CS 498 Hot Topics in High Performance Computing

Networks and Fault Tolerance

8. Advanced Network Topologies

Intro

- What did we learn in the last lecture
 - Introduction to network topologies
 - Parallel sorting
- What will we learn today
 - Topology metrics (diameter, bisection bandwidth, cost, ...)
 - Common network topologies

Network Topology Graph

- We now introduce a graph-theoretic view of network topology
- A network is a directed (unidirectional) or undirected (bidirectional) graph G=(V,E)
 - Direct networks have PEs at each vertex
 - Indirect networks have two types of vertices: pure forwarding vertices and vertices with PEs
 - Edges denote the physical or virtual links between nodes in the network, might be weighted

Diameter of Graphs

- Definition: "The maximum length of the shortest path between any two vertices in G"
 - Only defined for strongly connected digraphs or connected undirected graphs
- Class Question: What are the diameters of: bidirectional ring, unidirectional ring, 2d array, 3d array?

Properties of the Diameter

- Diameter indicates:
 - Maximum transmission delay
 - Maximum power consumption to transmit a packet
 - Rough cost of the interconnection network
- Average Distance matters too
 - Average path length for all node pairs
 - Average delay and power consumption
- We focus on diameter for simplicity

Minimum Diameter Directed

- Switches have fixed out-degree d
- Theorem: Let G with n=|V| be a strongly connected digraph with fixed d, then the diameter

$$d(G) = \begin{cases} = n - 1 : & d = 1 \\ \ge \lceil \log_d(n(d - 1) + 1) \rceil - 1 : & \text{otherwise.} \end{cases}$$

- Proof:
 - From any vertex, at most d vertices can be reached at distance 1 and for i≥1, at most dⁱ vertices can be reached at distance i

Minimum Diameter Directed

- Let d(G) = k, then, $n \le 1+d+d^2+...+d^{k-1}+d^k$

$$= \begin{cases} = k+1 : & d=1\\ \frac{d^{k+1}-1}{d-1} & \text{otherwise.} \end{cases}$$

- for d=1, n ≤ k+1, i.e., d(G)=k ≥ n-1 and d(G) ≤ n-1 - for d>1, (d-1)n ≤ d^{k+1} - 1, i.e., $d(G) = k \ge \lceil \log_d(n(d-1)+1) \rceil - 1$

– Q.e.d.

Minimum Diameter Undirected

 Theorem: Let G be a connected undirected Graph with n=|V|>2 and d>1, then

$$= \begin{cases} = 2k - 1 : & d = 2\\ \frac{d(d-1)^k - 2}{d-2} : & d > 2 \end{cases}$$

- Proof (Moore bound):
 - Let d(G)=k
 - At most d vertices can be reached at distance 1 and at most d(d-1)ⁱ⁻¹ can be reached at distance i

Minimum Diameter Undirected

• It follows $n \le 1+d+d(d-1)+...+d(d-1)^{k-1}$

$$= \begin{cases} = 2k - 1 : & d = 2\\ \frac{d(d-1)^k - 2}{d-2} : & d > 2 \end{cases}$$

- For d=2, n ≤ 2k+1, i.e., $d(G) = k = \lfloor \frac{n}{2} \rfloor$
- For d>2, (d-2)n \leq d(d-1)^k-2 which implies

$$d(G) \ge \left| \log_{d-1} \frac{n(d-2)+2}{d} \right|$$

• Q.e.d.

Degree-Diameter Problem

- Show table of graphs
- Examples:
 - Peterson Graph
 - degree=3
 - d=2
 - P=10
 - Hoffman-Singleton Graph
 - degree=7
 - d=2
 - P=50

Bisection (Band)width

- Definition: "The bisection with is the minimum number of links that need to be cut to bisect the graph into two equal partitions"
- Class Question: What are the bisection widths of: 1d array, ring, 2d array, 3d array?

Computing the Bisection Width

Minimum bisection is NP-hard

Proof in Garey&Johnson MINCUT (omitted here)

- Approximation algorithms are available (Kernighan-Lin, also METIS or SCOTCH)
- Most regular network structures can be derived analytically

- We will discuss this soon for some topologies

More Metrics

- **Degree**: maximum degree of any vertex in the network
- **Cost**: number of total links in the network
- Connectivity: minimum number of edges that need to be removed to disconnect the network
 - Class Question: What does this metric indicate?

Fully Connected

- Examples: many SMP systems (POWER7, most modern x86 multicores)
- Metrics
 - Construction: K(P)
 - Diameter: 1
 - Degree: P-1
 - Bisection width: P²
 - Connectivity: P-1
 - Cost: P*(P-1)/2

Arrays and Meshes

- 1-d, 2-d, 3-d arrays (with and without wraparound) – direct network!
 - Not necessarily cubic but we will limit our analysis to cubic networks for simplicity!
 - Parameters: n-dimensions, k-PEs in each dim.
 - Examples: 1-d array with P=4, 2-d array with P=4,
 3-d array with P=8!
 - Class Question: diameter, degree, bisection width, connectivity, cost (all exact with regards to P=k^d!)

Arrays and Meshes Metrics

- d-dimensional arrays with P Pes, P=k^d
- Metrics
 - Diameter: $d \cdot \sqrt[d]{P}$
 - Degree: 2d
 - Bisection width: $k^{d-1} = \sqrt[d]{P}^{d-1} = P^{\frac{d-1}{d}}$
 - Connectivity: d

– Cost:
$$d \cdot P - d \cdot k^{d-1}$$

Hypercubes

• Examples: Cosmic Cube from Caltec, iPSC/2 from Intel, Connection Machine

- Generally used as direct network

- Recursive construction: Q(d) d-dimensional Hypercube
 - -Q(0) = single PE, Q(1) = line, Q(2) = array, ...
 - Show construction!
 - Class Question: diameter, degree, bisection width, connectivity, cost (all exact with regards to P=2^d!)

Hypercubes

- $Q(n) \rightarrow P=2^d$
- Metrics
 - Diameter: $log_2(P)$
 - Degree: $log_2(P)$
 - Bisection width: P/2
 - Connectivity: log₂(P)
 - $\text{Cost: P*log}_2(P)/2$

Generalizing to k-ary n-cubes

 Examples: Cell B.E., Intel's SCC, Cray supercomputers, BG/L, BG/P

Direct network

- "square" n-dimensional with k PEs in each dimension
 - Examples: 2-ary 2-cube, 2-ary 3-cube, 3-ary 2-cube
 - Class Question: What other name do you know for 2-ary n-cubes, n-ary 2-cubes, n-ary 3-cubes?

Generalizing to k-ary n-cubes

 Examples: Cell B.E., Intel's SCC, Cray supercomputers, BG/L, BG/P

Direct network

- "square" n-dimensional with k PEs in each dimension
 - Examples: 2-ary 2-cube, 2-ary 3-cube, 3-ary 2-cube
 - Class Question: What other name do you know for 2-ary n-cubes, n-ary 2-cubes, n-ary 3-cubes?
 - Yes, Hypercube and 2-D Torus, 3D Torus

Kautz Graphs

• Minimum diameter (dir.): $k \ge \lceil \log_d(n(d-1)+1) \rceil - 1$

– Class Question: What is the minimum diameter topology that you could build right now?

Kautz Graph

- Minimum diameter (dir.): $k \ge \lceil \log_d(n(d-1)+1) \rceil 1$
 - Class Question: What is the minimum diameter topology that you could build right now?
 - Yes, 2-ary n-cubes aka. Hypercubes with $k = \log_2(n)$
- Kautz graphs can fix the disparity!
 - Reaches smallest directed diameter possible!
 - Can be constructed easily (cf. degree-diameter graphs)
 - Degree-k Kautz graph is k-connected
 - Omitted definition for brevity

Kautz Graph Example

- Diameter: 3
- Degree: 2 (2x2 unidirectional)
- P=12 SC5832

Butterfly Network

- Examples: CM5
 - It is a directed indirect network!

- k-ary n-fly: each switch has k inputs and k outputs and the network has n stages
 - Show example 2-ary 3-fly!
 - Class Question: What is the total number of PEs in a k-ary n-fly?

Butterfly Network

- Examples: CM5
 - It is a directed indirect network!

- k-ary n-fly: each switch has k inputs and k outputs and the network has n stages
 - Show example 2-ary 3-fly!
 - P=kⁿ⁻¹
 - Class Question: How many paths are there from one process to one other process?

Butterfly Network

- Examples: CM5
 - It is a directed indirect network!

- k-ary n-fly: each switch has k inputs and k outputs and the network has n stages
 - Show example 2-ary 3-fly!
 - P=kⁿ⁻¹
 - There is one path between two processes!
 - Class Question: diameter, degree, bisection width, connectivity, cost (all exact!)

Butterfly Metrics

- Class Question: diameter, degree, bisection width, connectivity, cost (all exact!)
 - P=kⁿ⁻¹
 - Diameter: log_2P
 - Degree: 2+2
 - Bisection width: P/2
 - Connectivity: 2
 - Cost: 2*P*log₂P

Benes Networks

- Two 2-ary butterflies back-to-back
 Increases path-diversity
- Class Question: What are the metrics?

Benes Networks

• Two 2-ary butterflies back-to-back

Increases path-diversity

- Metrics:
 - Diameter: $2*\log_2 P$
 - Degree: 2+2
 - Bisection width: P/2
 - Connectivity: 2
 - Cost: 4*P*log₂P

Folded Butterfly (similar to Clos)

- Fold Benes network in the middle
 - Utilizes bidirectional links
 - Retains path diversity
- Class Question: What are the metrics?

Folded Butterfly (similar to Clos)

- Fold Benes network in the middle
 - Utilizes bidirectional links
 - Retains path diversity
- Metrics:
 - Diameter: $2*\log_2 P$
 - Degree: 4
 - Bisection width: P/2
 - Connectivity: 2
 - Cost: 2*P*log₂P (bidirectional)