Life would be so much easier if only we had the source code...
Home -> Publications
Home
  Publications
    
edited volumes
  Awards
  Research
  Teaching
  Miscellaneous
  Full CV [pdf]
  BLOG






  Events








  Past Events





Publications of Torsten Hoefler
Shigang Li, Torsten Hoefler, C. Hu, Marc Snir:

 Improved MPI collectives for MPI processes in shared address spaces

(Journal of Cluster Computing. pages 1-17, Springer US, ISSN: 1386-7857, Mar. 2014)

Publisher Reference

Abstract

As the number of cores per node keeps increasing, it becomes increasingly important for MPI to leverage shared memory for intranode communication. This paper investigates the design and optimization of MPI collectives for clusters of NUMA nodes. We develop performance models for collective communication using shared memory and we demonstrate several algorithms for various collectives. Experiments are conducted on both Xeon X5650 and Opteron 6100 InfiniBand clusters. The measurements agree with the model and indicate that different algorithms dominate for short vectors and long vectors. We compare our shared-memory allreduce with several MPI implementations—Open MPI, MPICH2, and MVAPICH2—that utilize system shared memory to facilitate interprocess communication. On a 16-node Xeon cluster and 8-node Opteron cluster, our implementation achieves on geometric average 2.3X and 2.1X speedup over the best MPI implementation, respectively. Our techniques enable an efficient implementation of collective operations on future multi- and manycore systems.

Documents

Publisher URL: http://dx.doi.org/10.1007/s10586-014-0361-4
 

BibTeX

@article{li-shm-colls,
  author={Shigang Li and Torsten Hoefler and C. Hu and Marc Snir},
  title={{Improved MPI collectives for MPI processes in shared address spaces}},
  journal={Journal of Cluster Computing},
  year={2014},
  month={Mar.},
  pages={1-17},
  publisher={Springer US},
  issn={1386-7857},
  source={http://www.unixer.de/~htor/publications/},
}


serving: 3.146.206.87:34709© Torsten Hoefler