
CS 498
Hot Topics in High Performance Computing

Networks and Fault Tolerance

10. Routing and Flow Control



Intro

• What did we learn in the last lecture

– Some more topologies

– Routing (schemes and metrics)

• What will we learn today

– Routing practical examples

– Flow control

– Blue Waters topology and routing (if time)
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Deterministic Routing: InfiniBand

• Full bisection bandwidth fat-tree

• Communications 1  6 and 4  14
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Deterministic Routing: InfiniBand

• Bisection (band)width is not a good metric!

– It is only an upper bound on worst-case 
performance!

– Routing can lower effective bandwidth

• Deterministic routing *WILL* (see Valiant’s proof)

• Introduce “Effective Bisection Bandwidth”

– Expected bandwidth for a random permutation 
pattern (observable empirically)

– Optimal: full bandwidth, check impact by 
simulation

Torsten Hoefler: CS 498 Hot Topics in HPC 269



Deterministic Routing: InfiniBand

• Thunderbird @ Sandia
● 4096 compute nodes

● dual Xeon EM64T 3.6 Ghz CPUs

● 6 GiB RAM

● ½ bisection bandwidth fat tree

● 4390 active LIDs while queried
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Deterministic Routing: InfiniBand

• Atlas @ LLNL
● 1152 compute nodes

● dual 4-core 2.4 GHz Opteron

● 16 GiB RAM

● full bisection bandwidth fat tree

● 1142 active LIDs while queried
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Deterministic Routing: InfiniBand

• Ranger @ TACC
● 3936 compute nodes

● quad 4-core 2.3 GHz Opteron

● 32 GiB RAM

● full bisection bandwidth fat tree

● 3908 active LIDs while queried
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Deterministic Routing: InfiniBand

• CHiC @ TUC
● 542 compute nodes

● dual 2-core 2.6 GHz Opteron

● 4 GiB RAM

● full bisection bandwidth fat tree

● 566 active LIDs while queried
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Deterministic Routing: InfiniBand

• Impact of backend congestion on bandwidth

– Provoked congestion

– 24-port switches

– Fat-tree

– Max. cong: 12!
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Deterministic Routing: InfiniBand

• Effective bisection bandwidth:

– Ranger: 57.6%

– Atlas: 55.6%

– Thunderbird: 40.6% (1/2 bisection bandwidth)

• Obvious questions:

– Does it make sense to build networks with full 
bisection bandwidth?

– What is the tradeoff between cost and 
bandwidth?
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Adaptive Routing: Myrinet

• Implemented and benchmarked optimal 
deterministic routing (will be defined later), 
random routing, and local and global adaptive 
routing in Firmware

• 512 Myrinet MX nodes connected as full-
bisection bandwidth Clos (similar to fat-tree)

• Running effective bisection bandwidth 
benchmark, reporting min, avg, max 
bandwidth
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Deterministic Routing: Myrinet
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Random Routing: Myrinet
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Local Adaptive Routing: Myrinet
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Global (Probing) Adaptive Routing: Myrinet
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Overview of Techniques: Myrinet
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Routing Implementations

• Source routing

– All routing decisions are made entirely at the 
source node and encoded in packet

• Distributed (table) routing

– Routes are distributed across the switches (each 
switch only stores the parts it needs)

• Algorithmic routing

– Routes can be determined algorithmically (e.g., 
butterfly, DOR, …)
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Routing on Arbitrary Topologies

• General routing schemes needed for general 
topologies (e.g., InfiniBand, Ethernet)

– Standard Ethernet uses spanning tree (bad)

• What metric to optimize for?

– Application-optimized routing (possible if 
communication topology is known)

– Arbitrary permutations seem reasonable for 
general case!  effective bisection bandwidth
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Routing Metrics

• Model network as G=(VP[VC, E)

• Path r(u,v) is a path between u,v 2 VP
• Routing R consists of P(P-1) paths

• Edge load l(e) = number of paths on e 2 E

• Edge forwarding index ¼(G,R)=maxe2E l(e)

– ¼(G,R) is a upper bound to congestion of 
permutation routing!

Goal is to find R that minimizes ¼(G,R) 

– shown to be NP-hard in the general case
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A Greedy Heuristic

• P-SSSP routing starts a SSSP run at each 

node

– finds paths with minimal edge-load l(e)

– updates routing tables in reverse

• essentially SDSP 

– updates l(e) between runs

• let’s discuss an example …
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P-SSSP Routing (1/3)
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Step 1:

Source-node 0:



P-SSSP Routing (2/3)

287

Step 2:

Source-node 1:



P-SSSP Routing (3/3)

288

Step 3:

Source-node 2:

¼(G,R)=2



Routing Example: InfiniBand

• Example: InfiniBand

– InfiniBand uses deterministic distributed routing

– OpenSM configures the local network (subnet)

• implements different routing schemes

– Linear forwarding table (LFT) at each switch

– Lid mask control (LMC) enables multiple addresses 
per port
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Routing Example: InfiniBand

• Different routing algorithms:

– MINHOP (finds minimal paths, balances number of 
routes local at each switch)

– UPDN (uses Up*/Down* turn-control, very similar to 

MINHOP)

– FTREE (fat-tree optimized routing)

– DOR (dimension order routing for k-ary n-cubes)

– LASH (uses DOR and breaks credit-loops with virtual 
lanes) 
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Benchmark Results Odin

291

Simulation
Benchmark 

(Netgauge Pattern eBB)

Simulation predicts 5% improvement

Benchmark shows 18% improvement!



Benchmark Results Deimos

292

Simulation
Benchmark 

(Netgauge Pattern eBB)

Simulation predicts 23% improvement

Benchmark shows 40% improvement!



Flow Control

• Determines how network resources are 
allocated

– Can either be viewed as resource allocation or 
contention resolution problem

• Mechanisms:

– bufferless: drop or misroute if channel is blocked

– circuit switching: only headers are buffered and 
reserves path, waits if path is not available

– buffered: decouples channel allocation in time
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Flits

• Packets are MTU-sized

– Typically several 1000 bytes

– Switch buffering and forwarding often works at 
smaller granularity (several bytes)

• Flit – FLow Control UnIT

– Packets are divided into flits by the hardware

– Typically no extra headers 
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Buffered Flow Control 

• Store-and-forward

– Receives full packets into buffer and forwards 
them after they have been received

– High latency (each switch waits for full packet)

• Cut-through 

– Forwards packet as soon as first (header) flit 
arrives and outgoing resources are available

– Low latency but blocks a channel for the duration 
of a whole packet transmission
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Buffered Flow Control 

• Wormhole

– Like cut-through but channels and buffers are 
allocated on a per-flit basis

– Header flit allocates virtual channel, data and tail 
flits follow, tail flit frees channel

• VC might have pointers to a packet’s flits

– Most flexible, high priority packets can intercept 
lower-priority packets “in the middle”

• Most efficient use of buffer space

• Also allows for buffers much smaller than MTU!
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Buffer Management and Backpressure

• Flow control methods need to communicate 
availability of buffers to downstream nodes

• Common types in use today:

– Credit-based

• Router keeps count of number of free flit buffers of 
peer routers, decrements when sending, stops when 
zero reached, peers send “credits” back

– On/Off

• Binary decision, neighbor routers send “on” or “off” 
flag to start or stop incoming flit streams
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Buffer Management and Backpressure

• Common types in use today (continued):

– Ack/Nack

• No state at routers, each flit will be ack’d if it fits and 
nack’d if not (resend)

– Drop

• No real flow control, packets are dropped if they do not 
fit and upper layer will re-send (common in Internet)
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Livelock

• If packets can take non-minimal routes, they 
could be routed in circles forever

– Good example: Internet

– Simple workaround: TTL 

• Is not typical for HPC settings though

– Will not be further discussed here
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Deadlock

• A group of packets cannot progress because 
they wait for each other to free resources

– Cyclic dependency (deadlock criterion)

• Deadlock is catastrophic (networks clogs up)

– Deadlock avoidance

• E.g., loop-free routing

– Deadlock resolution

• E.g., packet timeouts

Torsten Hoefler: CS 498 Hot Topics in HPC 300



Complex Deadlock Example

301

Source Network and Routes

Buffer

Dependency

Graph



Deadlock Avoidance

• Limit route selection function

– Up*/Down* routing

– Identify a tree (root) in the topology

– Allow only a single “turn” (relative to root)

– Lower bandwidth due to limited routes

• Virtual Channels

– VCs are independent, different block each other

– Can be used to create cycle-free layers

– Used in OpenSM’s LASH algorithm
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Layered Routing

• Each VL requires physical resources

– Only 16 in InfiniBand (8 in practice)

• Layered routing needs to minimize needed VLs 

– Minimization is NP-complete for arbitrary channel 
dependency graphs

• [see Domke, Hoefler, 
Nagel @IPDPS’11]
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Topology Example: Blue Waters
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• 192 GB/s Host Connection

• 336 GB/s to 7 other local nodes

• 240 GB/s to local-remote nodes

• 320 GB/s to remote nodes

• 40 GB/s to general purpose I/O

• cf. “The PERCS interconnect” @HotI’10 
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Drawer

• 8 nodes

• 32 chips

• 256 cores
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Topology Example: Blue Waters
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• LL Topology
– 24 GB/s

– 7 links/Hub

– Fully connected

– 8 Hubs

308Torsten Hoefler: CS 498 Hot Topics in HPCSource: B. Arimilli et al. “The PERCS High-

Performance Interconnect”



• LR Topology
– 5 GB/s

– 24 links/Hub

– Fully connected

– 4 Drawers

– 32 Hubs

309Torsten Hoefler: CS 498 Hot Topics in HPCSource: B. Arimilli et al. “The PERCS High-
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310

• D Topology

• 10 GB/s

• 16 links/Hub

• Fully 

connected

• 512 SNs

• 2048 Drawers

• 16384 Hubs

Torsten Hoefler: CS 498 Hot Topics in HPCSource: B. Arimilli et al. “The PERCS High-

Performance Interconnect”



Routing

• Deterministic routing

– Hits Borodin-Hopcroft bound (                  )

– Bad worst-case performance

• Indirect (random) routing

– Increases latency 

– Effectively halves (global) bandwidth

– Worst-case becomes very unlikely

311 Torsten Hoefler: CS 498 Hot Topics in HPC



SN-SN Direct Routing

SuperNode A

Direct Routing

SuperNode B

L-Hops:  2

D-Hops: 1

Total: 3 hops

D3

LR12

LR21

Torsten Hoefler: CS 498 Hot Topics in HPC
312

Source: B. Arimilli et al. “The PERCS High-

Performance Interconnect”



SN-SN Indirect Routing

SuperNode A SuperNode B

SuperNode x

L-Hops:  3

D-Hops: 2

Total: 5 hops

D5

D12

LR21

LL7

LR30

Total paths = # SNs – 2

Torsten Hoefler: CS 498 Hot Topics in HPC 313Source: B. Arimilli et al. “The PERCS High-
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Example Model: BW Global Alltoall Bandwidth

• Assume all communications happen simultaneously

• Derive upper (expected) bound for direct routing

– Simple counting argument

• Each CN can be reached through series of LL, LR, D

– Not more than one D link or LL-LR, LR-LL, LL-LL, LR-LR

• Denote e(P) as number of nodes reachable through path P

– e(LL) =7, e(LR)=24, e(D)=d (variable number of D-links)

• # nodes reachable in two hops:

– e(LL-D)=e(D-LL)=7d

– e(LR-D)=e(D-LR) = 24d

314 Torsten Hoefler: CS 498 Hot Topics in HPCSource: B. Arimilli et al. “The PERCS High-
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Example: Alltoall Bandwidth 
Continued …

• # nodes reachable in three hops:

– e(LL-D-LL) = 49d

– e(LL-D-LR)=e(LR-D-LL) = 168d

– e(LR-D-LR)=576d

• Number of paths from each source: 31+1024d

• Now count the number of paths (i.e., congestion) through 

each LL, LR, D link c(L): (omitted uninteresting parts of summation)

– c(LL) = 1+64d 

– c(LR) = 1+64d

– c(D) = 1024
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Example: Alltoall Bandwidth 
Continued …

• Effective (expected) bandwidths for each link-type:

– bandwidth = link bandwidth / congestion 

– b(LL) = 24 GB/s / (1+64d)

– b(LR) = 5 GB/s / (1+64d)

– b(D) = 10 GB/s / 1024

• If d<8, D is the bottleneck, otherwise LR

• Bandwidth per PE: 5 GB/s / 1+64d * total # paths

– d=9 (294912 cores): 80.13 GB/s

– d=10 (327680 cores): 80.11 GB/s total ~ 0.8 PB/s 

• Connection to P7 chips: 4*24 GB/s = 96 GB/s  ~ 83% 
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