
All the set variables are initially empty. Given a remote statement s, let set(s)
be the set variable associated to s in our translation. Let Sets be the set of all
set variables of the program and Sets(X) the sets corresponding to a variable X.

Boolean flags. The second type of auxiliary variable is a boolean flag. For each
remote put and get statement, we introduce a boolean variable, with a name
that is the concatenation of “Get”/“Put”, the statement id sid(s) and the
string “Active”. For instance, given a statement put(Y, pid, X) with statement
id equal to 3, we add the boolean flag Put3Active. All the auxiliary boolean vari-
ables are initially false. Let Flags be the set of all boolean flags. The mapping
active : Sets → Flags returns the boolean variable that corresponds to the same
remote statement as the set variable given as argument.

Chains of remote statements. Given two remote statements s1 and s2, the rela-
tion s1 ◦ s2 holds if s1 writes to a variable X and s2 reads or writes X. Let ◦+ be
the transitive closure of ◦. We define chain(s2) as the set of remote statements s

such that s ◦+ s2. We overload the chain operator to sets of remote statements:
given S a set of remote statements, chain(S) =

⋃
s∈S chain(s).

Notation. For a given shared variable X, there are potentially several set vari-
ables, one for each remote statement that reads the value of X. Let write(X)
be the set of remote statements that write to X and read(X) the set of remote
statements reading from X. We denote by remote(p, pid) all the statements ex-
ecuted by process p that remotely read or write from process pid. The variable
that is written by a remote statement s is trg(s). These functions are used in
the source to source translation.

Translation of program statements. Table 2 illustrates the source-to-source trans-
lation of program P running on RMA to a new program P that runs on SC and
captures all the behaviors of P .

Non-deterministic execution of remote operations. Since RMA remote opera-
tions are executed asynchronously, they could be executed at any point in the
program after the statement that triggers them. An exact translation would non-
deterministically execute, in any order, every pending RMA statement at each
program point. However, the state space of the resulting program would grow
significantly, making the verification more challenging.

In our approach, the resulting program P contains, at specific points, code
that executes the pending remote operations non-deterministically. This code
is described in Table 2 as remoteOps, and is parameterized by a shared vari-
able X. The statements executed non-deterministically are all the remote state-
ments that write to X and all the remote statements that form chains with
the statements writing to X, denoted chain(write(X)). For each statement s ∈
chain(write(X)), if the active flag corresponding to s (active(s)) is true, then
non-deterministically (?) assign to the target variable of s (trg(s)) a random
element of the set variable corresponding to s (set(s)). Next, the active flag is
non-deterministically set to false (there can be potentially several instances of
statement s pending, in case s is executed in a loop).

Local store. The statement store X = a writes a local variable a or numerical
value to a shared variable X that belongs to the process executing the statement.
In the translation, we first add the remoteOps(X) code. Next, we add the value
of a to the corresponding sets of the remote statements to all the set variables
that correspond to remote statements reading from X (denoted read(X)).

Remote Put. A put(Y, pid, X) statement reads a shared variable X of the lo-
cal process and writes its value to the shared variable Y at the remote process
pid. This operation is done asynchronously by the underlying network. There are
potentially several values that the local read from X can observe, when X is mod-
ified by the program, following the remote put statement. Similarly, the remote
write operation to Y at the remote process pid happens non-deterministically
after the read from X.

For our reduction, the statement s = put(Y, pid, X) is translated by first
checking if the flag variable (active(s)) is false. In this case, the s becomes
active (by setting active(s) =true), and we initialize set(s) with the current
value of X (set(s) = {X}). If the active(s) flag is true (that can be the case if s
is part of a loop), then the current value of X is added to set(s).

Flush. The flush(pid) statement makes sure that after its execution all active
RMA operations from the current process (p) to the remote process pid (denoted
by remote(p, pid)) are executed. We translate the flush statement as a loop that
executes pending operations as long as at least one of the RMA statements in
remote(p, pid) is still pending. The loop contains non-deterministic statements
to execute each of the pending statements in remote(p, pid) and statements that
create chains with the pending statements in remote(p, pid). This translation is
sound, as it covers all the possible orders of execution of the pending statements.

4 Predicate Abstraction for RMA Programs

This section describes how to adapt predicate abstraction to the task of verifying
RMA programs. The key idea is to cheaply build an RMA proof from the SC
proof by reusing predicates and transformers of the SC program proof. Note that
the safety property that we want to prove remains the same as in the SC case.
We begin by describing standard construction of predicate abstraction for SC.

4.1 Predicate Abstraction

Predicate abstraction [11, 28] is a form of abstract interpretation that employs
Cartesian abstraction over a set of predicates. Given a program P , and vocab-
ulary (set of predicates) V = {p1, . . . , pn} with corresponding boolean variables
V̂ = {b1, . . . , bn}, predicate abstraction constructs a boolean program BP(P, V)
that conservatively represents behaviors of P using only boolean variables from
V̂ (corresponding to predicates in V). We use [pi] to denote the boolean variable
bi corresponding to pi. We note that the mapping is a bijection. We similarly
extend [·] to any boolean function ϕ.

Constructing BP(P, V). A literal is a predicate p ∈ V or its negation. A cube
is a conjunction of literals, and the size of a cube is the number of literals it
contains. The concrete (symbolic) domain is defined as formulae over all possible
predicates. The abstract domain contains all the cubes over the variables pi ∈ V .
Predicate strengthening FV maps a formula ϕ from the concrete domain to
the largest disjunction of cubes (over V), d, such that d =⇒ ϕ. The abstract
transformer of a statement st, w.r.t. a given vocabulary V , can be computed
using the weakest-precondition ([11]), while performing implication checks using
an SMT solver. For each bi ∈ V̂ the abstract transformer generates:

bi = choose([FV (wp(st, pi))], [FV (wp(st,¬pi,))])

where choose(ϕt, ϕf) =

 true, ϕt evaluates to true
false, only ϕf evaluates to true
?, otherwise

For example, given the predicates V = {(X > 0), (Y > 0), (Z > 2)}, the cor-
responding boolean variables V̂ = {b1, b2, b3}, and a statement X = Y + Z, predi-
cate abstraction generates the abstract transformer: b1 = choose(b2 ∧ b3 , false).
After executing the statement X = Y + Z, (X > 0) holds if (Y > 0) and (Z > 2)
hold before the statement, otherwise (X > 0) becomes ?. Different predicate
abstraction techniques use different heuristics for reducing the number of calls
to the prover.

4.2 Predicate Extrapolation, V = EP(V)

After the SC predicate abstraction is successfully completed, we extrapolate the
set V of SC predicates, and we obtain V , the predicates for the reduced pro-
gram P . The set V of predicates consists of: (i) the predicates V from the SC
proof, (ii) universally quantified predicates for each set variable, based on the
extrapolation of SC predicates, and (iii) predicates for the boolean flag variables.

Extrapolation of SC predicates for each set variable. A sound optimization of the
source-to-source translation is to generate just one variable XSet for each shared
variable X, instead of one set variable per remote statement. In the rest of the
paper, we denote XSet the set corresponding to X. The abstraction accounts
for the set variables and tracks predicates that hold for the values contained
in these sets. We generate for each predicate p ∈ V , that references a shared
variable X, a corresponding predicate for XSet , ∀e ∈ XSet : p[e/X]. The newly
generated predicate contains a universal quantifier over all the elements of the
set. We denote this predicate as p[XSet/X].

Logic of the predicates over set variables. A predicate ∀e ∈ XSet : p[e/X] over
a set variable XSet is true if and only if predicate p is true for every element
of XSet . However, we refine the case where the predicate ∀e ∈ XSet : p[e/X] is
false: if p[e/X] is false for every element e ∈ XSet . Overall, the set predicates
have the following logic:

p[XSet/X] =

true ∀e ∈ XSet : p[e/X]

false ∀e ∈ XSet : ¬p[e/X]

? otherwise

For example, assume we are given XSet (initially empty), the predicate
p = (X > 5), such that p[XSet/X] = (XSet > 5) and a sequence of addToSet

statements that successively add the values 6, 7 and 4 to XSet . After execut-
ing the statement addToSet(XSet, 6), the predicate p[XSet/X] becomes true. After
addToSet(XSet, 7), the predicate p[XSet/X] remains true. After addToSet(XSet, 4),
p[XSet/X] becomes ?, because neither all elements in XSet are greater than 5 nor
it is the case that all elements of XSet are less or equal than 5.

If we select a random element from XSet using T = randomElem(XSet), then
the value of a predicate p[XSet/X] is the same as p[e/X], where e ∈ XSet . This can
be used to derive the value of predicates that contain variable T. For example,
given the predicates (T > 3) and (XSet > 5), if (XSet > 5) is true before
T = randomElem(XSet), then (T > 3) is true after the statement is executed.
Similarly, if (XSet > 5) is false, then a predicate such as (T > 5) becomes false
after the statement, by using the special logic we assign to the set predicates.

In our implementation, for predicates that reference two shared variables
(e.g., (X < Y)) we extrapolate for each shared variable separately and do not
generate a predicate involving two set variables (e.g., (XSet < Y) and (X < YSet)
are generated, while (XSet < YSet) is not generated). This provides a good
trade-off between precision and efficiency. We observe that this over-approximation
is precise enough and there is no need to track directly the relation between two
set variables. We show in subsection 4.3 how to soundly handle this abstraction.

Generation of predicates for the boolean flags. For each remote operation (for
example a get operation at label lbl) the translation presented in subsection 3.1
generates a boolean flag variable to indicate when the remote operation (or
an instance of the operation, in case it is executed in a loop) is pending to
be executed (for the get operation, a get lbl flag boolean variable). For each
such boolean variable we generate a corresponding predicate that captures the
boolean flag state (e.g., for the get operation at label lbl , we generate the pred-
icate (get lbl f lag = 1)).

4.3 Boolean Program Extrapolation, B = EBP(P , V ,B)

Given the extrapolated predicates V , a standard construction of the boolean pro-
gram is typically quite expensive, because the number of predicates |V | and the
size of the program |P | are significantly larger than in the SC case. This observa-
tion was shown in [20] for relaxed memory models, a work which proposed cube
extrapolation to reduce the number of calls to an underlying theorem prover.
In our work, in addition to handling a more complex memory model (RMA)
and generating more complex predicates that contain quantifiers, we introduce
a novel boolean program extrapolation method that builds a boolean program
without any calls to the theorem prover. The resulting boolean program B is a
sound over-approximation of BP (P , V).

Transformers for the set operations. The main difference between programs P
and P is that the latter contains set variables and statements that operate on the
set variables (set initialization, addToSet and randomElem). The predicates in V
refer to the set variables and we next describe how to compute the transformers
for the set operators. We again note that attempting to directly calculate their
transformers would require a large number of calls to the theorem prover.

Transformers for set initialization. We construct the translation such that all
the set initialization statements have the form XSet = {X}). A set XSet is always

initialized with the singleton set containing the value of the variable X (the
variable to which the set corresponds). As shown in subsection 4.2, the predicate
extrapolation generates for every predicate p ∈ V that contains X a predicate
p[XSet/X]. Therefore, after executing the statement XSet = {X}, the predicates
containing XSet have the same value as the predicates containing X:

p[XSet/X] = p

Transformers for addToSet. All addToSet have the form addToSet(XSet, X), adding
the value of a variable X to the set XSet that corresponds to that variable. The
predicates p[XSet/X] ∈ V are updated after addToSet(XSet, X) such that:

p[XSet/X] = choose(p[XSet/X] ∧ p,¬p[XSet/X] ∧ ¬p)

If all the elements in XSet satisfy the predicate p and the value of X satisfies P ,
then, after adding the value of X to XSet, all the elements of XSet still satisfy p.

Transformers for randomElem. Every statement Y = randomElem(XSet) in pro-
gram P corresponds to a remote operation such as Y = get(X) or put(Y, X) from
program P . For the SC verification, these remote statements are assumed to be
synchronous assignments of the form Y = X. During the SC predicate abstrac-
tion, for each predicate p ∈ V that contains Y, we compute ϕt and ϕf , the
disjunctions of cubes that appear as arguments of the choose function that up-
dates p: p = choose(ϕt , ϕf). In the case of the Y = randomElem(XSet) statement,
for all predicates p ∈ V that contain Y, we update them using the formula:

p = choose(ϕt [XSet/X], ϕf [XSet/X])

Consider an example with (X > 7), (Y > 5) ∈ V and a statement Y = get(X)

in P with the SC transformer (Y > 5) = choose((X > 7), false). For the cor-
responding Y = randomElem(XSet) statement in P , we generate the transformer
(Y > 5) = choose((XSet > 7), false).

The extrapolated predicates p ∈ V that contain both Y and at least one
set variable are updated to ? after the Y = randomElem(XSet) statement. This
sound over-approximation is required because V has no predicates that contain
more than one set variable. For example, given the predicates (X ≥ Z), (Y ≥
X), (Y ≥ Z) ∈ V , the extrapolated predicate (Y ≥ ZSet) ∈ V , after a statement
Y = randomElem(XSet) the predicate (Y ≥ ZSet) is set to ?, as we do not track
the predicate (XSet ≥ ZSet) that is required for a more precise transformer.

5 Experimental Evaluation

We implemented an analysis tool for RMA programs based on the method de-
scribed so far. In this section, we discuss our experimental evaluation of the tool
on a number of challenging concurrent algorithms running on RMA networks.
The experiments ran on an Intel(R) Xeon(R) 2.13GHz with 250GB RAM. The

first research question is whether predicate and boolean program extrapolation
are sufficiently scalable to verify all benchmarks. The second question deals with
the precision of the abstractions we introduced and whether we can compute the
smallest required flush placement for each program such that our tool is precise
enough to prove that the specification holds under RMA.

Benchmarks. We tested our analyzer on 14 challenging concurrent algorithms:
Dekker [23], Peterson [38], Szymansky [42] mutual exclusion algorithms, an Al-
ternating Bit Protocol (ABP), an Array-based Lock-Free Queue, Lamport’s Bak-
ery algorithm [34], the Ticket locking algorithm [8], the Pc1, Pgsql, Kessel, Blue-
Tooth, Sober, Driver Qw, loop2 TLM programs as defined in [14], and an RMA
Lock [41]. The benchmarks have two or three processes and the number of lines
of code is between 25 and 85. Several programs have an infinite number of states
(ABP, Queue, Bakery, Ticket). The safety properties are either mutual exclu-
sion or reachability invariants involving labels of different processes. For each
benchmark, the safety property is the same for both SC and RMA.

5.1 Prototype Implementation

We implemented the RMA analyzer in Java (around 9, 000 lines of code). For the
cube search (when building the boolean program for SC verification), the tool
uses Z3 [22] as an underlying SMT solver. We use the 3-valued model checker
Fender (implemented in Java) to check if the boolean program satisfies the speci-
fication. Fender also uses Z3 for abstraction refinement. We made minor changes
to the error trace construction and interpolation methods of Fender in order to
accommodate the RMA abstraction based on sets.

Flush search. For an input program, we initially add a flush statement after
each RMA remote statement (put or get). Alternatively, the user can suggest a
different initial flush placement. The analyzer starts checking the input program
using all the flushes of the initial flush placement. If the analyzer successfully
verifies the program, then the flush search process continues by removing one
flush statement, updating the boolean program and rechecking the property
using Fender (no need to rerun the predicate abstraction).

We develop a search procedure for the smallest placement of flush statements
for which our tool successfully proves that the program satisfies its specification
under RMA. We choose a mix between breadth-first and depth-first search. In
the first phase (breadth-first search of depth 1), we repeatedly check the program
while removing one of the flush statements of the initial placement. This phase
identifies the flush statements that are always needed for the program to satisfy
the specification. In the second phase, the tool performs a depth-first search,
while trying to remove only flush statements that were successfully removed
in the first phase. This hybrid solution is much faster than a simple depth-
first or breadth-first search, especially for the cases where the number of flush

statements needed is small. Finally, the search returns one or several solutions
of flush placements that make the program satisfy the desired property.

Table 3. Experimental results showing verification of a number of algorithms on both
SC and RMA models.

SC predicate abstraction RMA predicate abstraction

Algorithm |V | BP(P, V) (s) B(loc) |V | B (loc) Fender (s) Min flush

Dekker 11 1 498 29 2068 876 4/12
Peterson 10 1 356 21 1045 4 4/7
Abp 16 1 485 20 662 1 1/2
Pc1 18 2 658 35 3797 126 2/7
Pgsql 12 1 418 18 1549 1 2/4
Qw 13 2 487 29 1544 1345 4/5
Sober 23 8 831 48 8466 10 0/9
Kessel 18 3 534 36 1621 16 5/10
Loop2 TLM 29 165 1068 43 1986 3960 4/4
Szymanski 34 228 1182 64 7081 316 7/14
Queue 13 24 572 22 1104 13 1/2
Ticket 17 114 640 43 3615 4320 5/6
Bakery 19 330 828 41 2947 288 6/10
RMA Lock 24 50 763 60 5932 65679 9/18

5.2 Experimental Results

The results of the analysis are presented in Table 3. For the first part of our
analysis, we perform the verification of the programs assuming SC.

Meaning of table columns. |V | represents the number of predicates used for SC
verification. To obtain these predicates, we started with a manually selected set,
then used abstraction refinement to find the sufficient set to verify the program
under SC. The BP(P, V) (s) column records the duration in seconds of building
the boolean program abstraction. Most of this time (95%) is spent in the SMT
solver, used for the cube search. B(loc) shows the number of lines of code in
the resulting boolean program. Checking the SC boolean program with Fender
takes for each algorithm a small number of seconds, therefore we omit it from
the results table. In the second step of our analysis, we perform the boolean
program extrapolation, based on the SC boolean program B. |V | is the number
of predicates after extrapolating the SC predicates V (V = EP(V)). The column
B(loc) shows the number of lines of code of the extrapolated boolean program
B. The Fender (s) column shows the runtime of Fender for checking whether
B satisfies the specification. Finally, Min flush is the result of the search for
the minimal number of flush statements required for the program to satisfy its
specification under RMA. The first number is the smallest number of flushes for
which the verification succeeds, and the second number is the number of flushes
of the initial flush placement.

On average, the extrapolated boolean program is 5 times larger than the SC
boolean program. The resulting extrapolated predicates are twice as many, on
average, compared to the original predicates |V | (note that V ⊂ V). We obtain

larger running times for the Ticket and Loop2 TLM benchmarks, due to the
high number of predicates and the complexity of the programs.

Scalability of Boolean program extrapolation. The boolean program extrapola-
tion that constructs B takes under a second for each benchmark. If we took
the approach of using standard predicate abstraction of the reduced program P ,
the time would be significantly higher. For instance, we experimented with the
Bakery mutual exclusion algorithm, and the standard approach took over three
hours (compared to sub-second times for the extrapolation). The precision of
the two boolean programs is similar, as the same minimal flush placements are
found for both. This shows the advantage of our extrapolation method.

Extrapolation precision and minimal flush placement. The extrapolated boolean
program is precise enough to remove flush statements and verify the property
for all benchmark algorithms (except Loop2 TLM). For Loop2 TLM, the model
checker timed out after two hours, while checking the boolean program with
a flush removed. Surprisingly, the Sober algorithm does not require any flush

statement under RMA. This is due to the algorithm already executing the re-
mote operations in loops that have the same effect as a flush (by checking in
their condition the value returned by the get statement). Comparing these flush

placements with other memory models (x86 TSO, PSO), is challenging, due to
the one sided aspect of the remote operations. Two store operations to a shared
variable X, one in each thread, under TSO, become a store and a put in the
RMA program, since X belongs to on one of the processes.

6 Related Work

Remote Memory Access (RMA) Programming. The semantics of MPI-3 RMA
have been first described, informally, by [31]. The work of [17] introduces oper-
ational semantics for Partitioned Global Address Spaces (PGAS), which follow
the same principles as RMA programs. The focus in their work is analysing ro-
bustness of the programs using PGAS. Our work, on the other hand, focuses
on proving that safety specifications hold for a program under RMA by using
predicate abstraction. Axiomatic semantics of the core functionality of RMA pro-
grams are introduced in [19], which shows the benefits of formal specifications
in discovering inconsistencies in existing RMA libraries.

Program Analysis under Weak Memory Models There exists significant body
of work in automatically verifying programs and synthesizing fences required
for the correctness of programs running under relaxed memory models such as
x86 TSO, PSO, Power, C11. This is the first work that verifies infinite-state
concurrent programs running on RMA. The work closest to ours is [20], that
introduces predicate extrapolation and cube extrapolation for verifying programs
under PSO and x86 TSO (more restricted than RMA). While cube extrapolation
reduces the search space of cubes when constructing the boolean program, in this

work we introduce complete boolean program extrapolation that side-steps cube
search while building the abstraction. Another important difference is that, while
[20] abstracts only bounded store buffers, in this work we handle unbounded
sets of pending operations via sets and quantified predicates. This results in
potentially less flush operations needed to enforce the specification. The work
of [3] defines a general framework for verifying programs under weak memory
models, based on the axiomatic semantics. In our work, we rely on operational
semantics of RMA for the source-to-source reduction to SC. The work of [2] uses
predicate abstraction to verify x86 TSO programs, while discovering predicates
using traditional refinement techniques. In our work, based on a more strict
semantics (SC), we directly discover the abstraction for weaker semantics (RMA)
via extrapolation. Work on predicate abstraction for infinite-state concurrent
programs assuming SC and using compositional methods such as Owicki-Gries
and rely-guarantee is presented in [29,30].

Reduction to SC The reduction of verifying programs under weak memory
models to verification under SC via program transformation is also used in
[5, 10, 21, 36]. This work introduces a new transformation and abstraction for
RMA programs, that is precise enough to verify the program specifications while
using a reduced number of flush statements. Works by [15, 16, 33, 35] consider
verification of finite-state programs under weak memory models, considering just
some of the sources of infinite-state programs (e.g. unbounded store buffers or in-
finite variable domains). Infinite-state programs are handled in [4] for x86 TSO.
In recent work, [1] explores the advantages of alternative semantics for TSO
(replacing store buffers with load buffers) that is more efficiently verified. In
the reduction step of our work, the auxiliary set variables resemble load buffers,
because when a remote write operation is performed, the value to be written is
selected randomly from the set, which collects all values that the corresponding
remote read operation might have. [39] introduces a procedure that detects un-
expected executions that might occur when porting the program from a source
to a target memory consistency model.

7 Conclusion

We introduced the first automatic verification technique for programs running
on RMA networks. The key idea is abstraction extrapolation: automatically build
an abstraction of the program for a relaxed memory model such as RMA, based
on an existing abstraction of the program under SC. We implemented the pred-
icate and boolean extrapolation methods and we successfully verified several
challenging concurrent algorithms running on RMA. To our knowledge, this the
first time these programs have been verified on the RMA memory model. We
believe this work takes a step towards applying proof extrapolation techniques
to other hardware or software relaxed memory consistency models.

References

1. Abdulla, P. A., Atig, M. F., Bouajjani, A., and Ngo, T. P. The benefits
of duality in verifying concurrent programs under TSO. In 27th International
Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec
City, Canada (2016), J. Desharnais and R. Jagadeesan, Eds., vol. 59 of LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 5:1–5:15.

2. Abdulla, P. A., Atig, M. F., Chen, Y.-F., Leonardsson, C., and Rezine,
A. Automatic fence insertion in integer programs via predicate abstraction. In
Proceedings of the 19th International Conference on Static Analysis (Berlin, Hei-
delberg, 2012), SAS’12, Springer-Verlag, pp. 164–180.

3. Alglave, J., and Cousot, P. Ogre and pythia: an invariance proof method for
weak consistency models. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017 (2017), G. Castagna and A. D. Gordon, Eds., ACM, pp. 3–18.

4. Alglave, J., Kroening, D., Nimal, V., and Poetzl, D. Don’t sit on the fence
- A static analysis approach to automatic fence insertion. In Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of the Vi-
enna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings
(2014), A. Biere and R. Bloem, Eds., vol. 8559 of Lecture Notes in Computer
Science, Springer, pp. 508–524.

5. Alglave, J., Kroening, D., Nimal, V., and Tautschnig, M. Software Verifi-
cation for Weak Memory via Program Transformation. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013, pp. 512–532.

6. Allen, F., Almasi, G., Andreoni, W., Beece, D., Berne, B. J., Bright,
A., Brunheroto, J., Cascaval, C., Castanos, J., Coteus, P., Crumley, P.,
Curioni, A., Denneau, M., Donath, W., Eleftheriou, M., Fitch, B., Fleis-
cher, B., Georgiou, C. J., Germain, R., Giampapa, M., Gresh, D., Gupta,
M., Haring, R., Ho, H., Hochschild, P., Hummel, S., Jonas, T., Lieber,
D., Martyna, G., Maturu, K., Moreira, J., Newns, D., Newton, M., Phil-
hower, R., Picunko, T., Pitera, J., Pitman, M., Rand, R., Royyuru, A.,
Salapura, V., Sanomiya, A., Shah, R., Sham, Y., Singh, S., Snir, M., Suits,
F., Swetz, R., Swope, W. C., Vishnumurthy, N., Ward, T. J. C., War-
ren, H., and Zhou, R. Blue Gene: A vision for protein science using a petaflop
supercomputer. IBM Syst. J. 40, 2 (Feb. 2001), 310–327.

7. Alverson, R., Roweth, D., and Kaplan, L. The Gemini system interconnect.
In Proc. of the IEEE Symposium on High Performance Interconnects (HOTI’10)
(2010), IEEE Computer Society, pp. 83–87.

8. Andrews, G. R. Concurrent programming - principles and practice. Benjam-
in/Cummings, 1991.

9. Arimilli, B., Arimilli, R., Chung, V., Clark, S., Denzel, W., Drerup,
B., Hoefler, T., Joyner, J., Lewis, J., Li, J., Ni, N., and Rajamony, R.
The PERCS high-performance interconnect. In Proc. of the IEEE Symposium on
High Performance Interconnects (HOTI’10) (Aug. 2010), IEEE Computer Society,
pp. 75–82.

10. Atig, M. F., Bouajjani, A., and Parlato, G. Getting Rid of Store-Buffers in
TSO Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 99–115.

11. Ball, T., Majumdar, R., Millstein, T. D., and Rajamani, S. K. Automatic
predicate abstraction of C programs. In Proceedings of the 2001 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), Snow-
bird, Utah, USA, June 20-22, 2001 (2001), M. Burke and M. L. Soffa, Eds., ACM,
pp. 203–213.

12. Barrett, B. W., Brightwell, R. B., Pedretti, K. T. T., Wheeler, K. B.,
Hemmert, K. S., Riesen, R. E., Underwood, K. D., Maccabe, A. B., and
Hudson, T. B. The Portals 4.0 network programming interface. Tech. rep., Sandia
National Laboratories, 2012. SAND2012-10087.

13. Beck, M., and Kagan, M. Performance evaluation of the RDMA over Ethernet
(RoCE) standard in enterprise data centers infrastructure. In Proc. of the Work-
shop on Data Center - Converged and Virtual Ethernet Switching (DC-CaVES’11)
(2011), ITCP, pp. 9–15.

14. Bertrand Jeannet. The ConcurInterproc Analyzer, Sept 2017. available
at: http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi (Sept.
2017).

15. Bouajjani, A., Derevenetc, E., and Meyer, R. Checking and enforcing ro-
bustness against TSO. In Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings (2013), M. Felleisen and P. Gardner, Eds., vol. 7792 of
Lecture Notes in Computer Science, Springer, pp. 533–553.

16. Burckhardt, S., and Musuvathi, M. Effective program verification for relaxed
memory models. In Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings (2008), A. Gupta
and S. Malik, Eds., vol. 5123 of Lecture Notes in Computer Science, Springer,
pp. 107–120.

17. Calin, G., Derevenetc, E., Majumdar, R., and Meyer, R. A theory of
partitioned global address spaces. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2013, December
12-14, 2013, Guwahati, India (2013), A. Seth and N. K. Vishnoi, Eds., vol. 24 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 127–139.

18. Cray Inc. Using the GNI and DMAPP APIs. Ver. S-2446-52, March 2014. avail-
able at: http://docs.cray.com/ (Mar. 2014).

19. Dan, A. M., Lam, P., Hoefler, T., and Vechev, M. T. Modeling and analysis
of remote memory access programming. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Nether-
lands, October 30 - November 4, 2016 (2016), E. Visser and Y. Smaragdakis, Eds.,
ACM, pp. 129–144.

20. Dan, A. M., Meshman, Y., Vechev, M. T., and Yahav, E. Predicate abstrac-
tion for relaxed memory models. In Static Analysis - 20th International Sympo-
sium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings (2013), F. Lo-
gozzo and M. Fähndrich, Eds., vol. 7935 of Lecture Notes in Computer Science,
Springer, pp. 84–104.

21. Dan, A. M., Meshman, Y., Vechev, M. T., and Yahav, E. Effective abstrac-
tions for verification under relaxed memory models. In Verification, Model Check-
ing, and Abstract Interpretation - 16th International Conference, VMCAI 2015,
Mumbai, India, January 12-14, 2015. Proceedings (2015), D. D’Souza, A. Lal, and
K. G. Larsen, Eds., vol. 8931 of Lecture Notes in Computer Science, Springer,
pp. 449–466.

http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
http://docs.cray.com/

22. de Moura, L. M., and Bjørner, N. Z3: an efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, 14th International Con-
ference, TACAS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings (2008), C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963 of
Lecture Notes in Computer Science, Springer, pp. 337–340.

23. Dijkstra, E. Cooperating sequential processes, TR EWD-123. Tech. rep., Tech-
nological University, Eindhoven, 1965.

24. Donaldson, A. F., Kaiser, A., Kroening, D., and Wahl, T. Symmetry-aware
predicate abstraction for shared-variable concurrent programs. In Gopalakrishnan
and Qadeer [27], pp. 356–371.

25. Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson,
B., Johnson, T., Kopnick, J., Higgins, M., and Reinhard, J. Cray Cascade:
A scalable HPC system based on a Dragonfly network. In Proc. of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC’12) (2012), IEEE Computer Society, pp. 103:1–103:9.

26. Gerstenberger, R., Besta, M., and Hoefler, T. Enabling Highly-scalable
Remote Memory Access Programming with MPI-3 One Sided. In Proc. of the
ACM/IEEE Supercomputing (2013), SC ’13, pp. 53:1–53:12.

27. Gopalakrishnan, G., and Qadeer, S., Eds. Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings (2011), vol. 6806 of Lecture Notes in Computer Science, Springer.

28. Graf, S., and Säıdi, H. Construction of abstract state graphs with PVS. In
Computer Aided Verification, 9th International Conference, CAV ’97, Haifa, Israel,
June 22-25, 1997, Proceedings (1997), O. Grumberg, Ed., vol. 1254 of Lecture Notes
in Computer Science, Springer, pp. 72–83.

29. Gupta, A., Popeea, C., and Rybalchenko, A. Predicate abstraction and re-
finement for verifying multi-threaded programs. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011 (2011), T. Ball and M. Sagiv, Eds.,
ACM, pp. 331–344.

30. Gupta, A., Popeea, C., and Rybalchenko, A. Threader: A constraint-based
verifier for multi-threaded programs. In Gopalakrishnan and Qadeer [27], pp. 412–
417.

31. Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W.,
and Underwood, K. Remote Memory Access Programming in MPI-3. ACM
Transactions on Parallel Computing (TOPC) (Jan. 2015).

32. Islam, N. S., Rahman, M. W., Jose, J., Rajachandrasekar, R., Wang, H.,
Subramoni, H., Murthy, C., and Panda, D. K. High performance RDMA-
based design of HDFS over InfiniBand. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis (Los
Alamitos, CA, USA, 2012), SC ’12, IEEE Computer Society Press, pp. 35:1–35:35.

33. Kuperstein, M., Vechev, M. T., and Yahav, E. Partial-coherence abstractions
for relaxed memory models. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011 (2011), M. W. Hall and D. A. Padua, Eds., ACM, pp. 187–
198.

34. Lamport, L. A new solution of Dijkstra’s concurrent programming problem.
Commun. ACM 17, 8 (1974), 453–455.

35. Linden, A., and Wolper, P. An automata-based symbolic approach for ver-
ifying programs on relaxed memory models. In Model Checking Software - 17th
International SPIN Workshop, Enschede, The Netherlands, September 27-29, 2010.
Proceedings (2010), J. van de Pol and M. Weber, Eds., vol. 6349 of Lecture Notes
in Computer Science, Springer, pp. 212–226.

36. Meshman, Y., Dan, A. M., Vechev, M. T., and Yahav, E. Synthesis of memory
fences via refinement propagation. In Static Analysis - 21st International Sympo-
sium, SAS 2014, Munich, Germany, September 11-13, 2014. Proceedings (2014),
M. Müller-Olm and H. Seidl, Eds., vol. 8723 of Lecture Notes in Computer Science,
Springer, pp. 237–252.

37. OpenFabrics Alliance (OFA). OpenFabrics Enterprise Distribution (OFED)
www.openfabrics.org, 2014.

38. Peterson, G. L. Myths about the mutual exclusion problem. Inf. Process. Lett.
12, 3 (1981), 115–116.

39. Ponce de León, H., Furbach, F., Heljanko, K., and Meyer, R. Portability
analysis for axiomatic memory models. PORTHOS: one tool for all models. CoRR
abs/1702.06704 (2017).

40. Recio, R., Metzler, B., Culley, P., Hilland, J., and Garcia, D. A Remote
Direct Memory Access Protocol Specification. RFC 5040, RFC Editor, October
2007.

41. Schmid, P., Besta, M., and Hoefler, T. High-Performance Distributed RMA
Locks. In Proceedings of the 25th Symposium on High-Performance Parallel and
Distributed Computing (HPDC’16) (Jun. 2016).

42. Szymanski, B. K. A simple solution to lamport’s concurrent programming prob-
lem with linear wait. In International Conference on Supercomputing (1988),
pp. 621–626.

43. The InfiniBand Trade Association. Infiniband Architecture Spec. Vol. 1, Rel.
1.2. InfiniBand Trade Association, 2004.

	Automatic Verification of RMA Programs via Abstraction Extrapolation

