
AM++: A Generalized Active Message Framework

Jeremiah J. Willcock
Indiana University

150 S. Woodlawn Ave
Bloomington, IN 47401, USA
jewillco@cs.indiana.edu

Torsten Hoefler
University of Illinois at
Urbana-Champaign
1205 W. Clark St.

Urbana, IL 61801, USA
htor@illinois.edu

Nicholas G. Edmonds
Indiana University

150 S. Woodlawn Ave
Bloomington, IN 47401, USA

ngedmond@cs.indiana.edu

Andrew Lumsdaine
Indiana University

150 S. Woodlawn Ave
Bloomington, IN 47401, USA
lums@cs.indiana.edu

ABSTRACT
Active messages have proven to be an effective approach for certain
communication problems in high performance computing. Many
MPI implementations, as well as runtimes for Partitioned Global
Address Space languages, use active messages in their low-level
transport layers. However, most active message frameworks have
low-level programming interfaces that require significant program-
ming effort to use directly in applications and that also prevent op-
timization opportunities. In this paper we present AM++, a new
user-level library for active messages based on generic program-
ming techniques. Our library allows message handlers to be run in
an explicit loop that can be optimized and vectorized by the com-
piler and that can also be executed in parallel on multicore archi-
tectures. Runtime optimizations, such as message combining and
filtering, are also provided by the library, removing the need to im-
plement that functionality at the application level. Evaluation of
AM++ with distributed-memory graph algorithms shows the us-
ability benefits provided by these library features, as well as their
performance advantages.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming

General Terms
Performance

Keywords
Active Messages, Parallel Graph Algorithms, Parallel Programming
Interfaces

1. INTRODUCTION
High-Performance Computing (HPC) has long been synonymous

with floating-point-intensive scientific computation. However, there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

has recently been an emergence of large-scale applications that do
not match the traditional HPC profile. The human genome project,
for example, was an early and highly visible example of a non-
traditional HPC problem that required levels of performance and
storage typically only available in high-end supercomputing sys-
tems. Nontraditional HPC problems continue to grow in impor-
tance and in their computational requirements in such diverse areas
as bioinformatics, data mining, search, knowledge discovery, net-
work analysis, etc.

Developing high-performance software for nontraditional HPC
problems is complicated by the fact that HPC hardware, software,
and systems have been designed and optimized for traditional HPC
applications. In addition to not being floating-point-intensive, non-
traditional HPC problems differ from traditional HPC problems
by being unstructured, dynamic, and data-driven. These charac-
teristics of nontraditional HPC problems present particular chal-
lenges for parallelization. The standard parallelization approach
for scientific applications follows the SPMD model which parti-
tions the problem data among a number of processes and then uses
a bulk-synchronous computation and communication pattern (typi-
cally with message passing) to effect the overall computation. How-
ever, this approach to parallelization is not well-suited to nontradi-
tional HPC problems [15].

An alternative mechanism for parallelizing nontraditional HPC
applications is to use an active messaging (AM) model, where all
computation is driven by message handlers. Active messages were
originally developed as part of the Split-C project [29] but are widely
used today in a number of different areas. Systems such as Unified
Parallel C (UPC), Co-Array Fortran, a number of MPI implemen-
tations, and object-based programming systems all rely on active
messaging for their low-level communications. Unfortunately, us-
ing active messages directly in an application is difficult because
the interfaces to existing active message systems are too low-level.

To address these issues, we have developed AM++, a new li-
brary for active message programming, intended for use by nontra-
ditional HPC applications. AM++ is targeted at a “middle ground”
between low-level active message libraries such as GASNet [2] and
object-based runtime systems such as Charm++ [13]. Particular
features of AM++ include the following:
• Allowing message handlers to themselves send arbitrary mes-

sages, simplifying the expression of some applications.
• A multi-paradigm implementation, including object-oriented

and generic programming, to balance runtime flexibility with
high performance.

• Type safety provided for messages.
• A modular design enabling configurability by the user with-

out substantial application modification.
• A design enabling compiler optimizations such as inlining

and vectorization of message handler loops, and multi-threaded
message handlers.
• Flexible message coalescing and redundant message elimi-

nation.
• Performance competitive with existing AM systems. Graph

algorithms written using AM++ have higher performance
than those using the previous, ad hoc AM framework in the
Parallel Boost Graph Library [9].

2. RELATED WORK
Previous libraries supporting active message or remote proce-

dure call semantics can be broadly grouped into two categories:
low-level and high-level. Low-level systems are meant for other li-
braries and run-time systems to build upon, or to be used as a target
for compilers; performance is the most important goal, with flex-
ibility less important. These libraries do not provide type safety
for messages and often have arbitrary, frequently system-specific,
limits on the number and types of parameters to an active mes-
sage, actions that can be performed in active message handlers,
etc. As these libraries assume a sophisticated user, features such
as message coalescing are not always provided. Examples of these
libraries include IBM’s Deep Computing Messaging Framework
(DCMF) [14], IBM’s Low-level Application Programming Inter-
face (LAPI) [21], Myrinet Express (MX) [8], and GASNet [2].
GASNet’s manual states that it is not intended for direct use by ap-
plications [2, §1.2], while DCMF and LAPI are intended for such
use. GASNet is the most portable interface and can use the native
InfiniBand interface on our system; thus, we used it in our compar-
isons as an example of a fast low-level library.

On the other hand, libraries in the remote procedure call (RPC)
tradition are designed for usability, often at the expense of perfor-
mance. These libraries tend to be more flexible, and more likely to
support heterogeneous systems, interface discovery (including so-
phisticated interface definition languages), and security; run-time
dispatch is used heavily, but type checking is usually provided.
Some RPC systems expose individual functions for remote access,
while others expose objects and their methods. Examples of tra-
ditional RPC systems include Java RMI [30], CORBA [20], and
ONC RPC [26].

Some authors have implemented systems based on RPC prin-
ciples that are intended for high-performance computing applica-
tions. These systems trade off some of the flexibility of fully gen-
eral RPC in exchange for higher performance. They also include
techniques such as message coalescing to reduce message counts,
and rely on asynchronous method calls to hide latency. These sys-
tems include Charm++ [13, 22] and ARMI [25]. The ParalleX sys-
tem is also based on active message/RPC principles, with sophis-
ticated methods for locating possibly-migrated remote objects and
non-message-based synchronization methods [12]. Optimistic Ac-
tive Messages [31] are a technique that allows more flexibility in
handlers even within a low-level active messaging system; it runs
active message handlers in an interrupt context (for example) until
they do forbidden operations (such as operations that could block),
at which point they are delayed for execution in a separate thread.

Our work differs from these systems in that it does not use ob-
jects as the target of remote accesses; we instead use functions reg-
istered as handlers. Our messages target nodes, not single objects.
Because we allow C++ function objects, methods could be used
as AM++ handlers as well by adding an explicit parameter repre-

senting the object being addressed, but that is not the intended use
case. We provide the flexibility of arbitrary actions (including ac-
tive message sends) in message handlers like in RPC systems, but
use a fully asynchronous model: a message is not guaranteed to
be sent until an explicit synchronization operation. We addition-
ally avoid run-time dispatch for our higher-level interfaces using
the techniques of generic and generative programming; the com-
piler is able to resolve that an entire buffer of coalesced messages
is all intended for the same handler, and optimize accordingly. We
therefore are in the middle, between the low-level AM implementa-
tions with their focus on performance and the higher-level systems
with their focus on ease of use; our goal is a mix of both.

The Message Passing Interface (MPI) standard defines one-sided
operations [18, §11] which are in some sense similar to active mes-
sages with predefined handlers. Those operations allow users to
access remote memory (put and get) and perform calculations on
remote memory (accumulate). The latter is probably closest to the
concept of active messages; however, MPI specifies a fixed set of
possible operations and does not currently support user-defined ac-
cumulations.

Partitioned Global Address Space (PGAS) languages, such as
Unified Parallel C (UPC) [27] and Co-Array Fortran [19], are com-
parable to AM++ in that they are both trying to provide user-level
interfaces to AM and one-sided messaging. The Berkeley UPC
compiler’s runtime system uses GASNet for communication [1].
However, these languages primarily use active messages and one-
sided operations for data movement, not for the implementation of
user algorithms. AM++ exposes the ability to use active messages
for algorithm implementation.

3. LIBRARY DESIGN
AM++ is designed to be especially flexible, without sacrificing

performance. The essential features include a mix of runtime and
compile-time configurability in order to trade off runtime flexibil-
ity for performance overhead. Another feature is extensive type
safety: message data being sent, as well as the handlers receiving
messages, use well-defined types to enable both better compile-
time error checking and the potential for compiler optimizations.
Part of this potential is that message handlers for individual mes-
sages within a coalesced block can be inlined into the loop over the
whole block (with further optimizations possible), a feature that is
difficult to achieve with indirect calls through function pointers reg-
istered at runtime. Message coalescing itself can be customized as
well: for example, when a particular kind of message is idempo-
tent, duplicate messages can be eliminated by the library—saving
the user the effort (and code complexity) of removing them in their
application. AM++ also allows handlers to invoke arbitrary ac-
tions, including sending active messages (to an arbitrary depth), as
well as allocating and freeing memory. One consequence of nested
messages is that detecting when all messages have been handled
is more difficult (the termination detection problem); we allow the
user to specify the algorithm to use and the level of nesting required
to trade off flexibility (in nesting depth) for performance (simpler
algorithms for limited depths).

AM++ is built with a layered design, as shown in Figure 1. To
blend performance and flexibility, the lower-level communication
layers use an object-oriented design for greater configurability at
runtime (for example, an individual subroutine can add message
handlers for its own use, with those handlers removed when the
subroutine ends). The assumption at the lowest level is that data
blocks are typically large (due to the coalescing of messages) and
so the overheads of such a design will be amortized across a large
number of messages. The upper layers of AM++, however, han-

MPI or Vendor Communication Library

AM++ Transport

Message
Type

Message
Type

Coalescing

Reductions

User

Message
Type

Coalescing

Epoch

TD Level

Termination
Detection

Figure 1: Design of AM++.

dle the individual messages; an application will send many of those
small messages, making performance much more important. These
layers use C++ generic programming techniques to allow compile-
time configuration without a loss of performance. The compiler
can then use static knowledge of the configuration of these levels
to optimize the code that handles individual messages more effec-
tively.

An AM++ program incorporates the following steps, also shown
in Figure 2:

1. Creating a transport to provide low-level communication in-
terfaces (Section 3.1).

2. Creating a set of message types—type-safe handlers and send
operations—within that transport.

3. Optionally constructing coalescing layers to group messages
for higher throughput (Section 3.2).

4. Beginning a message epoch (Section 3.3).
5. Sending active messages within the epoch (triggering remote

operations in those messages’ handlers).
6. Ending the message epoch, ensuring all handlers have com-

pleted.

3.1 Low-Level Transport Layer
At the lowest level, active messages are sent and received us-

ing transports. These are abstractions that represent sets of han-
dlers, with the ability to add and remove handlers dynamically. The
transport manages termination detection and epochs, as described
in Section 3.3. Transports also provide various utility functions,
such as accessing the number of nodes and the current node’s rank.

Several transports can be active at one time, but they will not
interact; waiting for a message in one does not test for messages
received by the others, which may lead to a deadlock. In this way,
transports are somewhat similar to MPI communicators, but more
independent. MPI communicators interact in the sense that they all
belong to the same MPI implementation, and thus share message
progression; AM++ transports are completely independent and so
progress on one does not necessarily imply progress on others. Sec-
tion 3.4 contains more details of progress semantics in AM++.

AM++’s current low-level transport is built atop MPI for porta-
bility. However, nothing in the model is tied to MPI or its seman-
tics. Transports could also be built to use lower-level AM libraries

such as GASNet [2] or direct network interface libraries such as In-
finiBand verbs (OFED) or Myrinet Express (MX). The MPI trans-
port is thread-safe assuming thread-safety in the underlying com-
munication libraries. In our MPI-based implementation, we use
MPI datatypes to support heterogeneous clusters without needing
explicit object serialization; serialization could be added later to
handle more complicated user-defined data types and communica-
tion libraries that do not support heterogeneity.

In order to send and handle active messages, individual message
types must be created from the transport. A transport, given the type
of data being sent and the type of the message handler, can create
a complete message type object. That message type object then
stores the handler and provides a type-safe way to send and han-
dle messages. The interface between the message type object and
the underlying transport is internal; the user only sees the methods
provided by the message type and its calls to user-defined handlers.
When a message is sent, its type is checked to ensure it is valid for
that message type object. Messages are also type-checked and nec-
essary conversions are performed before their handlers are called
so that handlers do not need to perform type conversion internally.
Message type objects are required to be created collectively (i.e., by
all processes in the transport at the same time) across nodes, and so
no type checking is done between different nodes. Any allocation
of message ID numbers or similar objects is done internally by the
message type objects; users do not need to do anything to avoid
message ID conflicts, even across separate libraries using the same
transport. An example of setting up an AM++ transport, creating a
message type (built by a coalescing layer), and sending a message
is shown in Figure 3.

At the transport level, message coalescing and other combining
techniques are not applied, and so messages consist of buffers (ar-
rays) of small objects. Sending messages is fully asynchronous to
enable overlap of communication and computation, and so the ap-
plication (or upper messaging layer) passes in a reference-counted
pointer that represents ownership of the data buffer. When the
buffer can be reused, the reference count of the pointer is decre-
mented, possibly calling a user-defined deallocation function con-
tained in the pointer. This function is effectively a callback in-
dicating when it is safe to reuse the buffer. Buffers for received
messages are automatically allocated and deallocated by the mes-
sage type object using a memory pool; the user is thus required to
declare the maximum message size for each message type.

3.2 Message Set Optimization
The modularity of AM++ enables several layers to be built atop

the basic message type objects. These layers form generalizations
of message coalescing, and thus are important to increase message
transfer rates. Because the layers work on single, small messages
that are sent very frequently, compile-time configuration (expressed
using C++ templates) is used to define the compositions of compo-
nents. Increasing the amount of compile-time knowledge of the
application’s messaging configuration provides more information
to the compiler, allowing a greater level of optimization and thus
lower messaging overheads. Here, we describe three layers that
can be built atop the basic message types: message coalescing,
vectorization and optimization of message handlers, and duplicate
message removal or combining.

3.2.1 Message Coalescing
Message coalescing is a standard technique for increasing the

rate at which small messages can be sent over a network, at the
cost of increased latency. In AM++, a message coalescing layer
can be applied atop a message type; the basic message type does

rank 0

 1

 2

(5) Messages

 (2, 3) Scope of Coalescing
and Message Objects

(4) Epoch (1) Transport

(6) Termination Detection

(5) Msg Handler
Execution

Time

Figure 2: The overall timeline of a program using AM++. Parenthesized numbers refer to the preceding list of steps.

// Create MPI transport
mpi_transport trans(MPI_COMM_WORLD);

// Build coalescing layer (the underlying message type object is created automatically)
basic_coalesced_message_type<my_message_data, my_handler, mpi_transport>

msg_type(trans, /∗ Coalesced message size ∗/ 256);

// Set message handler
msg_type.set_handler(my_handler());

// Declare that handler will not send messages (0 is nested message level)
scoped_termination_detection_level_request<mpi_transport> td_req(trans, 0);

{ // The block represents a single epoch
scoped_epoch<mpi_transport> epoch(trans);
if (trans.rank() == 0) msg_type.send(my_message_data(/∗ data ∗/ 1.5), /∗ destination ∗/ 2);

}

Figure 3: Example usage of AM++.

not need to know whether (or what kind of) coalescing is applied.
Coalescing can be configured separately for each individual mes-
sage type. Each message coalescing layer encodes the static types
of the messages it sends and of the handler that it calls, leading to
the optimizations described in Section 3.2.2.

In our implementation, a buffer of messages is kept for each
message type that uses coalescing and each possible destination.
Messages are appended to this buffer, and the entire buffer is sent
(using the underlying message type) when the buffer becomes full;
explicit flush operations are also supported. A timeout is not cur-
rently provided, but could be added in the future; a user could also
create his/her own coalescing layer supporting a timeout. When
a buffer of messages arrives at a particular node, the lower-level
handler (provided by the coalescing layer) runs the user’s handler
on each message in the buffer. The one complication in coalescing
is its interaction with threads. We have two implementations for
thread-safety of message sends: one uses an explicit lock, while
another uses the CPU’s atomic operations to avoid explicit locking
in the common case (the buffer has been allocated and is not full)
and spins in other cases. Message receiving is thread-safe without
any difficulty: a single thread is used to call handlers for all of the
messages in one buffer, while other threads can simultaneously call
handlers for messages in other buffers.

3.2.2 Message Handler Optimizations
The static knowledge of message types and handlers available

to coalescing implementations enables several potential optimiza-
tions that are not available to other, more dynamic, AM frameworks
such as GASNet. The simplest is that the user handler is called for
each message in a buffer; this loop’s body is simply a call to a
known function that can be inlined. After inlining, other loop op-
timizations can be applied, such as loop unrolling, vectorization,
and software pipelining. Hardware acceleration, such as in a GPU,
could potentially be used for especially simple handlers, as could
execution in the network interface hardware (NIC).

One particular way in which the handlers for messages in a sin-
gle buffer can be optimized is through fine-grained parallelization.
For example, an OpenMP directive could be applied to mark the
handler loop as parallel, or a more explicit form of parallelism
could be used. One benefit of AM++’s modularity is that paral-
lelism granularity is message-type-specific and can be varied with
minimal application modifications. The fine-grained model is dif-
ferent from handling different buffers in different threads, and its
finer granularity of parallelism requires low-overhead thread acti-
vation and deactivation. This granularity is applied within the AM
system, without requiring modifications to application code (other
than thread-safety of handlers).

3.2.3 Redundant Message Combining/Elimination
One convenient feature that AM++ provides in library form is

the removal or combining of redundant messages on the source
node. For example, a breadth-first search only processes each ver-
tex once, and so later attempts to process it will be ignored (i.e.,
messages are idempotent). If bandwidth was a performance bottle-
neck, removing these messages would benefit performance. Simi-
larly, a transposed sparse matrix-vector multiplication accumulates
values into an output array; updates to the same array element can
be combined on the source node rather than the destination. These
capabilities would normally need to be provided directly by the ap-
plication, and thus entangled with the rest of its code.

In AM++, redundant message combining and elimination can be
provided as a wrapper atop a coalescing layer: a new layer filters
the messages by keeping a cache, and passes new messages to the
next layer down. For duplicate message removal, a cache can be
used with a very simple filtering scheme. We have implemented
a direct-mapped cache that allows some duplication but with very
fast queries and updates, even in a multi-threaded environment; and
a cache that uses a hash table to be more accurate but also slower.
For messages that are 〈key, value〉 pairs, we also provide a reduc-
tion layer that combines messages with the same key using a binary
operator; this layer is equivalent to local combiners in the MapRe-
duce system [5]. Again, a simple cache is used for performance.

3.3 Epoch Model and Termination Detection
In AM++, periods in which messages can be sent and received

are referred to as epochs. Our notion of an epoch is similar to an
active target access epoch for MPI 2.2’s one-sided operations [18,
§11.4] in that all AM operations must occur during the epoch, while
administrative operations such as modifying handlers and message
types must occur outside the epoch. In particular, all nodes must
enter and exit the epoch collectively, making our model similar
to MPI’s active target mode. Epochs naturally structure applica-
tions in a manner similar to the Bulk Synchronous Parallel (BSP)
model [28], except that AM-based applications are likely to do
much or all of their computation within the communication regions.
AM++ does not provide a guarantee that active messages will be
received in the middle of an epoch, but does guarantee that the
handlers for all messages sent within a given epoch will have com-
pleted by the end of that epoch. This relaxed consistency model
allows system-specific optimizations.

One feature that distinguishes AM++ from other AM libraries
such as GASNet is that it gives much more flexibility to message
handlers. In particular, handlers can themselves send active mes-
sages to arbitrary destinations, and are not limited to only sending
replies. A major benefit of this capability is that it greatly simplifies
some uses of AM; for example, a graph exploration (such as that
shown in Section 4.2) can be directly implemented using chained
message handlers in AM++, while a separate queue, including ap-
propriate locking, is required when direct sending is forbidden.

More sophisticated message handlers, on the other hand, cannot
be implemented using system interrupt handlers; see Section 3.4 for
more information on this tradeoff. Traditional AM systems such as
GASNet require each handler to send at most one reply; this re-
striction can be used to avoid deadlocks [29]. Also, end-of-epoch
synchronization becomes more difficult with unrestricted handlers:
in the event that a message handler itself sends messages, all of
these nested messages will also need to handled by the end of the
epoch. Distributed termination detection algorithms [7, 16] are re-
quired to determine this property reliably in a distributed system.

The literature contains several algorithms for termination detec-
tion with arbitrary chains of nested messages; our current imple-

mentation uses the four-counter algorithm described in [16, §4]
with a non-blocking global reduction (all-reduce) operation from
libNBC [10] to accumulate the counts; this approach is similar
to the tree-based algorithm by Sinha, Kalé, and Ramkumar [23].
General termination detection algorithms allowing arbitrary nested
messages can be expensive, however; in the worst case, the number
of messages sent by the program must be doubled [3, §5.4]. AM++
allows the user to specify the depth of nested messages that will be
used; finite depths allow simpler algorithms with lower message
complexity to be used, such as generalizations of the algorithms by
Hoefler et al. [11]. Users can add and remove requests for particu-
lar depths, with the largest requested depth used; these requests can
be scoped to a particular region of code (see Section 3.5).

Because many termination detection algorithms are based on
message or channel counting, a user-defined integer value can be
summed across all nodes and then broadcast globally without ex-
tra messages in many cases. AM++ supports this operation as an
optional part of ending an epoch; termination detection algorithms
that do not include that feature automatically would need to do an
extra collective operation if a summation is requested in a particular
epoch. This feature is useful for graph algorithms; many algorithms
consist of a phase of active messages followed by a reduction op-
eration (for example, to determine if a distributed queue is empty),
and thus benefit from this capability in the AM library.

3.4 Progress and Message Management
Active messages can be received and processed in several places

in the application. For example, GASNet can run message han-
dlers inside a signal handler, leading to restrictions on what opera-
tions can be done in a handler (except when a special region is en-
tered) [2]. For flexibility, and to avoid the use of operating-system-
specific features, we run all handlers in normal user mode (i.e., not
in a signal context). As we currently build on top of MPI, our own
code also runs as normal user code. Another option would be to
use a background thread to process messages, as GASNet allows.
We do not mandate the use of threads—and thus thread safety—in
user applications, and so we do not create a background thread au-
tomatically. The user could spawn a background thread that simply
polls the AM engine in order to handle message progress. If there
is no progress thread, the user must periodically call into AM++ to
ensure that messages are sent and received. In the worst case, end-
ing an epoch will provide that assurance. MPI and GASNet also
use this model of progress, and so is likely to be familiar to users.

Our approach to threads is to allow but not mandate them. Ac-
tions such as registering and unregistering message types are not
thread-safe; it is assumed that the user will perform them from
only a single thread. A single epoch can be begun by several
threads on the same node; the epoch must then be ended by the
same number of threads. Actions such as message sends and
handler calls are thread-safe for all of AM++’s standard coalesc-
ing layers and duplicate message removers. A compile-time flag
can be used to disable locking when only one thread is in use.
Our model is thus similar to MPI’s MPI_THREAD_MULTIPLE
or GASNet’s PAR mode. For our MPI-based transport, we
normally assume MPI_THREAD_MULTIPLE in the underly-
ing MPI implementation, with a compile-time flag to switch to
MPI_THREAD_SERIALIZED for MPI implementations that do
not support multiple threads in the library simultaneously.

3.5 Administrative Objects
“Resource Acquisition is Initialization” (RAII) [24] techniques

are used throughout AM++ to simplify applications. For example,
handlers are registered by message type objects, and automatically

unregistered when the message type is deleted. Requests for par-
ticular levels of nested messages (termination detection depth) are
also managed using this technique. Epochs are scoped in a sim-
ilar manner, except that a user-defined summation at the end of
an epoch requires it to be managed manually. RAII is used in-
ternally for the management of several other types of registration
and request objects. RAII prevents many types of resource leaks
by giving the compiler responsibility for ensuring exception-safe
deallocation of objects.

4. EVALUATION
We present performance results on Odin, a 128-node InfiniBand

cluster (Single Data Rate). Each node is equipped with two 2 GHz
Dual Core Opteron 270 CPUs and 4 GiB RAM. We ran our experi-
ments with Open MPI 1.4.1, OFED 1.3.1, and GASNet 1.14.0. We
used the latency/bandwidth benchmark testam included in GAS-
Net (recording section L, as it is closest to the messaging model
AM++ uses) and a simple ping-pong scheme for AM++. The com-
piler used was g++ 4.4.0. We have observed that multiple MPI
processes per node, each with a smaller portion of the graph data,
is less efficient than a single MPI process with more graph data.
This effect is likely due to the increased communication caused by
partitioning the graph into more pieces and the overhead of commu-
nicating through MPI to perform work on graph data that is present
in a node’s local memory. Thus, all of our tests used a single MPI
process per node.

4.1 Microbenchmark: Latency and
Bandwidth

Figure 4 shows a comparison of AM++ and GASNet with re-
spect to latency and bandwidth. We remark that the AM++ imple-
mentation runs on top of MPI while the best GASNet implementa-
tion uses InfiniBand (OFED) directly. We see a minimal difference
in latency between GASNet over MPI and AM++ (< 0.6µs) and a
slightly larger difference (< 3.1µs) between the optimized GAS-
Net over InfiniBand and AM++ versions. Our design also allows
for an implementation on top of OFED, however, we have limited
our focus to MPI for increased portability. As with latency, GAS-
Net over InfiniBand performs slightly better than AM++ with re-
spect to bandwidth. We note that GASNet’s MPI conduit does not
support messages larger than 65 kB.

Our modular design allows for runtime-configurable termination
detection and uses dynamic memory management (but with heavy
use of memory pools) for send and receive buffers. These capa-
bilities impose a small overhead on all messages, primarily due to
virtual function calls.

4.2 Kernel Benchmark: Graph Exploration
In order to demonstrate the benefits of sending arbitrary active

messages from within a handler context, we now discuss a simple
graph exploration kernel. The graph exploration algorithm is sim-
ilar to breadth-first search in that each vertex of a graph reachable
from a given source is explored exactly once, with a color map
used to ensure this property. Unlike BFS, however, graph explo-
ration does not place any constraints on the vertex order, and thus
avoids internal synchronization.

We implemented two versions of the kernel. In the first, queue-
based implementation, the active message handler adds remote ver-
tices that have been discovered to the local queue for processing.
The second, nested-message implementation’s active message han-
dler performs the exploration step and sends all remote messages

immediately. The nested-message implementation thus has signif-
icantly lower overhead (fewer push/pop operations) and is much
more agile because it generates new messages without the delay of
a queue. However, it requires that handlers be able to send mes-
sages to arbitrary processes. While we needed to use the queue-
based approach for GASNet, we implemented both versions for
AM++.

Figure 5 shows the results of the benchmark. For each run, a
random graph was generated using the Erdős-Renyi model, and
then a Hamiltonian cycle was inserted to ensure that the graph
was strongly connected. Erdős-Renyi graphs are characterized by
a high surface-to-volume ratio and normally-distributed vertex de-
grees. We seeded the random number generator statically to ensure
reproducible results.

One cause for the large performance difference between AM++
and GASNet queue-based implementations is that AM++ includes
message coalescing, while GASNet does not. AM++ is designed
for user applications that benefit from coalescing, even when it adds
latency, while GASNet is designed for optimal latency and assumes
features such as coalescing will be built atop it. Although we could
have implemented coalescing on top of GASNet, it would have
complicated the application; the AM++ version sends its messages
through a layer that applies coalescing automatically.

Another difference, as explained above, is that in the nested-
message implementation, the handler explores all local vertices
reachable from the received vertex and sends messages for any re-
mote neighbors of those vertices. A local stack is used to avoid
overflowing the system stack, with a separate stack for each han-
dler call. The queue-based implementations, on the other hand, use
a global stack to communicate between the message handler and
the code’s main loop. The handler pushes vertices onto the queue
because it cannot send messages directly. The main loop then pro-
cesses the elements on the queue, sending messages for those ver-
tices’ remote neighbors.

The third difference is termination detection. In AM++, termina-
tion detection is included in the library, while the user must imple-
ment it on top of GASNet. For the queue-based implementations,
we chose a simple scheme based on message counting: each sent
message increases a local counter and the handler generates a re-
ply message that decrements the counter; termination is detected if
all counters reach zero. This scheme adds additional overhead in
comparison to the optimized termination detection in AM++, used
in the nested-message implementation.

Thus, we note that the huge performance differences between
AM++ and GASNet on this benchmark stem from the different
goals of the two libraries. While GASNet is intended as a low-
level interface for parallel runtimes and thus tuned for the high-
est messaging performance, AM++ is more user-friendly and sup-
ports direct implementation of user algorithms and thus enables
higher performance with less implementation effort (the nested-
messaging AM++ implementation has 40% fewer lines of code
than the queue-based GASNet version). In this sense, our results in
this section emphasize the different purposes of the two libraries
rather than fundamental performance differences (as one could,
with significant implementation effort, reproduce most of the fea-
tures of AM++ on top of GASNet).

4.3 Application Benchmarks
Distributed-memory graph algorithms are an excellent applica-

tion use case for active messages as they can be highly asyn-
chronous and extremely latency-sensitive. The Parallel Boost
Graph Library (Parallel BGL) [9] is one of the most successful
publicly available distributed-memory graph libraries. The Parallel

 1

 10

 100

 1 32 1024 32768

L
a
te

n
c
y
 i
n
 M

ic
ro

s
e
c
o
n
d
s

Message Size

GASNet/IBV
GASNet/MPI

AM++

(a) Latency.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1024 4096 16384 65536

B
a
n
d
w

id
th

 i
n
 M

B
/s

Message Size

GASNet/IBV
GASNet/MPI

AM++

(b) Bandwidth.

Figure 4: GASNet over MPI or InfiniBand vs. AM++ over MPI with a ping-pong benchmark.

 10

 100

 1000

 10000

 2 4 8 16 32 64 128

T
im

e
 [
s
]

Number of Nodes

GASNet (Queue)
AM++ (Queue)

AM++

(a) Weak Scaling (5M vertices per node).

 1

 10

 100

 1000

 2 4 8 16 32 64 128

T
im

e
 [
s
]

Number of Nodes

GASNet (Queue)
AM++ (Queue)

AM++

(b) Strong Scaling (15M vertices total).

Figure 5: Comparison of GASNet and AM++ with a simple graph exploration benchmark.

BGL includes the concept of a Process Group which abstracts the
notion of a set of communicating process. The MPI Process Group
is one implementation of the Process Group concept; it performs
message coalescing, early send/receive, and utilizes asynchronous
MPI point-to-point operations and traditional collectives for com-
munication.

One key benefit of phrasing graph algorithms as message-driven
computations is that the work in the algorithm is broken into
independent quanta, making fine-grained parallelism straightfor-
ward to leverage. Because AM++ is both thread-safe and—more
importantly—efficient in the presence of threads, implementing
distributed-memory algorithms that utilize fine-grained parallelism
on-node was straightforward. This is not the case for the Parallel
BGL: the MPI Process Group is not thread-safe and would likely
require significant effort to be made so. AM++ operations are per-
formed directly by all threads involved in the computation, rather
than being funneled to a single communication thread or serialized.
While it would be possible to simply run additional processes to use
multiple cores on each node, communicating with other processes
on the same node using MPI is less efficient than communicating
with other threads in the same address space. Furthermore, addi-

tional processes would require further partitioning the graph and
associated data structures, leading to poorer load balancing.

We benchmark two graph algorithms from the Parallel BGL im-
plemented using the MPI Process Group against those same al-
gorithms implemented using AM++ and reusing code from the
Parallel BGL extensively. The AM++ implementations are bench-
marked utilizing various numbers of threads to demonstrate the ef-
fectiveness of combining fine-grained parallelism with AM++. The
latest development version of the Parallel BGL and a pre-release
version of AM++ were utilized in these tests. We present results
on Erdős-Renyi graphs as in the graph exploration kernel.

4.3.1 Breadth-First Search
Breadth-First Search (BFS) is a simple, parallelizable graph ker-

nel and performs a level-wise exploration of all vertices reachable
from a single source vertex.

Figure 6 shows the performance of the Parallel BGL’s BFS im-
plementation, as well as a BFS implemented using similar but
thread-safe data structures and AM++. In the case of the AM++
implementation, all data structures that support concurrent access
are lock-free. Figure 6(a) shows the performance of both imple-
mentations on a constant-size problem as the number of cluster

 0

 20

 40

 60

 80

 100

 120

 2 4 8 16 32 64 128

T
im

e
 [
s
]

Number of Nodes

PBGL
AM++ (t=1)
AM++ (t=2)
AM++ (t=4)

(a) Strong scaling (227 vertices and 229 edges).

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16 32 64 128

T
im

e
 [
s
]

Number of Nodes

PBGL
AM++ (t=1)
AM++ (t=2)
AM++ (t=4)

(b) Weak Scaling (225 vertices and 227 edges per node).

Figure 6: Performance of the Parallel BGL (using the MPI Process Group) and AM++ with various numbers of threads performing
a parallel breadth-first search.

nodes is increased. The Parallel BGL implementation stops scaling
at 64 nodes while the AM++ implementation’s runtime continues
to decrease in all cases as nodes are added. The AM++ imple-
mentation also benefits from additional threads in all cases except
with 4 threads on 32–96 processors, likely due to contention as the
amount of work available on each node decreases.

Figure 6(b) shows the performance of both implementations on
a problem where the work per node remains constant. The Parallel
BGL calls the sequential BGL implementation of BFS in the single-
processor case, as does AM++ when only one thread is present.
Not only does the AM++ implementation perform better and ben-
efit from fine-grained parallelism as threads are added, it also ex-
hibits no increase in runtime as the problem size is increased. This
is expected as BFS performs O(|V |) work, and so increases in the
problem size (and work) are balanced by increases in the number
of processors available.

We applied duplicate message removal to our BFS implemen-
tation but saw no resulting performance benefit. Our tests used a
high-speed interconnect, and the BFS handler is fast for redundant
messages (because of the early color map check), so the cost of
the cache is likely too large compared to the work and bandwidth it
saves. Redundant message combining techniques are likely to show
a benefit for other applications and systems, however; more expen-
sive handlers, slower networks, and larger messages obtain greater
benefit from removing excess messages. One advantage of AM++
is that various caching schemes can be plugged in without exten-
sive modifications to user code; the user’s message type is wrapped
in the appropriate caching layer and then sends and handler calls
occur as usual.

4.3.2 Parallel Single-Source Shortest Paths
Single-source shortest paths (SSSP) finds the shortest distance

from a single source vertex to all other vertices. A variety of SSSP
algorithms exist. The classic algorithm by Dijkstra is label-setting
in that distance labels are only written once, leading to an inher-
ently serial algorithm. Label-correcting algorithms such as [4, 17]
are common in parallel contexts, as label-setting algorithms do not
parallelize well. Edmonds et al. have found ∆-Stepping [17] to be
the best-performing parallel algorithm on distributed-memory sys-
tems [6].

Figure 7 shows the performance of the Parallel BGL’s ∆-
Stepping implementation vs. the same algorithm implemented with
AM++. Slight modifications were performed to the ∆-Stepping al-
gorithm which reduce work efficiency and increase redundant com-
munication but which show dramatic performance improvement in
practice. In the strong scaling chart in Figure 7(a) the Parallel BGL
implementation scales inversely between 32 and 96 nodes while
the AM++ implementation displays an increase in performance as
both additional nodes and threads are added in almost all cases.
In Figure 7(b), the AM++-based algorithm once again displays al-
most flat scaling (the runtime is expected to increase proportionally
to the problem size because SSSP performs O(|V | log |V |) work
while the number of nodes increases linearly). The Parallel BGL
implementation also exhibits an increase in runtime as the problem
size grows, albeit with a significantly steeper slope. AM++ is again
able to benefit from additional threads in this case.

Much of the difference in absolute performance is accounted
for by the difference in serialization and memory management be-
tween the two implementations. AM++’s MPI transport uses MPI
datatypes to describe the formats of messages, and the buffer used
to accumulate coalesced messages is simply an array of the ap-
propriate type; serialization is done by the MPI implementation
if required. On the other hand, Parallel BGL uses explicit serial-
ization using the Boost.Serialization library. In particular, Paral-
lel BGL’s message coalescing uses MPI_Pack to append to a data
buffer, leading to extra function calls and data structure traversals.
A 64-node profile of ∆-Stepping on a 227-vertex, 229-edge graph
(the size used in the strong scaling test) shows that 29% of the
runtime is spent in these functions. The Parallel BGL approach
can send more general objects, including those that cannot be di-
rectly described by MPI datatypes; however, AM++ could use a
more flexible serialization library while keeping arrays as coalesc-
ing buffers.

Another performance difference between the two implementa-
tions is in memory management. AM++ uses various memory
pools to reduce the use of MPI’s memory management functions
(MPI_Alloc_mem and MPI_Free_mem); these functions are slow
for some interconnects that require data to be pinned in memory.
Parallel BGL, on the other hand, uses the MPI memory functions
more directly and more often, leading to reduced performance;
31% of the profile described above is spent in these calls.

 1

 10

 100

 1000

 2 4 8 16 32 64 128

T
im

e
 [
s
]

Number of Nodes

PBGL
AM++ (t=1)
AM++ (t=2)
AM++ (t=4)

(a) Strong Scaling (227 vertices and 229 edges).

 10

 100

 1000

 1 2 4 8 16 32 64 128

T
im

e
 [
s
]

Number of Nodes

PBGL
AM++ (t=1)
AM++ (t=2)
AM++ (t=4)

(b) Weak Scaling (224 vertices and 226 edges per node).

Figure 7: Performance of the Parallel BGL (using the MPI Process Group) and AM++ with various numbers of threads computing
single-source shortest paths in parallel using ∆-Stepping.

5. CONCLUSION
AM++ is a new library for active messaging, intended for use

by irregular applications. It attempts to fit into a “middle ground”
between low-level AM libraries such as GASNet and higher-level
object-based libraries such as Charm++. AM++ supports message
handlers that can send arbitrary messages, simplifying the expres-
sion of some applications. A modular design enables configurabil-
ity by the user without substantial application modification. A mix
of object-oriented and generic programming is used to balance run-
time flexibility with high performance; type safety is also provided
for messages. AM++’s design enables several optimizations, in-
cluding inlining and vectorization of message handler loops, multi-
threaded message handlers, and redundant message combining and
elimination. AM++ provides these features while having competi-
tive performance to existing AM systems. Graph algorithms writ-
ten using AM++ have higher performance than those using the pre-
vious, ad hoc AM framework in the Parallel Boost Graph Library.

There are several avenues for extensions to AM++. Extra trans-
port layers can be added; we are in the process of implementing one
atop GASNet to be able to take advantage of its more direct hard-
ware support. The implementation is not a trivial wrapper: arbitrary
actions in handlers, termination detection, message coalescing, and
one-sided sending of large messages (without an explicit handshake
with the receiver) must be built in terms of GASNet’s primitives.
Our current GASNet transport always runs AM++ handlers out-
side GASNet handlers. Optimistic Active Messages [31] could be
employed to run suitable portions of AM++ handlers in GASNet
handlers. AM++ could also be extended with other approaches to
message coalescing (such as the use of multiple threads to run han-
dlers for the same buffer) and other caching strategies for detecting
redundant messages. Additional termination detection algorithms
could also be added, as could special types of handlers that rep-
resent one-sided (remote memory access) operations that might be
accelerated in a system’s network hardware.

Acknowledgments
This work was supported by a grant from the Lilly Endowment, as
well as NSF grant CNS-0834722 and DOE FASTOS II (LAB 07-
23). The Odin system was funded by NSF grant EIA-0202048. We
also thank Prabhanjan Kambadur and Laura Hopkins for helpful
discussions.

6. REFERENCES
[1] Berkeley UPC system internals documentation, version

2.10.0, Nov. 2009.
http://upc.lbl.gov/docs/system/index.html.

[2] D. Bonachea. GASNet specification, v1.1. Technical report,
University of California at Berkeley, Berkeley, CA, USA,
2002. http://gasnet.cs.berkeley.edu/CSD-02-1207.pdf.

[3] K. M. Chandy and J. Misra. How processes learn.
Distributed Computing, 1(1):40–52, 1986.

[4] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A
parallelization of Dijkstra’s shortest path algorithm. In
Mathematical Foundations of Computer Science, volume
1450 of LNCS, pages 722–731. Springer, 1998.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Operating Systems Design &
Implementation, pages 137–157, Berkeley, CA, USA, 2004.

[6] N. Edmonds, A. Breuer, D. Gregor, and A. Lumsdaine.
Single-source shortest paths with the Parallel Boost Graph
Library. In The Ninth DIMACS Implementation Challenge:
The Shortest Path Problem, Piscataway, NJ, November 2006.

[7] N. Francez. Distributed termination. ACM Trans. Program.
Lang. Syst., 2(1):42–55, 1980.

[8] P. Geoffray. Myrinet eXpress (MX): Is your interconnect
smart? In High Performance Computing and Grid in Asia
Pacific Region, pages 452–452, Washington, DC, USA,
2004. IEEE Computer Society.

[9] D. Gregor and A. Lumsdaine. The Parallel BGL: A generic
library for distributed graph computations. In Parallel
Object-Oriented Scientific Computing, July 2005.

[10] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation
and Performance Analysis of Non-Blocking Collective
Operations for MPI. In IEEE/ACM Supercomputing 2007
(SC’07), Nov. 2007.

[11] T. Hoefler, C. Siebert, and A. Lumsdaine. Scalable
Communication Protocols for Dynamic Sparse Data
Exchange. In Principles and Practice of Parallel
Programming, Jan. 2010.

[12] H. Kaiser, M. Brodowicz, and T. Sterling. ParalleX.
International Conference on Parallel Processing Workshops,
pages 394–401, 2009.

[13] L. V. Kalé and S. Krishnan. CHARM++: a portable
concurrent object oriented system based on C++. SIGPLAN
Not., 28(10):91–108, 1993.

[14] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen,
M. E. Giampapa, M. Blocksome, A. Faraj, J. Parker,
J. Ratterman, B. Smith, and C. J. Archer. The Deep
Computing Messaging Framework: Generalized scalable
message passing on the Blue Gene/P supercomputer. In
International Conference on Supercomputing, pages 94–103,
New York, NY, USA, 2008. ACM.

[15] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry.
Challenges in parallel graph processing. Parallel Processing
Letters, 17(1):5–20, 2007 2007.

[16] F. Mattern. Algorithms for distributed termination detection.
Distributed Computing, 2(3):161–175, Sept. 1987.

[17] U. Meyer and P. Sanders. ∆-stepping: A parallelizable
shortest path algorithm. J. Algorithms, 49(1):114–152, 2003.

[18] MPI Forum. MPI: A Message-Passing Interface Standard.
Version 2.2, September 4th 2009.

[19] R. W. Numrich and J. Reid. Co-arrays in the next Fortran
standard. SIGPLAN Fortran Forum, 24(2):4–17, 2005.

[20] Object Management Group. CORBA 3.1, Jan. 2008.
http://www.omg.org/spec/CORBA/3.1/.

[21] G. Shah and C. Bender. Performance and experience with
LAPI—a new high-performance communication library for
the IBM RS/6000 SP. In International Parallel Processing
Symposium, page 260, Washington, DC, USA, 1998. IEEE
Computer Society.

[22] W. Shu and L. V. Kalé. Chare kernel—a runtime support
system for parallel computations. J. Parallel Distrib.
Comput., 11(3):198–211, 1991.

[23] A. B. Sinha, L. V. Kalé, and B. Ramkumar. A dynamic and
adaptive quiescence detection algorithm. Technical Report
93-11, Parallel Programming Laboratory, UIUC, 1993.

[24] B. Stroustrup. Design and Evolution of C++.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1994.

[25] N. Thomas, S. Saunders, T. G. Smith, G. Tanase, and
L. Rauchwerger. ARMI: a high level communication library
for STAPL. Parallel Processing Letters, 16(2):261–280,
2006.

[26] R. Thurlow. RPC: Remote Procedure Call Protocol
Specification Version 2. Sun Microsystems, May 2009.
http://tools.ietf.org/html/rfc5531.

[27] UPC Consortium. UPC Language Specification, v1.2, May
2005. http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf.

[28] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[29] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active messages: a mechanism for integrated
communication and computation. In International
Symposium on Computer Architecture, pages 256–266, New
York, NY, USA, 1992. ACM.

[30] J. Waldo. Remote procedure calls and Java Remote Method
Invocation. IEEE Concurrency, 6:5–7, 1998.

[31] D. A. Wallach, W. C. Hsieh, K. L. Johnson, M. F. Kaashoek,
and W. E. Weihl. Optimistic Active Messages: a mechanism
for scheduling communication with computation. In
Principles and Practice of Parallel Programming, pages
217–226, New York, NY, USA, 1995. ACM.

