CS 498 Hot Topics in High Performance Computing

Networks and Fault Tolerance

8. Advanced Network Topologies

Intro

- What did we learn in the last lecture
	- Introduction to network topologies
	- Parallel sorting
- What will we learn today
	- Topology metrics (diameter, bisection bandwidth, cost, …)
	- Common network topologies

Network Topology Graph

- We now introduce a graph-theoretic view of network topology
- A network is a directed (unidirectional) or undirected (bidirectional) graph G=(V,E)
	- Direct networks have PEs at each vertex
	- Indirect networks have two types of vertices: pure forwarding vertices and vertices with PEs
	- Edges denote the physical or virtual links between nodes in the network, might be weighted

Diameter of Graphs

- Definition: "The maximum length of the shortest path between any two vertices in G"
	- Only defined for strongly connected digraphs or connected undirected graphs
- Class Question: What are the diameters of: bidirectional ring, unidirectional ring, 2d array, 3d array?

Properties of the Diameter

- Diameter indicates:
	- Maximum transmission delay
	- Maximum power consumption to transmit a packet
	- Rough cost of the interconnection network
- Average Distance matters too
	- Average path length for all node pairs
	- Average delay and power consumption
- We focus on diameter for simplicity

Minimum Diameter Directed

- Switches have fixed out-degree d
- Theorem: Let G with n= | V | be a strongly connected digraph with fixed d, then the diameter

$$
d(G) = \begin{cases} = n - 1: & d = 1\\ \geq \lceil \log_d(n(d - 1) + 1) \rceil - 1: & \text{otherwise.} \end{cases}
$$

- Proof:
	- From any vertex, at most d vertices can be reached at distance 1 and for $i \geq 1$, at most dⁱ vertices can be reached at distance i Torsten Hoefler: CS 498 Hot Topics in HPC 220

Minimum Diameter Directed

 $-$ Let d(G) = k, then, $n \leq 1+d+d^2+...+d^{k-1}+d^k$

$$
= \begin{cases} =k+1: & d=1\\ \frac{d^{k+1}-1}{d-1} & \text{otherwise.} \end{cases}
$$

 $-$ for d=1, n ≤ k+1, i.e., d(G)=k ≥ n-1 and d(G) ≤ n-1 $-$ for d>1, (d-1)n \leq d^{k+1} $-$ 1, i.e., $d(G) = k \geq \lceil \log_d(n(d-1) + 1) \rceil - 1$

– Q.e.d.

Minimum Diameter Undirected

• Theorem: Let G be a connected undirected Graph with $n=|V|>2$ and $d>1$, then

$$
= \begin{cases} = 2k - 1: & d = 2\\ \frac{d(d-1)^k - 2}{d-2}: & d > 2 \end{cases}
$$

- Proof (Moore bound):
	- $-$ Let d(G)=k
	- At most d vertices can be reached at distance 1 and at most $d(d-1)^{i-1}$ can be reached at distance i

Minimum Diameter Undirected

• It follows $n \leq 1+d+d(d-1)+...+d(d-1)^{k-1}$

$$
= \begin{cases} = 2k - 1: & d = 2\\ \frac{d(d-1)^k - 2}{d-2}: & d > 2 \end{cases}
$$

- For d=2, n \leq 2k+1, i.e., $d(G) = k = \lfloor \frac{n}{2} \rfloor$
- $-$ For d>2, (d-2)n \leq d(d-1)^k-2 which implies $d(G) \geq \left\lceil \log_{d-1} \frac{n(d-2)+2}{d} \right\rceil$

• Q.e.d.

Degree-Diameter Problem

- Show table of graphs
- Examples:
	- Peterson Graph
		- degree=3
		- \cdot d=2
		- $P=10$
	- Hoffman-Singleton Graph
		- degree=7
		- \cdot d=2
		- $P = 50$

Bisection (Band)width

- Definition: "The bisection with is the minimum number of links that need to be cut to bisect the graph into two equal partitions"
- Class Question: What are the bisection widths of: 1d array, ring, 2d array, 3d array?

Computing the Bisection Width

• Minimum bisection is NP-hard

– Proof in Garey&Johnson MINCUT (omitted here)

- Approximation algorithms are available (Kernighan-Lin, also METIS or SCOTCH)
- Most regular network structures can be derived analytically

– We will discuss this soon for some topologies

More Metrics

- **Degree**: maximum degree of any vertex in the network
- **Cost**: number of total links in the network
- **Connectivity**: minimum number of edges that need to be removed to disconnect the network
	- Class Question: What does this metric indicate?

Fully Connected

- Examples: many SMP systems (POWER7, most modern x86 multicores)
- Metrics
	- Construction: K(P)
	- Diameter: 1
	- Degree: P-1
	- $-$ Bisection width: P^2
	- Connectivity: P-1
	- $-$ Cost: $P^*(P-1)/2$

Arrays and Meshes

- 1-d, 2-d, 3-d arrays (with and without wraparound) – direct network!
	- Not necessarily cubic but we will limit our analysis to cubic networks for simplicity!
	- Parameters: n-dimensions, k-PEs in each dim.
	- $-$ Examples: 1-d array with P=4, 2-d array with P=4, 3-d array with P=8!
	- Class Question: diameter, degree, bisection width, connectivity, cost (all exact with regards to P=k^d!)

Arrays and Meshes Metrics

- d-dimensional arrays with P Pes, $P= k^d$
- Metrics
	- Diameter: $d \cdot \sqrt[d]{P}$
	- $-$ Degree: $2d$
	- Bisection width: $k^{d-1} = \sqrt[d]{P}^{d-1} = P^{\frac{d-1}{d}}$
	- Connectivity: d

$$
- \text{Cost: } d \cdot P - d \cdot k^{d-1}
$$

Hypercubes

• Examples: Cosmic Cube from Caltec, iPSC/2 from Intel, Connection Machine

– Generally used as direct network

- Recursive construction: Q(d) d-dimensional Hypercube
	- $-Q(0)$ = single PE, $Q(1)$ = line, $Q(2)$ = array, ...
	- Show construction!
	- Class Question: diameter, degree, bisection width, connectivity, cost (all exact with regards to P=2^d!)

Hypercubes

- $Q(n) \rightarrow P=2^d$
- Metrics
	- Diameter: log₂(P)
	- Degree: log₂(P)
	- Bisection width: P/2
	- Connectivity: $log₂(P)$
	- $-$ Cost: $P^*log_2(P)/2$

Generalizing to k-ary n-cubes

• Examples: Cell B.E., Intel's SCC, Cray supercomputers, BG/L, BG/P

– Direct network

- "square" n-dimensional with k PEs in each dimension
	- Examples: 2-ary 2-cube, 2-ary 3-cube, 3-ary 2-cube
	- Class Question: What other name do you know for 2-ary n-cubes, n-ary 2-cubes, n-ary 3-cubes?

Generalizing to k-ary n-cubes

• Examples: Cell B.E., Intel's SCC, Cray supercomputers, BG/L, BG/P

– Direct network

- "square" n-dimensional with k PEs in each dimension
	- Examples: 2-ary 2-cube, 2-ary 3-cube, 3-ary 2-cube
	- Class Question: What other name do you know for 2-ary n-cubes, n-ary 2-cubes, n-ary 3-cubes?
	- Yes, Hypercube and 2-D Torus, 3D Torus

Kautz Graphs

- Minimum diameter (dir.): $k \geq \lceil \log_d(n(d-1)+1) \rceil 1$
	- Class Question: What is the minimum diameter topology that you could build right now?

Kautz Graph

- Minimum diameter (dir.): $k \geq \lceil \log_d(n(d-1)+1) \rceil 1$
	- Class Question: What is the minimum diameter topology that you could build right now?
	- Yes, 2-ary n-cubes aka. Hypercubes with $k = \log_2(n)$
- Kautz graphs can fix the disparity!
	- Reaches smallest directed diameter possible!
		- Can be constructed easily (cf. degree-diameter graphs)
	- Degree-k Kautz graph is k-connected
	- Omitted definition for brevity

Kautz Graph Example

- Diameter: 3
- Degree: 2 (2x2 unidirectional)
- $P=12$ \blacksquare **SC5832**

Butterfly Network

- Examples: CM5
	- It is a directed indirect network!

- k-ary n-fly: each switch has k inputs and k outputs and the network has n stages
	- Show example 2-ary 3-fly!
	- Class Question: What is the total number of PEs in a k-ary n-fly?

Butterfly Network

- Examples: CM5
	- It is a directed indirect network!

- k-ary n-fly: each switch has k inputs and k outputs and the network has n stages
	- Show example 2-ary 3-fly!
	- $P = k^{n-1}$
	- Class Question: How many paths are there from one process to one other process?

Butterfly Network

- Examples: CM5
	- It is a directed indirect network!

- k-ary n-fly: each switch has k inputs and k outputs and the network has n stages
	- Show example 2-ary 3-fly!
	- $P = k^{n-1}$
	- There is one path between two processes!
	- Class Question: diameter, degree, bisection width, connectivity, cost (all exact!)

Butterfly Metrics

- Class Question: diameter, degree, bisection width, connectivity, cost (all exact!)
	- $P = k^{n-1}$
	- $-$ Diameter: log_2P
	- Degree: 2+2
	- Bisection width: P/2
	- Connectivity: 2
	- $-$ Cost: $2*P*log_2P$

Benes Networks

- Two 2-ary butterflies back-to-back – Increases path-diversity
- Class Question: What are the metrics?

Benes Networks

• Two 2-ary butterflies back-to-back

– Increases path-diversity

- Metrics:
	- $-$ Diameter: $2*log_2P$
	- Degree: 2+2
	- Bisection width: P/2
	- Connectivity: 2
	- $-Cost: 4*P*log₂P$

Folded Butterfly (similar to Clos)

- Fold Benes network in the middle
	- Utilizes bidirectional links
	- Retains path diversity
- Class Question: What are the metrics?

Folded Butterfly (similar to Clos)

- Fold Benes network in the middle
	- Utilizes bidirectional links
	- Retains path diversity
- Metrics:
	- $-$ Diameter: $2 * log₂P$
	- Degree: 4
	- Bisection width: P/2
	- Connectivity: 2
	- $-$ Cost: $2*P*log_2P$ (bidirectional)