CS 498 Hot Topics in High Performance Computing Networks and Fault Tolerance

3. A Network-Centric View on HPC

Intro

- What did we learn in the last lecture
 - SMM vs. DMM architecture and programming
 - Systolic Arrays, Dataflow, Flynn's classification
 - Including architectural tradeoffs
 - A simple latency/bandwidth model
- What will we learn today
 - More about broadcasts
 - Optimality criteria
 - An asymptotically optimal algorithm

Why Broadcast?

- Broadcast is equivalent to reduction!
- Both are very important
 - Bcast is the central communication operation in HPL
 - (All)Reduce is most important
 - We've seen it in our compute pi example!
 - Algorithms can be used for any data-distribution problem!
 - E.g., streaming video (adjust optimal packet size)
- It's simple! (wait for scatter/gather)

Quick Example

- Simplest linear broadcast
 - One process has a data item to be distributed to all processes
- Sending s bytes to P processes:
 T(s) = P * (α+βs) = O(P)

 Class question: Do you know a faster method to accomplish the same?

k-ary Tree Broadcast

- Origin process is the root of the tree, passes messages to k neighbors which pass them on – k=2 -> binary tree
- Class Question: What is the broadcast time in the simple latency/bandwidth model?

k-ary Tree Broadcast

- Origin process is the root of the tree, passes messages to k neighbors which pass them on – k=2 -> binary tree
- Class Question: What is the broadcast time in the simple latency/bandwidth model?

 $- T(s) = \lceil log_k(P) \rceil \cdot k \cdot (\alpha + \beta \cdot s) = \mathcal{O}(log(P))$

• Class Question: What is the optimal k?

k-ary Tree Broadcast

- Origin process is the root of the tree, passes messages to k neighbors which pass them on – k=2 -> binary tree
- Class Question: What is the broadcast time in the simple latency/bandwidth model?

 $- T(s) = \lceil log_k(P) \rceil \cdot k \cdot (\alpha + \beta \cdot s) = \mathcal{O}(log(P))$

• Class Question: What is the optimal k?

$$0 = \frac{\ln(P) \cdot k}{\ln(k)} \frac{d}{dk} = \frac{\ln(P)\ln(k) - \ln(P)}{\ln^2(k)} \to k = e = 2.71...$$

– Independent of P, α , β s? Really?

 Class Question: Can we broadcast faster than in a ternary tree?

- Class Question: Can we broadcast faster than in a ternary tree?
 - Yes because each respective root is idle after sending three messages!
 - Those roots could keep sending!
 - Result is a k-nomial tree
 - For k=2, it's a binomial tree
- Class Question: What about the runtime?

• Class Question: What about the Runtime?

- $T(s) = \lceil log_k(P) \rceil \cdot (k-1) \cdot (\alpha + \beta \cdot s) = \mathcal{O}(log(P))$

• Class Question: What is the optimal k here?

- Class Question: What about the Runtime? - $T(s) = \lceil log_k(P) \rceil \cdot (k-1) \cdot (\alpha + \beta \cdot s) = O(log(P))$
- Class Question: What is the optimal k here?
 - T(s) d/dk has no minimum for k>1 and is monotonic, thus k_{opt}=2

• Class Question: What about the Runtime?

 $- T(s) = \lceil log_k(P) \rceil \cdot (k-1) \cdot (\alpha + \beta \cdot s) = \mathcal{O}(log(P))$

- Class Question: What is the optimal k here?
 T(s) d/dk has no minimum for k>1 and is monotonic, thus k_{opt}=2
- Class Question: Can we broadcast faster than in a k-nomial tree?

• Class Question: What about the Runtime?

 $- T(s) = \lceil log_k(P) \rceil \cdot (k-1) \cdot (\alpha + \beta \cdot s) = \mathcal{O}(log(P))$

- Class Question: What is the optimal k here?
 T(s) d/dk has no minimum for k>1 and is monotonic, thus k_{opt}=2
- Class Question: Can we broadcast faster than in a k-nomial tree?
 - O(log(P)) is asymptotically optimal for s=1!
 - But what about large s?

Very Large Message Broadcast

- Extreme case (P small, s large): simple pipeline
 - Split message into segments of size z
 - Send segments from PE i to PE i+1
- Class Question: What is the runtime?

Very Large Message Broadcast

- Extreme case (P small, s large): simple pipeline
 - Split message into segments of size z
 - Send segments from PE i to PE i+1
- Class Question: What is the runtime?
 T(s) = (P-2+s/z)(α + βz)
- Class Question: Compare 2-nomial tree with simple pipeline for α =10, β =1, P=4, s=10⁶, and z=10⁵

Very Large Message Broadcast

- Extreme case (P small, s large): simple pipeline
 - Split message into segments of size z
 - Send segments from PE i to PE i+1
- Class Question: What is the runtime?
 T(s) = (P-2+s/z)(α + βz)
- Class Question: Compare 2-nomial tree with simple pipeline for α =10, β =1, P=4, s=10⁶, and z=10⁵
 - 2,000,020 vs. 1,200,120

Optimal Segment Size

 Class Question: What is the optimal z for given α, β, Ρ, s?

Optimal Segment Size

- Class Question: What is the optimal z for given α , β , P, s?
 - Derive by z

$$z_{opt} = \sqrt{\frac{s\alpha}{(P-2)\beta}}$$

• Class Question: What is the time for simple pipeline for α =10, β =1, P=4, s=10⁶, and z_{opt}?

Optimal Segment Size

- Class Question: What is the optimal z for given α , β , P, s?
 - Derive by z

$$z_{opt} = \sqrt{\frac{s\alpha}{(P-2)\beta}}$$

Class Question: What is the time for simple pipeline for α=10, β=1, P=4, s=10⁶, and z_{opt}?
 – 1,008,964

Lower Bounds

• Class Question: What is a simple lower bound on the broadcast time?

Lower Bounds

 Class Question: What is a simple lower bound on the broadcast time?

 $- T_{BC} \ge \min\{\lceil \log_2(P) \rceil \alpha, s\beta\}$

 Class Question: How close are the binomial tree for small messages and the pipeline for large messages?

Lower Bounds

- Class Question: What is a simple lower bound on the broadcast time?
 T_{BC} ≥ min{ [log₂(P)]α, sβ}
- Class Question: How close are the binomial tree for small messages and the pipeline for large messages?
 - Bin. tree is a factor of $log_2(P)$ slower in bandwidth
 - Pipeline is a factor of P/ $log_2(P)$ slower in latency

• Class Question: What can we do for intermediate message sizes?

- Class Question: What can we do for intermediate message sizes?
 – Combine pipeline and tree → pipelined tree
- Class Question: What is the runtime of the pipelined tree algorithm?

- Class Question: What can we do for intermediate message sizes?
 – Combine pipeline and tree → pipelined tree
- Class Question: What is the runtime of the pipelined tree algorithm?

 $- T = \left(\frac{s}{z} + \lceil \log_2 P \rceil - 1\right) \cdot 2 \cdot (\alpha + z\beta)$

• Class Question: What is the optimal z?

- Class Question: What can we do for intermediate message sizes?
 – Combine pipeline and tree → pipelined tree
- Class Question: What is the runtime of the pipelined tree algorithm?

$$- T = \left(\frac{s}{z} + \lceil \log_2 P \rceil - 1\right) \cdot 2 \cdot (\alpha + z\beta)$$

• Class Question: What is the optimal z?

$$-z_{opt} = \sqrt{\frac{\alpha s}{\beta(\lceil \log_2 P \rceil - 1)}}$$

 Class Question: What is the complexity of the pipelined tree with z_{opt} for small s, large P and for large s, constant P?

- Class Question: What is the complexity of the pipelined tree with z_{opt} for small s, large P and for large s, constant P?
 - Small messages, large P: s=1; z=1 (z<s), will give
 O(log P)
 - Large messages, constant P: assume α , β , P constant, will give asymptotically O(s β)
 - Asymptotically constant for large P and s but bandwidth is off by a factor of 2!

Bandwidth-Optimal Broadcast

- Algorithms exist, e.g., Sanders et al. *"Full Bandwidth Broadcast, Reduction and Scan with Only Two Trees"*. 2007
 - Intuition: in binomial tree, all leaves (P/2!) only receive data and never send \rightarrow wasted bandwidth
 - Send along two simultaneous binary trees where the leafs of one tree are inner nodes of the other
 - Construction needs to avoid endpoint congestion

SMM vs. DMM trivia

 Class Question: What do you think is the difference of the messaging characteristics between SMM and DMM machines?

SMM vs. DMM trivia

- Class Question: What do you think is the difference of the messaging characteristics between SMM and DMM machines?
 - SMM programming model results in smaller messages (single memory references)
 - High message rate!
 - DMM programming model allows to "pack" messages (larger data)
 - Low(er) message rate!

Open Problems

- Look for optimal parallel algorithms (even in simple models!)
 - And then wait for the more realistic models
 - Useful optimization targets are MPI collective operations
 - Broadcast/Reduce, Scatter/Gather, Alltoall, Allreduce, Allgather, Scan/Exscan
 - Implementations of those (check current MPI libraries ⁽³⁾)